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Grade 3 primary graft dysfunction at 72 h (PGD3-T72) is a severe complication following
lung transplantation. We aimed to develop an intraoperative machine-learning tool to
predict PGD3-T72. We retrospectively analyzed perioperative data from 477 patients who
underwent double-lung transplantation at a single center between 2012 and 2019. Data
were structured into nine chronological steps, and supervised machine-learning models
(XGBoost and logistic regression) were trained to predict PGD3-T72, with
hyperparameters optimized via grid search and cross-validation. PGD3-T72 occurred
in 83 patients (17.3%). XGBoost outperformed logistic regression, achieving peak
performance at second graft implantation with an AUROC of 0.84 IQR: 0.065,
p < 0.001, with a sensitivity of 0.81 and a specificity of 0.68. The top predictors
included extracorporeal membrane oxygenation (ECMO) use, blood lactate levels,
Pa02/FiO2 ratio, and total lung capacity mismatch. Subgroup analyses confirmed
robustness across ECMO and non-ECMO cohorts. PGD3-T72 can be reliably
predicted intraoperatively, offering potential for early intervention.
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INTRODUCTION

Following double-lung transplantations, grade 3 primary graft
dysfunction at 72 h (PGD3-T72) is associated with increased risks
of graft failure, bronchiolitis obliterans syndrome, and higher
one-year mortality [1, 2]. Its incidence varies widely across
centers, ranging from 3% to 25%, underscoring the need to
reevaluate its risk factors while considering the evolving
clinical practices. For instance, ex vivo lung perfusion has
expanded the lung donor pool, extending the grafts’ ischemic
times, with favorable outcomes [3, 4]. Likewise, tremendous
strides have been made with the wider use of intraoperative
extracorporeal membrane oxygenation (ECMO) [5] and its
extension into the postoperative period [6]. Such dynamic
changes in clinical practice, while beneficial for patients, can
pose challenges in identifying risk factors for PGD3-T72
development using mathematical models. In fact, the complex
interrelationships among these factors often complicate their
integration into traditional linear regression models.

Emerging machine learning techniques are promising tools,
offering the capacity to detect complex, non-linear relationships
among numerous variables associated with PGD3-T72. These
approaches have been successfully employed to predict outcomes
in kidney [7], liver [8], and pediatric heart transplantation [9]. Yet,
their application to lung transplantation remains limited [10-13],
particularly in the perioperative setting. Recently, Michelson et al.
compared four algorithms to predict PGD3-T72, using features
selected via LASSO regression to guide graft selection [14]. Such
tools hold potential for informing bedside decisions, though further
development is needed to adapt intraoperative strategies dynamically
as the surgical procedure progresses.

Building on this foundation, our study leverages a large,
prospectively collected dataset with detailed, step-by-step
intraoperative data from patients undergoing double-lung
transplantation (DLT). We aimed to identify risk factors for
PGD3-T72 and develop a simplified, clinically practical, risk
scoring system.

MATERIALS AND METHODS
Study Design

This retrospective analysis utilized a prospectively collected,
single-center database, approved by the Ethics Committee of
the French Society of Anesthesia and Critical Care (IRB No.
00010254-2019-019). All patients provided informed consent,
and the data were anonymized in accordance with the
International Society for Heart and Lung Transplantation
(ISHLT) ethical guidelines. We included all DLT recipients at
our center from January 2012 to December 2019, excluding those
undergoing multiorgan transplantation, cardiopulmonary
bypass, or retransplantation (if the index surgery was already
collected and analyzed). Surgery involved two anterolateral
thoracotomies with standardized anesthetic management, as
previously described [15].

Study Data and Variables

Anonymized data were prospectively collected in real-time
during each surgery from patients’ electronic health records
and stored using the FileMaker Pro database (FileMaker
Company, Santa Clara, CA, USA). The transplantation
process was divided into a nine-step analysis. Variables
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TABLE 1 | Variables included in the model at each of the nine time points and their values.

Predicting PGD3 Using Machine-Learning

Variables PGD3 n = 83 No PGD3 n = 394 P
Step 1
Age, years 41 [29-55] 40 [28-54] 0.98
Male gender 41 (49.4%) 198 (50.25%) 0.88
Weight, kg 59 [48-74] 54 [47-64] 0.03
Height, cm 165 [158-172] 166 [160-173] 0.75
Body mass index, kg.m2 21 [18-25] 20 [18-22] 0.001
Total lung capacity, L 4.9 [3.2-6.3] 6 [4.9-7.5] <0.001
Primary lung disease
Cystic Fibrosis 34 (41%) 218 (55.3%) 0.017
COPD/Emphysema 9 (10.8%) 107 (27.2%) 0.001
Pulmonary Fibrosis 28 (33.7%) 39 (9.9%) <0.001
Other 12 (14.5%) 30 (7.6%) 0.001
Retransplantation 2.4% 1.8% 0.70
Preoperative pulmonary hypertension* 32 (38.5%) 156 (39.6%) 0.86
Diabetes 20 (24.1%) 122 (31%) 0.21
Patent foramen ovale 7 (8.4%) 37 (9.3%) 0.65
Previous thoracic surgical procedure 19 (22.9%) 83 (21.1%) 0.71
Preoperative status
Time on waiting list, days 15 [6-40] 18 [7-43] 0.22
Lung Allocation Score 38.6 [36.0-47.2] 36.7 [34.2-40.5] <0.001
High emergency lung transplantation 13 (15.7%) 32 (8.1%) 0.03
Preoperative ICU 16 (19.3%) 43 (10.9%) 0.085
Preoperative mechanical ventilation 9 (10.8%) 9 (2.3%) <0.001
Preoperative vasopressors 4 (4.8%) 10 (2.5%) 0.26
Prognostic Nutritional Index 45 [35-53] 45 [39-51] 0.86
Blood chemistry
Hemoglobin, g/dL 11.9 [10.0-13.4] 11.9 [10.8-13.2] 0.48
Total bilirubin, pmol/L 1.8[1.4-2.2] 1.6 [1.3-2] 0.08
Albumin, g/L 37 [28-41] 37 [31-42] 0.16
Creatinine, umol/L 62 [46-82] 60 [49-73] 0.35
Creatinine GFR (MDRD ml/min) 119.7 [91.5-151.2] 118.7 [95.5-152.3] 0.48
Lymphocytes, G/L 1.7 [1.2-2.4] 1.5 [1.0-2.1] 0.07
Main treatment
Preoperative antihypertensive drug 26 (31.3%) 125 (31.7%) 0.94
Preoperative antiplatelet therapy 10 (12%) 62 (15.7%) 0.39
Step 2
Age, years 50 [42-59] 49 [37-61] 0.62
Male gender 51 (61.5%) 223 (56.6%) 0.42
Body mass index, kg.m™> 24.2 [21.1-26.2] 24.7 [22.1-27.7] 0.03
Estimated total lung capacity, L 6.5 [5.1-7.1] 6.4 [5.10-7.0] 0.41
Smoking history, pack-years 0 [0-19] 0[0-12] 0.09
Bronchial aspirations
Minimal, clear 39 (49.4%) 195 (562.1%) <0.001
Moderate 8 (10.1%) 37 (9.9%) 0.006
Major, thick 31 (39.2%) 137 (36.6) <0.001
Not Applicable 1(1.2%) 5 (1.3%) 1
Chest X ray
Normal 28 (33.7%) 132 (33.5%) <0.001
Minimal 25 (30.1%) 91 (23.1%) <0.001
Consolidation <1 lobe 16 (19.3%) 69 (17.5%) <0.001
Consolidation >1 lobe 9 (10.8%) 85 (21.6%) 0.003
Not Applicable 5 (6%) 17 (4.3%) 0.03
PaO2/FiO2 ratio 357 [307-418] 362 [314-436] 0.18
Oto score 8 [6.5-11] 8 [6-10] 0.30
Length under mechanical ventilation, days 2 [1-3.5] 2 [1-3] 0.30
Maastricht Il 0 [0-0] 0 [0-0] 0.30
Age mismatch 0.8 [0.6-1.1] 0.8 [0.6-1.2] 0.52
Gender mismatch 51 (61.5%) 247 (62.7%) 0.70
Total lung capacity mismatch 0.8 [0.5-1] 1[0.8-1.2] <0.001
Step 3
Year of transplant 2016 [2015-2018] 2016 [2013-2018] 0.051
Ex Vivo lung perfusion 15 (18.1%) 87 (22.1%) 0.42
Preoperative plasmapheresis 36 (43.3%) 151 (38.3%) 0.39
Thoracic epidural analgesia 67 (80.7%) 349 (88.6%) 0.05
(Continued on following page)
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TABLE 1 | (Continued) Variables included in the model at each of the nine time points and their values.

Variables PGD3 n = 83
Step 4
Hemoglobin concentration, g/dL 11.9 [10-13.4]
Blood lactate level, mmol/L 0.9 [0.7-1.35]
Step 5
Blood lactate level, mmol/L 1.2 [0.8-1.9]
Step 6
Blood lactate level, mmol/L 2 [1.4-2.8]
First lung ischemic time, min 282 [232-364]
Step 7
Blood lactate level, mmol/L 2.3 [1.7-3.6]
Step 8
Blood lactate level, mmol/L 3 [2.2-4.8]
Second lung ischemic time, min 432 [358-517]
Pa02/FiO2 ratio 156 [86-243]
Step 9
Graft lung reduction
None 56 (67.5%)
Wedge 6 (7.2%)
Lobectomy 14 (16.8%)
Bilateral or >1 lobectomy 7 (8.4%)
Pa02/FiO2 ratio 157 [94-236.5]
Epinephrine use during surgery 15 (18.1%)
Postoperative epinephrine requirement 16 (19.3%)
Norepinephrine infusion dose, pg/kg/min 0 [0-0.29]
Blood lactate level, mmol/L 3.3 [2.4-4.9]
Estimated Blood Loss, L 1.4 [0.84-2.5]
Packed Red Blood Cells, units 6 [4-10]
Fresh-Frozen Plasma, units 6 [4-9]
Platelet, Units 0 [0-1]
Intraoperative fluid support, L 3 [2.5-4]
Inhaled nitric oxide dependence 14 (16.9%)
Major intraoperative hemodynamic event 20 (24.1%)
Extubation in the operating room 3 (3.6%)

No PGD3 n = 394 P
11.9 [10.8-13.2] 0.48
0.8 [0.6-1] <0.001

1 [0.7-1.4] 0.003
1.5 [1.1-2.1] <0.001
284 [236-370] 0.96
15 [1.1-2.3] <0.001
2.2 [1.7-3.2] <0.001
412 [351-512] 0.36
242 [153-338] <0.001
0.005

318 (80.7%) <0.001
23 (5.8%) 0.02
39 (9.9%) <0.001
14 (3.5%) 0.011
256 [172-360] <0.001
41 (10.4%) 0.05
22 (5.6%) <0.001

0 [0-0] 0.025

2 [1.5-3.1] <0.001
1.0 [0.6-1.5] <0.001
4 [3-6] <0.001

4 [3-6] <0.001

0 [0-0] <0.001
2.75 [2-3.5] 0.017
48 (12.2%) 0.25
13 (3.3%) <0.001
165 (41.9%) <0.001

Results are expressed as n (%), or median [interquartile range].

Step 1: recipient variables, step 2: donor variables, step 3: arrival in the operating room, step 4: after anesthetic induction, step 5: first pulmonary artery clamping, step 6: first graft
implantation, step 7: second pulmonary artery clamping, step 8: second graft implantation, and step 9: end-surgery status before transfer to the intensive care unit.

Age mismatch = recipient/donor.

TLC = total lung capacity is normalized on the height and gender [men = (height in cm x 7.992)-7.081; women =(height in cm x 6.602)-5.791].

Total lung capacity mismatch = recipient/donor (expressed as a continuous variable).
ECMO, extracorporeal membrane oxygenation.

COPD, chronic obstructive pulmonary disease.

iNO, inhaled nitric oxide;

Preoperative pulmonary hypertension*: number of patients with a mean pulmonary artery pressure >25 mmHg.

GFR: glomerular filtration rate.
Data regarding ECMO (time of insertion) are presented in Figure 2.

encompassing recipient and donor characteristics were entered
into steps 1 and 2, respectively. Additionally, seven sequential
surgical phases were entered into the analysis, step 3: arrival in
the OR, step 4: post-anesthetic induction, step 5: first pulmonary
artery clamping, step 6: first graft implantation, step 7: second
pulmonary artery clamping, step 8: second graft implantation,
and step 9: end-of-surgery status before ICU transfer (Table 1).

Main Outcome

The incidence of PGD3-T72 was assessed per the 2016 ISHLT
definition [16]. PGD3-T72 was graded by consensus by a board-
certified panel including an intensivist, a pulmonologist, and an
anesthesiologist. Patients on postoperative ECMO for hypoxemia
were classified as grade 3. Predictive models were built for all nine

steps, searching for the earliest high-discrimination step selected
for clinical utility. We also compared the postoperative
complications between patients who had PGD3-T72 and those
who did not.

Statistical Analyses
Authors  followed  the  STROBE  guidelines  for
observational studies.

All analyses were carried out in R (version 4.2.3). Normality of
continuous variables was assessed using the Shapiro-Wilk test.
Variables that conformed to a Gaussian distribution were
described using mean and standard deviation and compared
using the Student’s t-test. For non-normally distributed
variables, we used median and interquartile range and
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performed comparisons using the Mann-Whitney U test.
Categorical data are described as the number (percentage)
and were compared wusing the Chi-squared test or
Fisher’s exact test.

Supervised Machine Learning Models

We employed supervised machine learning algorithms to predict
PGD3-T72 in patients following double-lung transplantation
(DLT). Supervised machine learning, a subset of artificial
intelligence, involves training computer systems on labeled
data to model the mathematical relationships between input
features and outcomes [17-19]. In this study, we utilized the
eXtreme Gradient Boosting (XGBoost) algorithm, which
integrates multiple decision trees [19]. The weighted ensemble
of these trees generates the final prediction [17-19]. For
comparison, we benchmarked XGBoost against a baseline
logistic regression (LR) model. To capture variation in clinical
decision-making, particularly related to extracorporeal support,
ECMO initiation timing was encoded as a categorical variable
spanning six defined intraoperative periods (steps 4-9). While
this does not directly model operator intent, it serves as a proxy
for practice variation related to cannulation and
intraoperative strategy.

Data Preparation, Missing Data

No data transformation process was performed on the
numerical variables. Categorical variables were one-hot
encoded without any further preprocessing. Missing data was
not imputed since XGBoost treats missing data as a specific
modality. ECMO timing was encoded as a categorical variable
using the following keys: 1: at second lung implantation; 2: at
second pneumonectomy; 3: at first lung implantation; 4: at first
pneumonectomy; 5: at induction of general anesthesia; and 6:
preoperative ECMO.

XGBoost Model Hyperparameter Tuning
We conducted hyperparameter tuning with the grid search
approach and 5-fold cross-validation in 3 successive steps.
First, we identified the optimal number of trees using a
relatively high range of learning rates and standard values for
the other hyperparameters (number of trees, maximum depth of
each tree, regularization factor gamma, fraction of features by
tree, minimum sum of instance weight needed in child tree, and
subsampling rate). Then, we selected this number of trees, left the
learning rate high, and conducted the grid search for all other
parameters. Finally, in the third round, we fixed all
hyperparameters and lowered the range of learning rates from
10E-5 to 10E-2.

The final chosen hyperparameters for the XGBoost model
were: 50 trees, no early stopping, a maximum depth of 4 for each
tree, a minimum sum of instance weight needed in child tree of
one, a gamma of 0.75, and a learning rate of 10E-5. In addition to
those conservative parameters chosen to prevent overfitting, only
40% of available columns were selected for tree construction in
each round, and 95% of subjects were selected for tree
construction (subsampling rate).

Predicting PGD3 Using Machine-Learning

Feature Selection and Final Model Training
Feature selection was performed using a recursive

additive strategy within each of 500 randomly generated
train/test splits. For each split, an XGBoost model was first
trained on the full feature set to derive variable importance
rankings (based on Gain), and then new models were
retrained using incrementally larger subsets of top-ranked
features (from 2 to 66) to evaluate area under the
receiver operating characteristic curve (AUROC) on the
corresponding test set.

While this approach involves out-of-sample testing on data
not used for model training, feature selection was not nested
within a formal cross-validation loop. A more rigorous nested
cross-validation was deemed infeasible due to sample size
constraints. As such, performance estimates may be modestly
optimistic due to the potential for information leakage. However,
to mitigate this risk, we repeated the full process 500 times,
reporting median AUROC and interquartile ranges across
iterations, and also included LR benchmarks using the same
feature subsets.

Model Performance Evaluation and

Explanation Generation

We evaluated the performance of the XGBoost and LR models
with their respective optimal number of features using standard
metrics such as the AUROC, accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, precision,
recall, and F1 score.

We used the SHapley Additive exPlanations (SHAP)
methodology to generate post-hoc explanations for the model
output. SHAP is based on game theory concepts and can be used
to explain any machine learning model’s predictions by
calculating each feature’s contribution to the prediction [20].
Specifically, we report the SHAP dependence plots, which
represent the individual contribution of each selected feature
to the outcome prediction.

All model performance metrics (e.g., AUROC, accuracy,
sensitivity) were derived from the test set of each of the
500 random train/test splits. The final reported values are the
median and interquartile ranges across these 500 out-of-
sample estimates.

Subgroup Analyses

Because ECMO has been previously highlighted as a major
predictive factor of PGD3-T72 in our cohort [21], and to
assess the robustness of our results in specific patient
populations, we conducted subgroup and sensitivity
analyses in patients who received ECMO at any time point
(pre-operatively and/or perioperatively) patients who never
received ECMO. We also performed a subgroup analysis on
the cystic fibrosis population as they accounted for half of the
cohort. Each subgroup analysis wused the same
hyperparameters as the full cohort and included
500 different models, each trained on different random
train/test data splits.
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Double-lung transplantation
January 2012 — December 2019

510 patients
Excluded from analysis *
é 19 cases of multi-organ transplantation
13 cases of retransplantation
6 cases of cardiopulmonary bypass
\ 4
477 patients included

PDG3
83 (17.4%) patients

394 (82.6%) patients

No PDG3

FIGURE 1 | Flow chart. PGD3: Grade 3 pulmonary graft dysfunction at postoperative day 3. *: Some patients may have several reasons for exclusion.

PGD3-T72 Simplified Risk Score

Using the top six features identified (from XGB) at surgical
step 8, we trained an LR model to generate a clinically
interpretable PGD3-T72 risk The model was
developed as follows:

An LR model was fit using the training data subset of the full
cohort (80% random split). We used the scorecard R package to
convert the model’s regression coefficients into a simplified point-
based risk score. Feature-specific cutoff values were determined
using thresholds derived from SHAP dependence plots, which
identify inflection points where changes in feature values
significantly alter predicted risk. To validate the score, we
performed 10-fold cross-validation using the full dataset to
evaluate the discriminatory performance of the risk score. For
clinical interpretability, the resulting score was grouped into six
ascending risk bins, each corresponding to progressively higher
observed rates of PGD3-T72. This binning strategy enhances
bedside applicability and stratified decision-making.

score.

RESULTS

The patient inclusion flowchart is depicted in Figure 1. Of the
510 patients who underwent double-lung transplantation (DLT)
at our institution during the study period, 477 met the inclusion
criteria and were analyzed (83 in the PGD3 group and 394 in the
No PGD3 group).

Of these, in 455 cases the organs were sourced from brain-
dead donors, while 22 cases involved donation after
circulatory death.

Table 1 summarizes the data collected at each step. Our cohort
reflected a large portion of cystic fibrosis patients (252, 52.7%)
and no patients with primary pulmonary hypertension. Notably,
83 patients (17.3%) who developed a PGD3-T72 had a higher
body mass index 21 [18-25] vs. 20 [18-22], p = 0.001, more
elevated lactate at all time points (p < 0.001, expect p = 0.003 at
step 5), but lower total lung capacity (TLC) 4.9 [3.2-6.3] vs.
6 [4.9-7.5], p = <0.001. Additionally, patients who met the
criteria for the French High Emergency Lung Transplantation
(HELT) program were overrepresented in the PGD3-T72 group
(13 (15.7%) vs. 32 (8.1%) p = 0.03).

ECMO was not used in 251 patients, 7 (8.4%) in the PGD3+
group and 244 (61.2%) in the No PGD3 group (p < 0.001). On the
other hand, 27 patients had ECMO in place upon arrival to the
operating room: 11 (13.3%) in the PGD3+ group and 18 (4.6%) in
the No PGD3 group (p = 0.003). The timing of ECMO
cannulation, shown in Figure 2, differed significantly between
groups (p = 0.005). Postoperatively, ECMO was continued in 62
(74.7%) patients in the PGD3+ group and 47 (11.9%) in the No
PGD3 group (p < 0.001). Primary and secondary postoperative
complications are detailed in Table 2.

Performance of the Predictive Models at all
Analytical Steps

Incorporating an increasing number of features across the nine-
step analysis enhanced the XGBoost model’s predictive
performance (Figure 3). The AUROC was calculated in each
fold, and the average cross-validated AUROC was 0.86 + 0.01,
indicating strong predictive accuracy and stability. The AUROC
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Timing of ECMO insertion End of surgery
70+ P<0.005 70 P<0.001
60 60
/]
t 50 50
2
® 40 40
Q
S 30 30
2 - -
Z 20 20
10 10
0- 0- —
T3 T4 T5 T6 T7 T8
mm PGD+ = PGD-
FIGURE 2 | Time of ECMO cannulation T3 (arrival in the OR), T4 (after anesthetic induction), T5 (first pulmonary artery clamping), T6 (first graft implantation), T7
(second pulmonary artery clamping), T8 (second graft implantation), and T9 (end-surgery status before transfer to the intensive care unit). PGD+: Patients having a grade
3 primary graft dysfunction on postoperative day 3. PGD-: Patients not having a grade 3 primary graft dysfunction on postoperative day 3.

TABLE 2 | Primary and secondary postoperative complications.

Postoperative complications PGD3 n = 83

Pulmonary complications

Secondary intubation

Tracheotomy

Total time under mechanical ventilation, days
Secondary ECMO

10 (12.05%)
39 (46.99%)
10 (5-26.5)
18 (21.69%)

PGD3
at T24 77 (92.77%)
at T48 80 (96.39%)
at 772 83 (100%)
Reoperation for bleeding 48 (57.83%
Postoperative transfusion
Red blood cell packs, units 6 (2-15)
Fresh frozen plasma, units 2 (0-7.5)
Platelet, units 1(0-2.5)
Other complications
Cerebrovascular accident 6 (7.22%)
Renal replacement therapy 26 (31.33%)
Atrial fibrillation 26 (31.33%)
Thromboembolic complication 37 (44.58%)
Lower limb ischemia 11 (13.25%)
Septic shock 40 (48.19%)
Length of stay and in-hospital mortality
In the intensive care unit, days 16 (10-32)
In the hospital, days 38 (24-73)

In-hospital mortality 24 (28.92%)

Non PGD3 n = 394 p-value
44 (11.17%) 0.818
51 (12.94%) <0.001

0.5 (0-4) <0.001
5(1.27%) <0.001
90 (22.84%) <0.001
83 (21.07%) <0.001
0 (0%) <0.001
45 (11.42%) <0.001
0 (0-1) <0.001

0 (0-0 <0.001

0 (0~ <0.001

6 (1.52%) 0.002
8 (2.03%) <0.001
85 (21.57%) 0.056
63 (15.99%) <0.001
5 (1.27%) <0.001
51 (12.94%) <0.001
5 (4-8.75) <0.001
29 (24-39) 0.001
8 (2.08%) <0.001

Values are n (%), or median (25th and 75th percentile). PGD3, grade 3 pulmonary graft dysfunction.

PGD3, primary graft dysfunction.

improved from step 1 to step 2, remained stable from step 2 to
step 6, and then increased at step 7, peaking at step 8 (AUROC:
0.84, IQR: 0.065, p < 0.001, IQR: 0.065, p < 0.001). No further
improvement was observed at step 9 (p = 0.19). Step 8 was
selected as the earliest step with the highest AUROC. Confidence
intervals were derived via bootstrapping, based on 500 iterations
with different random train/test splits. Model performance using
the top 6 features (XGBoost) and top 7 features (LR) is detailed in
Supplementary Table 1.

Performance of the Predictive Models at
Surgical Step 8, Selection of Top
Model Features

Figure 4 compares the AUROC for increasing features at step
8 using XGBoost and LR. XGBoost achieved the highest AUROC
(0.84 £ 0.04) with 6 features, outperforming LR, which peaked at
7 features (AUROC 0.81 + 0.05, sensitivity of 0.81, and specificity
of 0.68). Figure 5 displays the top 20 features for XGBoost,
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ranked by decreasing importance. The relative importance
(mean + SD) of these top 20 features for the XGBoost model,
based on the full cohort (N = 477) at surgical step 8, is reported.
Comprehensive model performance metrics are provided in
Supplementary Table 2.

Model Interpretation: SHAP Dependence

Plots for the Top 6 Features

Figure 6 presents individual SHAP dependence plots for the top
6 features of the selected XGBoost model, illustrating the non-
linear relationships between feature values and the outcome, such
as TLC mismatch. As SHAP values reflect the marginal
contribution of each feature within the model, we confirmed
that ECMO use (at any time point) was independently linked
to an elevated risk of PGD3-T72. Additional factors associated with
increased PGD3-T72 risk included ECMO initiation for hypoxic
indications, lactate levels exceeding 1.6 mmol/L after second
pulmonary artery clamping, a PaO,/FiO, ratio below
125 mmHg at first graft implantation, and a reduced recipient TLC.

Subgroup Analyses

In the subgroup analysis, 251 patients underwent lung
transplantation without ECMO. XGBoost achieved a median
AUROC of 0.82 + 0.09 at step 8 (Supplementary Figure 1;
Supplementary Table 3). In a second subgroup analysis of
226 patients who underwent lung transplantation with ECMO

at any time (preoperative and/or perioperative), the XGBoost
analysis yielded an AUROC of 0.64 + 0.04 (Supplementary
Figure 2; Supplementary Table 4). Finally, the third subgroup
analysis focused on the most represented end-stage lung disease,
patients transplanted for cystic fibrosis (252 patients). The
XGBoost analysis yielded an AUROC of 0.82 + 0.04
(Supplementary Figure 3; Supplementary Table 5).

Risk Score for PGD3

The simplified risk score for PGD3 at T72 is presented in Table 3.
The final score, calculated as the sum of the base points and each
component, ranges from -7 to 62. Figure 7 illustrates the
observed PGD3 rates across six distinct score bins. The
estimated risk of PGD3 at T72 ranges from 0% (IQR: 0) for a
score of 0 or below, to 72% (IQR: 68%-87%) for a score exceeding
33 points. The 10-fold cross-validated AUROC for the risk score
is 0.86 £ 0.01.

DISCUSSION

Machine learning algorithms such as XGBoost offer a
contemporary approach to clinical challenges [22]. Through
automated variable selection, this method uncovered nonlinear
relationships [23], adjusted for confounding factors, and
delivered accurate, well-calibrated risk estimates. This study
utilized such strengths of the XGBoost machine learning
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algorithm to predict primary graft dysfunction (PGD3) at 72 h  models at distinct stages of surgery, spanning from the
(PGD3-T72) following lung transplantation. A distinctive feature ~ assessment of recipient and donor characteristics to the
of this research was the sequential development of predictive  transfer to the ICU. By progressively integrating intraoperative
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data, we determined that the highest predictive AUROC for
PGD3-T72 was achieved after the second graft was implanted.
We identified six key predictive features: recipient TLC and its
mismatch with donor TLC, blood lactate levels (reflecting
microcirculation), use of ECMO at any point (particularly for
hypoxemia), and the PaO2/FiO2 ratio. These factors highlight the
complex interplay of recipient characteristics, donor attributes,
and intraoperative variables. Additionally, we developed a

practical risk score based on these top six features to aid
clinicians in assessing PGD3-T72 risk.

Importantly, the top predictors identified by our XGBoost
model, including ECMO use, elevated lactate levels, impaired
PaO,/FiO, ratio, and donor-recipient total lung capacity
mismatch, are consistent with previously published risk factors
for primary graft dysfunction [5, 6, 24-26]. Our contribution lies
in confirming these variables in a large, granular intraoperative
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TABLE 3 | Simplified score of PGD3-T72.

Predicting PGD3 Using Machine-Learning

Variable Bin Points
Base points 15
TLC mismatch <0.5 7
TLC mismatch [0.5, 1) 1
TLC mismatch 1, 1.15) -2
TLC mismatch >1.15 -4
Recipient TLC <3400 4
Recipient TLC [3400, 5400) 0
Recipient TLC [6400, 7400) -1
Recipient TLC >7400 -2
ECMO for hypoxic indication No -1
ECMO for hypoxic indication Yes 7
Pa02/FiO2 ratio at step 8 <100 7
Pa02/FiO2 ratio at step 8 [100, 240) 0
Pa02/FiO2 ratio at step 8 >240 -4
Lactate concentration at step 7 <1.6 -1
Lactate concentration at step 7 >1.6 15
ECMO timing No ECMO -10
ECMO timing Before surgery or at anesthetic induction 7
ECMO timing Later than at anesthetic induction 4

The final score is the sum of the base points and of each component, and ranges from -7 to 62.

TLC, total lung capacity.
TLC mismatch, mismatch in total lung capacity between recipient and donor.
ECMO, extracorporeal membrane oxygenation.
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FIGURE 7 | PGD3-T73 risk prediction score. The score is based on a
logistic regression model using the top 6 features identified in the primary
analysis. Patient scores are divided into six bins of increasing risk. The
estimated risk of PGD3-T72 ranges from O (IQR: 0) (for a score of O or

less) to 72% (IQR: 68%—-87%) (for a score above 33 points). Confidence
intervals are generated by testing the score on 500 random patient samples of
varying sizes from the cohort, with resampling. The estimated risk of PGD3-
T72 is represented as boxplots for each score bins.

dataset and integrating them into a unified, interpretable risk
score with strong predictive performance. Since this scoring
system can be implemented mid-surgery immediately after the
second graft implantation, it can serve as an early prediction tool
that provides clinicians with critical prognostic information,
potentially allowing for timely adjustments in intraoperative or
immediate postoperative management.

While our findings align with prior studies on PGD3-T72 risk
factors, it also revealed novel associations, likely due to variations
in institutional practices, evolving definitions of PGD3-T72, graft
selection criteria, and intraoperative management [27-29]. In our
study cohort, early predictors of PGD included elevated blood

lactate at step 7, the PaO2/FiO2 ratio at step 8, and the use of
ECMO for hypoxemia. These findings suggest that the
pathophysiological mechanism driving the development of
PGD likely begins at the stage of initial graft-host interaction,
consistent with studies linking biomarker emergence to second
graft implantation [24, 25, 30]. Additionally, it is worth noting
that blood lactate was particularly predictive in patients who did
not require ECMO, possibly underscoring the importance of
maintaining adequate microcirculation during surgery.

Consistent with findings from a previous large retrospective
cohort study [5], ECMO use was associated with increased
incidence of PGD3-T72, regardless of timing. To further
investigate the role of ECMO and its impact on model
performance, we conducted subgroup analyses stratified by
ECMO exposure. In the subgroup of patients who did not
receive ECMO, the model achieved strong discriminatory
performance (AUROC 0.82), with early intraoperative features,
such as elevated lactate and low PaO,/FiO, ratios after anesthetic
induction, emerging as key predictors. These findings support the
notion that early physiologic deterioration may represent a
critical window for intervention, possibly advocating for a
lower threshold for ECMO initiation to maintain cellular
oxygen delivery in at-risk patients.

In contrast, in patients who received ECMO at any time
(preoperative or intraoperative), the model’s performance was
substantially reduced (AUROC ~0.64). This diminished accuracy
likely reflects the greater clinical heterogeneity in this subgroup,
including variation in ECMO indications, timing of ECMO
initiation, and preexisting severity of illness. In this context,
the model may be confounded by complex decision-making
patterns. Importantly, ECMO initiated specifically for
hypoxemia (PaO,/FiO, < 100 mmHg) remained a strong risk
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factor for PGD3, often occurring after second graft reperfusion,
suggesting it may serve as an early clinical surrogate for emerging
graft dysfunction.

Taken together, these findings indicate that the current risk
score is best suited for use in non-ECMO patients or prior to
ECMO initiation. In ECMO-supported patients, its
interpretability and predictive power are more limited, and
dedicated models tailored to this subgroup may be needed in
future work [31, 32].

Another notable discovery is that recipient TLC emerged as a
significant risk factor, independent of the type of end-stage lung
disease. This may be attributed to the challenging surgical
manipulation of severely retracted lungs in pulmonary fibrosis
patients or the compromised nutritional status of cystic fibrosis
patients [33]. However, TLC was not normalized to patient height
in this analysis. Further research is needed to explore these
specific patient groups, particularly to identify restrictive
subpopulations with elevated chest wall elastance and to
develop strategies for accelerating postoperative recovery of
chest wall compliance [34].

In line with Tague et al., we found an optimal donor-recipient
TLC ratio of 1.2-1.6, which prompted a practice shift following
their publication, post-dating this cohort [26]. Such nonlinear
relationships, obscured in traditional LR, underscore the value of
machine learning.

Michelson et al. introduced a tool to support preoperative graft
selection [14]. Our simplified score demonstrates superior
discriminatory power, likely due to the inclusion of
intraoperative factors affecting outcomes. Consequently, it
serves as an effective instrument at the end of surgery for
refining early postoperative approaches. Future studies could
build on this foundation, developing tools with even greater
AUROC values at later time points to optimize ICU
postoperative care.

A key strength of this study lies in the detailed granularity of
intraoperative data within our database, notably the
comprehensive dataset organized around nine surgical steps,
with systematic patient assessments at these specific time
points. This structure enabled standardized data collection and
its alignment with critical clinical moments. Another advantage is
the use of a gradient boosting method, which, unlike LR,
accommodates missing data without imputation, captures non-
linear relationships, and delivers superior discrimination and
calibration performance. Additionally, the application of state-
of-the-art SHAP analysis provided an in-depth evaluation of how
model features influence the risk of PGD3-T72, including the
identification of clinically meaningful thresholds. Finally, we
developed a simplified risk prediction score that avoids
reliance on institution-specific variables, providing a practical
tool for any transplantation center to assess PGD3-T72 risk
effectively.

Our cohort predominantly featured cystic fibrosis patients,
with primary pulmonary hypertension underrepresented due to
recruitment patterns. While comprehensive, our dataset lacks
variables such as immunologic compatibility and frailty. Unlike
other studies, we prioritized early predictive factors to enable
rapid clinical responses as primary graft dysfunction mechanisms

Predicting PGD3 Using Machine-Learning

emerge. Transfusion and fluid balance, introduced at step 9, did
not enhance model performance [35, 36]. The repeated inclusion
of ECMO-related variables, though unconventional in linear
models, improved AUROC and was validated by
supplementary analysis. A potential limitation of our study is
the inability to explicitly account for variability in intraoperative
decision-making, including differences in surgical technique,
ECMO cannulation strategy, or operator-specific thresholds
for intervention. Although our single-center setting with
standardized surgical protocols helps mitigate this variability,
some residual confounding is likely. Our model partially
addresses this by encoding ECMO timing as a categorical
feature, which may act as a surrogate for certain intraoperative
choices. Nonetheless, future multi-center studies with access to
surgeon- or institution-level metadata could benefit from
hierarchical modeling frameworks to isolate operator-driven
variability and better understand its impact on model
generalizability. Another limitation is that, aside from LR, we
did not evaluate a broader range of machine learning algorithms.
While many supervised methods (e.g., random forests, support
vector machines, deep neural networks) could potentially be
applied, we selected XGBoost due to its strong empirical
performance on structured data, built-in handling of missing
values, and compatibility with SHAP-based interpretability.
These characteristics make it well suited for real-time
intraoperative applications. Future studies could compare
alternative modeling strategies, including ensemble or hybrid
architectures, to optimize performance and generalizability.

A key limitation of this study is the moderate sample size (n =
477), which may increase the risk of overfitting. To address this,
we employed conservative hyperparameter settings and repeated
random split validation, but future studies with larger multicenter
cohorts are essential for external validation and generalizability.

Finally, an important limitation of this study is the absence of
external validation. Despite outreach to several international
centers through the ISHLT network, no collaborating
institution was able to provide a dataset with comparable
intraoperative granularity, particularly for stepwise modeling
around second graft implantation. As a result, the model’s
performance has only been demonstrated within a single
center, and its generalizability to other clinical environments
remains untested. Given known variability in transplant practices
(including graft selection, ECMO initiation strategies, anesthetic
techniques, and changing indications such as the increasing
prevalence of pulmonary fibrosis), model performance may
differ across settings. Thus, this model should be viewed as
hypothesis-generating. We strongly advocate for prospective,
multicenter cohort studies to validate perioperative machine
learning models in diverse clinical contexts. To support
reproducibility and facilitate such efforts, our full codebase has
been made publicly available.

After validation of such models by a multicentric prospective
study, the score could be implemented in a simple application or
to the electronic record to alert clinicians on the possible risk of
PGD3-T72. Therefore, it would suggest discussing within a
preventive strategy. Furthermore, it could help to build future
studies on prophylactic strategies to reduce PGD3-T72.
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In conclusion, gradient boosting effectively predicted
PGD3-T72 with an AUROC of 84% immediately after
second graft implantation using routine intraoperative
data. Further studies are needed to solidify machine
learning’s role in primary graft dysfunction prediction and
clinical practice. This tool could identify high-risk patients,
enabling aggressive preventive measures to improve
outcomes [37].
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