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This study developed a predictive model for Post-Transplant Diabetes Mellitus (PTDM) by
integrating clinical and radiological data to identify at-risk kidney transplant recipients. In a
retrospective analysis across three Mayo Clinic sites, clinical metrics were combined with
deep learning analysis of pre-transplant CT images, focusing on body composition
parameters like adipose tissue and muscle mass instead of BMI or other biomarkers.
Among 2,005 nondiabetic kidney recipients, 335 (16.7%) developed PTDM within the first
year. PTDM patients were older, had higher BMIs, elevated triglycerides, and were more
likely to be male and non-White. They exhibited lower skeletal muscle area, greater visceral
adipose tissue (VAT), more intermuscular fat, and higher subcutaneous fat (all p < 0.001).
Multivariable analysis identified age (OR: 1.05, 95% CI: 1.03–1.08, p < 0.0001), family
diabetes history (OR: 1.55, CI: 1.14–2.09, p = 0.0061), White race (OR: 0.43, CI:
0.28–0.66, p < 0.0001), and VAT area (OR: 1.37, CI: 1.14–1.64, p = 0.0009) as
predictors. The combined model achieved C-statistic of 0.724 (CI: 0.692–0.757),
outperforming the clinical-only model (C-statistic 0.68). Patients with PTDM in the first
year had higher mortality than those without PTDM. This model improves predictive
precision, enabling accurate identification and intervention for at risk patients.
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INTRODUCTION

Post-transplant diabetes mellitus (PTDM) refers to the onset of diabetes in previously nondiabetic
individuals following organ transplantation. The incidence of PTDM varies depending on the type of
organ transplanted and the post-transplant period. Studies estimate that, at 12 months post-
transplant, the incidence ranges from 10% to 30% for kidney transplant recipients [1–6]. This
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variationmay be attributed to differences in diagnostic criteria for
type 2 diabetes (T2D), diverse study populations, varying
immunosuppression protocols, and the timeframes of the studies.

PTDM has a significant impact on transplant outcomes,
being associated with an increased risk of graft rejection [7],
infections [7], graft loss [8], cardiovascular mortality, and
overall mortality [8–10]. In a United States Renal Data
System study of 11,659 patients who received a kidney
transplant between 1996 and 2000, PTDM was associated
with a more than 60% increase in the incidence of graft
failure and a 90% increase in mortality [10]. Additionally,
PTDM negatively affects quality of life and substantially raises
annual healthcare costs [11].

There is a nine-fold increased risk of diabetes in solid organ
transplant recipients compared to their age-matched controls
[12]. While the pathophysiology of PTDMmirrors that of T2D, it
is further complicated by both transplantation-specific and non-
transplantation-related risk factors [13]. The incidence of PTDM
is rising, driven by the increasing number of kidney transplants,
an aging recipient population, growing obesity trends, and the
widespread use of tacrolimus [1, 9, 10, 12, 14].

Obesity is on the rise, leading to an increased risk of PTDM.
Obesity is often assessed using body mass index (BMI), a widely
used but limited measure [15–17].

BMI overlooks important variations in body composition and
fat distribution across different ethnic groups, ages, and genders.
It does not differentiate between muscle and fat mass, nor does it
distinguish between subcutaneous and visceral adipose tissue
(VAT)—the latter being more strongly associated with insulin
resistance, metabolic syndrome, and elevated mortality [18, 19].

Given these limitations, there is increasing interest in using
body composition analysis to provide deeper insights into
metabolic health and improve the accuracy of PTDM risk
prediction. Unlike BMI, a single axial computed tomography
(CT) slice of the abdomen can visualize and quantify
subcutaneous adipose tissue (SAT), visceral adipose tissue
(VAT), intermuscular adipose tissue (IMAT), and skeletal
muscle areas. These more detailed measurements provide a
clearer understanding of PTDM risk factors and open new
avenues for targeted interventions.

We propose a prediction model that incorporates body
composition vs. BMI as a surrogate marker for obesity [20,
21]. Our team has developed a deep learning analysis of cross-
sectional imaging to quantify body composition [22]. This
algorithm automatically segments the following
compartments: SAT, VAT, muscle, bone, and visceral
organs. In the present study, we integrated clinical data
with information from this deep learning model to
predict PTDM.

Given the complexity and burden of PTDM, developing a
comprehensive predictive tool incorporating body composition
using deep learning can significantly enhance precision-based
medicine for transplant recipients.

MATERIALS AND METHODS

Study Design and Setting: This is a retrospective study of the three
Mayo Clinic sites. (Arizona, Florida, and Rochester). The Mayo
Clinic Institutional Review Board approved this study.
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Participants: The subjects were from three Mayo sites. The
Mayo Clinic Arizona cohort was selected from 1/2007 to 1/
2022, and the other two sites were included from 1/2014 to 1/
2022 due to changes in the pre-transplant candidate imaging
testing protocol. The cohort included both living and
deceased donor transplants. The last follow-up was at the
end of 1/2023.

Preoperative CT scans were primarily performed for vascular
assessment, which has become the standard of care for evaluating
kidney transplant candidates. Initially, CT imaging was
selectively used in patients with peripheral vascular disease,
diminished distal pulses, polycystic kidney disease, or a history
of previous transplants. The primary purpose of these scans was
to assess vascular anatomy and identify potential complications
that could impact the surgical approach. Over time, as the clinical
benefits of comprehensive vascular imaging became evident,
preoperative CT scans were expanded to include all transplant
candidates to ensure thorough pre-surgical planning and risk
assessment. The study was approved by the Mayo institutional
review board and was conducted in compliance with the
Declaration of Helsinki.

Inclusion criteria:

• Kidney transplant recipients who have had:
○ Pre-operative CT abdomen and pelvis within 1 year

before transplant or 1 month after kidney transplant
○ At least 1 year of follow-up at Mayo Clinic
○ Patient and graft surviving at 1 year.

Exclusion criteria:

• Patients with pre-existing Diabetes Mellitus (DM)
• Multivisceral organ transplants.
• Previous kidney transplant

Immunosuppression Protocol
All patients received induction immunosuppression. Before 2011,
patients received induction with rabbit-anti thymocyte globulin.
After 2011, induction was with Alemtuzumab. Patients over
65 received Basiliximab, which did not change during the
study period. Patients receiving induction with the depleting
agents had a complete withdrawal of corticosteroids by post-
transplant day 5, while those receiving Basiliximab inductions
continued maintenance corticosteroids. Steroids were maintained
if they had panel reactive antibody >80%, donor-specific
antibody, or end-stage renal disease from glomerulonephritis.
Maintenance immunosuppression was with tacrolimus and
mycophenolate mofetil. The trough tacrolimus levels were
8–10 ng/mL for the first month and then 6–8 ng/mL.

Diagnosis of PTDM
In this study, we diagnosed PTDM using the American Diabetes
Association definition based on Hba1c ≥6.5%, or fasting blood
sugar ≥126 mg/dL, or random glucose ≥200 mg/dL or
medications for diabetes management [23].

Clinical Model for PTDM Prediction
In our previous work, we examined PTDM risk using the clinical
factors [17] through two multivariable approaches [1]: a standard
model that included continuous and discrete variables without
categorization and [2] a dichotomized model, where variables
were assigned binary values based on clinically relevant cut
points. In the standard model, continuous variables (such as
recipient age, baseline BMI, steroid use, triglycerides,
pretransplant fasting glucose, and family history of type
2 diabetes) were included and weighted according to their β-
coefficients in the multivariable logistic model. In the
dichotomous model, continuous variables were dichotomized
based on clinically relevant cut points (values below and above
the cut point assigned 0 and 1, respectively) and weighted
according to the β-coefficients. This approach included
age ≥50 years, BMI ≥30 kg/m2, steroid use post-transplant,
triglycerides ≥200 mg/dL, pretransplant fasting
glucose ≥100 mg/dL, and family history of T2D.

Building on this foundation, we aimed to develop a more
advanced and comprehensive predictive model for PTDM by
integrating clinical and radiological data. This new model
includes body composition measures derived from automated
CT analysis, which provide a more precise assessment than BMI.
We compared the performance of our previously established
clinical model with this enhanced radiological approach,
enabling a detailed assessment of PTDM risk linked to specific
body composition profiles.

Automated Body Composition Analysis
Mayo Clinic has previously developed deep learning models
that automatically calculate highly accurate body composition
measurements from CT images to inform individual care.
These models use a fully automated abdominal
segmentation deep neural network [22]. Furthermore, our
model can segment SAT and VAT, muscle, abdominal
organs, and bone; most fully automated algorithms are
demonstrated on adipose tissue and muscle alone. We
obtained the following measures: skeletal muscle, SAT,
VAT, and IMAT.

Examinations were segmented into four
compartments—subcutaneous adipose tissue, muscle, viscera,
and bone—and pixels external to the body. The visceral
compartment was further separated into VAT-free tissue and
VAT using thresholding. Visceral adipose tissue-free tissue is
primarily composed of abdominal organs, vessels, and the
contents of the digestive tract. Further details of the model are
available in the manuscript by Weston et al. [22].

To determine whether a model trained on a 2D section at the
level of the Lumbar 3 transverse processes could generalize across
the entire abdomen, L2 complete examinations of the abdomen
from the inferior endplate of the L1 vertebra to the superior
endplate of the L5 vertebra were used. Each section in this range
was segmented. This is an example of a three-dimensional model
using the deep learning algorithm developed by the group. The
image variables were scaled by their standard deviation (using
standardization).
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Statistical Analysis
Descriptive statistics were reported as mean (standard deviation)
for continuous variables and frequency (percentage) for
categorical variables. We compared continuous variables in
2 groups using a Student’s t-test and dichotomous outcomes
using chi-square. Nonparametric tests compared heavily skewed
data. A p-value <0.05 was considered statistically significant.
Missing data was not imputed; models were only fit on
complete datasets.

We analyzed factors associated with the development of
PTDM using univariate analysis. The factors significant in
univariate analysis were included in the Multivariable analysis.

These models included:

1. The previously established clinical continuous model (Age,
BMI at baseline, steroid maintenance, pretransplant fasting
glucose, pre-transplant fasting triglycerides (log-transformed),
family history of T2DM [17].

2. Clinical discrete model (Age ≥50 years, BMI ≥30 kg/m2,
steroid maintenance, fasting triglycerides ≥200 mg/dL,
fasting glucose ≥100 mg/dL and family history of T2D) [17].

3. Baseline clinical factors that were significant in our model on
univariate analysis

4. Model with radiology morphometric features (skeletal muscle
area, SAT area, VAT area, IMAT area)

5. The model combining model 3 (Baseline factors that were
significant in our model on the univariate analysis) and model
4 (radiology morphometric features)

6. Model with baseline factors that were significant on a
multivariable analysis of model 5.

We evaluated the performance of various predictive models
for diabetes mellitus post-transplant using the C-statistic. The
comparisons were conducted on the same population to ensure
consistency. The C-statistics and their corresponding 95%
confidence intervals (CIs) were calculated, and cross-validation
was performed to obtain mean C-statistics. Additionally, a
C-statistic comparison was executed using the infinitesimal
jackknife method.

We also examined the impact of the development of PTDM
within the first year on patient and graft survival.

All statistical analyses were performed using the R Statistical
Program, Version 4.2.2 (R Foundation for Statistical Computing,
Vienna, Austria).

RESULTS

In a cohort of 2,005 nondiabetic kidney transplant recipients,
PTDMoccurred in 335 patients (16.7%) within the first year post-
transplant. The mean age of recipients was 52.6 years (SD = 14.2),
and 56.9% were male (Table 1).

The average age at transplant was significantly higher for those
who developed PTDM, at 58.6 years (SD = 12.4), compared to
51.3 years (SD = 14.2) for those who did not develop PTDM (p <
0.001). In the post-transplant diabetes mellitus (PTDM) group,
34.7% of patients received a living donor kidney transplant,

compared to 39.4% in the non-PTDM group (p = 0.105). The
proportion of male recipients was significantly higher among
those who developed PTDM (63.8%) compared to those who did
not (55.5%) (p = 0.006). The racial distribution also differed
significantly between the two groups. Among patients who
developed PTDM, 58.8% were White, 17.3% African
American, 6.9% Asian, 12.5% Hispanic, 1.2% Native
American, and 3.3% Other. In contrast, among those who did
not develop PTDM, the distribution was 67.7% White, 12.2%
African American, 4.0% Asian, 11.5% Hispanic, 1.9% Native
American, and 2.7% Other (p = 0.008). This suggests that the
proportion of White recipients was lower among those who
developed PTDM (58.8% vs. 67.7%), while the proportions of
African American, Asian, and Hispanic recipients were higher
among those who developed PTDM.

The difference between the two groups in preemptive
transplant versus dialysis status before transplant was not
statistically significant (28.7% vs. 27.1%, p = 0.565). However,
at baseline, PTDM patients had a significantly higher BMI
(27.0 kg/m2 vs. 25.9 kg/m2, p < 0.001). C-peptide levels were
similar between the groups.

Radiological Characteristics
In this study, several key differences in body composition were
observed between individuals who developed PTDM and those
who did not (Table 2).

PTDM patients had a lower skeletal muscle area (165.3 cm2 vs.
171.5 cm2, p = 0.001) and lower skeletal muscle mean Hounsfield
Units (HU) (32.6 vs. 33.0, p = 0.001), indicating reduced muscle
mass and poorer muscle quality compared to non-PTDM
patients. HU values measure tissue density, and lower values
indicate less healthy muscle.

Moreover, PTDM patients exhibited larger areas of both
SAT (285.1 cm2 vs. 275.8 cm2, p = 0.001) and VAT (121.7 cm2

vs. 111.8 cm2, p = 0.001). Additionally, a higher proportion of
PTDM patients (57.6%) were in the highest quartile (Q4) of
VAT compared to non-PTDM patients (73.5% in Q1-Q3,
p = 0.001).

There was also a significant increase in IMAT in PTDM
patients (2.4 cm2 vs. 1.7 cm2, p = 0.001). This increase in
IMAT is associated with reduced muscle function and
metabolic health. No significant differences were found in the
quality (HU values) of SAT (p = 0.084) or IMAT (p = 0.318).
However, PTDM patients had slightly lower VAT HU values
(−6.6 vs. −6.4, p = 0.001), suggesting that the visceral fat in PTDM
patients was denser, which could be metabolically more harmful,
as denser fat is associated with worse metabolic outcomes.

Risk Factors for PTDM
In multivariable analysis, key predictors of PTDM included
recipient age (OR: 1.05, 95% CI: 1.03–1.08, p < 0.0001), family
history of type 2 diabetes (OR: 1.55, 95% CI: 1.14–2.09, p =
0.0061), White race (OR: 0.43, 95% CI: 0.28–0.66, p < 0.0001),
visceral adipose tissue (VAT) area (OR: 1.37, 95% CI: 1.14–1.64,
p = 0.0009), and weight change (OR: 1.02, 95% CI: 1.00–1.03, p =
0.013). Other factors, such as BMI, steroid use, and various
adipose tissue measures, showed associations in univariate
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TABLE 1 | Demographics and clinical characteristics.

Variable No PTDM (N = 1,670) Developed PTDM (N = 335) Total (N = 2005) p-value

Sex
Female
Male

733 (44.5%)
916 (55.5%)

119 (36.2%)
210 (63.8%)

852 (43.1%)
1,126 (56.9%)

0.006

Age at Transplant 51.3 (14.2) 58.6 (12.4) 52.6 (14.2) <0.001
RACE
African American
Asian
Hispanic
Native American
Other
White

203 (12.2%)
67 (4.0%)

192 (11.5%)
32 (1.9%)
45 (2.7%)

1,131 (67.7%)

58 (17.3%)
23 (6.9%)
42 (12.5%)
4 (1.2%)
11 (3.3%)

197 (58.8%)

261 (13.0%)
90 (4.5%)

234 (11.7%)
36 (1.8%)
56 (2.8%)

1,328 (66.2%)

0.008

Age of donor 40.3 (14.9) 42.6 (15.4) 40.7 (15.0) 0.011
Dialysis before transplant
No
Yes

447 (27.1%)
1,202 (72.9%)

94 (28.7%)
234 (71.3%)

541 (27.4%)
1,436 (72.6%)

0.565

Weight (kilogram) 75.9 (18.4) 80.1 (19.2) 76.6 (18.6) <0.0001
Body mass index (kg/m2) 25.9 (5.1) 27.0 (5.4) 26.1 (5.2) <0.0001
C-peptide before transplant
Median (Interquartile range) (ng/mL)

7.200 (4.425, 11.175) 8.200 (4.900, 14.300) 7.300 (4.600, 11.700) 0.942

TABLE 2 | Radiological factors.

Variable No PTDM (N = 1,670) Developed PTDM (N = 335) Total (N = 2005) Values-value

Skeletal muscle area
Mean (SD) 3.7 (1.0) 3.9 (1.0) 3.7 (1.0) 0.001
Median (Q1, Q3): 3.6 (2.9, 4.4) 3.9 (3.2, 4.5) 3.6 (2.9, 4.4)
Range 0.5–7.4 1.8–7.5 0.5–7.5
Skeletal muscle mean HU
Mean (SD) 3.3 (1.0) 3.0 (1.0) 3.2 (1.0) <0.001
Median (Q1, Q3): 3.3 (2.6, 3.9) 2.9 (2.3, 3.7) 3.2 (2.6, 3.9)
Range −0.5–8.6 0.5–5.6 −0.5–8.6
Subcutaneous adipose tissue area
Mean (SD) 1.7 (1.0) 2.0 (1.0) 1.8 (1.0) <0.001
Median (Q1, Q3): 1.6 (1.0, 2.3) 1.8 (1.2, 2.6) 1.6 (1.1, 2.3)
Range 0.1–5.8 0.3–5.2 0.1–5.8
Subcutaneous adipose tissue mean HU
Mean (SD) −4.0 (1.0) −4.1 (0.9) −4.0 (1.0) 0.084
Median (Q1, Q3): −4.3 (−4.7, −3.7) −4.3 (−4.7, −3.9) −4.3 (−4.7, −3.7)
Range −5.6–7.2 −5.4–0.3 −5.6–7.2
Visceral adipose tissue area
Mean (SD) 1.3 (1.0) 1.8 (1.1) 1.3 (1.0) <0.001
Median (Q1, Q3): 1.1 (0.5, 1.8) 1.7 (1.0, 2.5) 1.2 (0.5, 1.9)
Range 0.0–6.0 0.0–6.0 0.0–6.0
Visceral adipose tissue area quartile
Q1-3:
Q4:

1,104 (78.6%)
301 (21.4%)

170 (57.8%)
124 (42.2%)

1,274 (75.0%)
425 (25.0%)

<0.001

Visceral adipose tissue mean HU
Mean (SD) −6.3 (1.0) −6.6 (1.0) −6.3 (1.0) <0.001
Median (Q1, Q3): −6.4 (−7.0, −5.7) −6.8 (−7.3, −6.0) −6.5 (−7.0, −5.7)
Range −17.0–3.1 −17.0–3.1 −17.0–3.1
Intermuscular adipose tissue area
Mean (SD) 1.7 (1.0) 2.1 (1.0) 1.8 (1.0) <0.001
Median (Q1, Q3): 1.6 (1.1, 2.2) 1.9 (1.4, 2.4) 1.7 (1.1, 2.3)
Range 0.0–11.3 0.3–8.9 0.0–11.3
Intermuscular adipose tissue mean HU
Mean (SD) −13.8 (1.0) −13.9 (0.9) −13.8 (1.0) 0.318
Median (Q1, Q3): −13.8 (−14.4, −13.2) −13.9 (−14.3, −13.3) −13.8 (−14.4, −13.2)
Range −17.3–9.3 −16.7–10.6 −17.3–9.3

HU, Hounsfield units; SD, standard deviation; Q1, Quartile 1; Q3, Quartile 3.
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analysis but did not retain significance in the multivariable
model (Table 3).

Models for PTDM Prediction
Table 4 summarizes the results of various predictive models for
PTDM. The previously established clinical continuous model in
this study achieved a C-statistic of 0.68 (95% CI: 0.636, 0.724)
with a mean cross-validated C-statistic of 0.676. The clinical
discrete model, which used binary cut-points for key variables,
had a C-statistic of 0.656 (95% CI: 0.612, 0.699) and amean cross-
validated C-statistic of 0.651 (Table 4).

Baseline clinical factors that were significant on univariate
analysis (sex, recipient age, race, baseline BMI, and family history
of type 2 diabetes) achieved a C-statistic of 0.701 (95% CI: 0.668,
0.734) with a mean cross-validated C-statistic of 0.686. When
these baseline clinical factors were combined with radiological

measures (skeletal muscle area, SAT area, VAT area, and IMAT
area), the “Baseline + radiology” model achieved the highest
C-statistic of 0.724 (95% CI: 0.692, 0.757) and a mean cross-
validated C-statistic of 0.705. This finding suggests that
integrating radiological factors with clinical data yields the
most accurate prediction of PTDM risk in this study.

The multivariable significant variables model, which included
only age, family history of diabetes, race, and VAT, demonstrated
nearly equivalent predictive performance with a mean cross-
validated C-statistic of 0.714. This streamlined model provides
a strong balance of predictive accuracy and simplicity, making it
potentially more practical for clinical application.

Survival Analysis
Patients who developed PTDM within the first year
showed lower patient survival rates compared to those

TABLE 3 | Factors associated with the development of Post Transplant Diabetes Mellitus.

Variables N
univariate

Odds ratio (CI)
univariate

P value
univariate

N
multivariable

Odds ratio (CI)
multivariable

P value
multivariable

Recipient Age 2005 1.04 (1.03, 1.05) <0.0001 1,603 1.05 (1.03, 1.08) <0.0001
BMI (Baseline) 1670 1.04 (1.02, 1.06) 0.001 1,603 1.03 (0.98, 1.07) 0.2110
Dialysis Duration 1977 0.93 (0.71, 1.21) 0.565 NA NA NA
Steroid maintenance 1968 1.38 (1.06, 1.82) 0.0180 1,603 1.27 (0.91, 1.80) 0.1669
Family h/o type 2 diabetes mellitus 1947 1.55 (1.20, 1.99) 0.0007 1,603 1.55 (1.14, 2.09) 0.0061
Triglyceride pre transplant 1213 1.00 (1.00, 1.00) 0.0382 1.00 (1.00, 1.00) 0.3640
Fasting glucose pre transplant 1115 1.01 (0.99,1.03) 0.4010 NA
Sex Male 1978 1.41 (1.11, 1.81) 0.0058 1,603 1.05 (0.68, 1.64) 0.8137
Fasting glucose 1644 0.98 (0.86, 1.12) 0.8041 NA NA NA
Asian 2005 1.20 (0.68, 2.08) 0.5178 1,603 1.01 (0.49, 2.01) 0.9753
Hispanic 2005 0.77 (0.49, 1.19) 0.2378 1,603 0.63 (0.35, 1.12) 0.1168
Native American 2005 0.44 (0.13, 1.16) 0.1334 1,603 0.29 (0.06, 0.94) 0.0629
Other Race 2005 0.86 (0.40, 1.71) 0.6715 1,603 0.73 (0.22, 2.02) 0.5696
White 2005 0.61 (0.44, 0.85) 0.0032 1,603 0.43 (0.28, 0.66) <0.0001
Skeletal Muscle Area 1699 1.23 (1.09, 1.39) 0.0011 1,603 1.06 (0.84, 1.33) 0.6311
Subcutaneous Adipose Tissue Area 1699 1.26 (1.12, 1.42) <0.0001 1,603 1.02 (0.81, 1.29) 0.8390
Intermuscular Adipose Tissue Area 1699 1.35 (1.20, 1.51) <0.0001 1,603 0.97 (0.81, 1.15) 0.7578
Visceral Adipose Tissue Area 1699 1.63 (1.45, 1.84) <0.0001 1,603 1.37 (1.14, 1.64) 0.0009

BMI, Body mass index; CI, Confidence Interval.

TABLE 4 | Models for post-transplant diabetes mellitus prediction.

Model Variables C-statistic Mean Cross-
validated C-statistic

Continuous model Recipient Age, baseline Body mass index, steroid maintenance,
pretransplant fasting glucose, pre-transplant fasting triglycerides (log-
transformed), family history of diabetes mellitus

0.68 (0.636,
0.724)

0.676

Discrete model Age ≥50, baseline Body mass index ≥30 kg/m2, steroid maintenance,
pretransplant fasting glucose ≥100 mg/dL fasting triglycerides ≥200 mg/
dL, family history of diabetes mellitus

0.656 (0.612,
0.699)

0.651

Baseline clinical factors significant on univariate
analysis

Sex, age, race, baseline Body mass index, family history of diabetes 0.701 (0.668,
0.734)

0.686

Radiology only Skeletal muscle area, subcutaneous adipose tissue area, visceral
adipose tissue area, intermuscular adipose tissue area

0.658 (0.625,
0.692)

0.656

Baseline factors significant on univariate analysis
with radiology (baseline + radiology)

Sex, age, race, baseline Body mass index, family history of diabetes
mellitus, skeletal muscle area, subcutaneous adipose tissue area, visceral
tissue area, intermuscular adipose tissue area

0.724 (0.692,
0.757)

0.705

Baseline Variables significant on multivariable
analysis

Age, family history of diabetes mellitus, race, visceral adipose tissue area 0.723 (0.691,
0.754

0.714

Transplant International | Published by Frontiers April 2025 | Volume 38 | Article 143776

Budhiraja et al. Deep Learning for Predicting Post-Transplant Diabetes



who did not develop PTDM (HR = 1.71, CI: 1.33–2.21,
p < 0.001) (Figure 1). In contrast, graft survival in the
first year was comparable between patients with and
without PTDM (HR = 0.91, CI 0.56–1.47, p =
0.693) (Figure 2).

DISCUSSION

This study presents a comprehensive model for predicting PTDM
in kidney transplant recipients, utilizing both clinical and
advanced radiological data. Our model is innovative in

FIGURE 1 | Patient survival in those who developed Posttransplant diabetes mellitus vs., those who did not did not develop posttransplant diabetes mellitus in the
first year if kidney transplant.

FIGURE 2 |Graft survival in those who developed Posttransplant diabetesmellitus vs., those who did not develop posttransplant diabetesmellitus in the first year of
kidney transplant.
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incorporating body composition, moving beyond the
conventional BMI-based obesity assessment, and providing a
higher precision to identify high-risk PTDM patients
preemptively. In a large, diverse cohort of 2,005 nondiabetic
kidney transplant recipients, 335 (16.7%) developed PTDM
within the first year. Older age, family history of diabetes,
nonwhite race, and increased VAT are significant predictors of
PTDM. Importantly, patients with PTDM within the first year
post-transplant demonstrated significantly higher mortality
(HR = 1.71, p < 0.001) compared to those without PTDM,
highlighting the adverse impact of PTDM on patient longevity.

Our model achieved high predictive performance, with the
combination of baseline clinical factors and radiological
measures (“Baseline + radiology” model) reaching a
C-statistic of 0.724 (95% CI: 0.692, 0.757), surpassing
traditional clinical models with a C-statistic of 0.68. This
improvement highlights the value of integrating radiological
factors, particularly VAT, with clinical data to enhance PTDM
prediction accuracy. A simplified model with variables from
multivariable analysis (age, family history of diabetes, race,
and VAT) achieved similar predictive value with a C-statistic
of 0.723 (95% CI: 0.691, 0.754) and a cross-validated C-statistic
of 0.714, suggesting this precise model offers clinical
practicality without compromising accuracy.

Among the predictors identified, VAT stands out as a
modifiable risk factor, while age, family history of T2D, and
race is nonmodifiable. Our findings underscore VAT’s role as a
stronger predictor of PTDM than BMI. Patients who developed
PTDM had significantly larger VAT areas (121.7 cm2 vs.
111.8 cm2), more intramuscular fat (2.4 cm2 vs. 1.7 cm2), and
lower skeletal muscle mass (165.3 cm2 vs. 171.5 cm2), indicating
the critical impact of fat distribution and muscle quality on
PTDM risk. Increased VAT intramuscular fat and reduced
muscle mass may impair glucose metabolism, promoting
insulin resistance and PTDM development [18, 19].

PTDM patients exhibited higher subcutaneous and visceral fat
levels, particularly a significantly larger VAT area. VAT is
strongly associated with metabolic risks, including diabetes,
and is considered more harmful than SAT due to its location,
secretions, and contribution to insulin resistance. While previous
models relied on BMI, triglycerides, HDL, uric acid, and fasting
glucose markers to assess metabolic risk, these markers do not
fully capture the underlying metabolic dysfunction. In contrast,
VAT, as a metabolically active tissue, plays a key role in insulin
resistance and metabolic dysregulation, which was strongly
supported by our findings where BMI was not significant, but
VAT emerged as a robust predictor. VAT contains more immune
cells than SAT, secreting higher levels of pro-inflammatory
mediators and cytokines that exacerbate insulin resistance,
contributing to diabetes [18, 19]. This unique secretome of
VAT has a distinct and negative impact on hepatocyte and
muscle insulin action, highlighting the depot-specific
differences in adipose tissue secretome composition and their
effects on metabolic syndrome and diabetes. By incorporating
VAT as a central feature, our model provides a more precise
reflection of metabolic risks compared to the previous reliance on
traditional markers.

While Ji Eun Kim et al. [24] used deep learning-based
quantification of 3D visceral fat volume, their study focused
solely on body composition analysis for PTDM without
integrating clinical risk factors into a predictive model.
Their approach was based on volumetric analysis of total
visceral fat. In contrast, our study incorporates CT-derived
VAT area measurements combined with clinical parameters to
develop a comprehensive predictive model for PTDM. This
distinction enhances the practical applicability of our model in
transplant decision-making, allowing for better risk
stratification and clinical translation than a body
composition-only approach.

Furthermore, Feng et al. [25] identified intermuscular
adipose tissue (IMAT) as the primary driver of PTDM,
while our study found VAT to be the strongest predictor.
These discrepancies likely arise from differences in study
populations, imaging methodologies, and statistical models.
Importantly, IMAT was significant in univariate analysis but
did not remain significant in the multivariable model. In
contrast, VAT remained an independent predictor of
PTDM along with age, race, and family history of diabetes.
This suggests that IMAT’s effect was confounded by stronger
predictors, particularly VAT, which has a well-established role
in insulin resistance and metabolic dysfunction. Given VAT’s
pro-inflammatory profile, direct portal exposure, and stronger
association with metabolic syndrome, its predictive value
surpassed that of IMAT.

Unlike prior studies, which were often constrained by small
sample sizes and a lack of diverse populations, our study stands
out due to its large, multicenter design and incorporation of
advanced radiological analysis [24–26]. Future research should
evaluate how different fat depots contribute to PTDM risk in
various transplant populations and explore whether a combined
VAT + IMAT model could further enhance predictive accuracy.
Additionally, we acknowledge the potential value of impedance-
based techniques, such as multi-frequency BIA and phase angle
analysis, as alternative tools for assessing metabolic risk when CT
imaging is unavailable.

Our findings highlight the VAT’s predictive value for PTDM.
Unlike prior studies, which were often constrained by small
sample sizes and a lack of diverse populations, our study
stands out due to its large, multicenter design and the
incorporation of advanced radiological analysis [24, 26]. By
integrating age, family history of diabetes, race, and VAT area
into our model, we achieved a high AUC for PTDM prediction,
demonstrating the model’s robustness and clinical utility.
Furthermore, deep learning-based body composition analysis
provided precise and detailed insights into the relationship
between VAT and PTDM risk, offering a more nuanced
understanding than traditional approaches.

Given VAT’s modifiable nature, targeted interventions
focused on VAT reduction—such as diet, exercise, and
Glucagon-Like Peptide-1 receptor agonists (GLP-1 RAs)—
could be promising. Studies have shown that GLP-1 RAs
significantly decrease VAT content compared to other
medications, placebos, and lifestyle interventions [27, 28].
Real-time Polymerase Chain Reaction and
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immunofluorescence studies show that GLP-1 receptors are more
abundant in VAT and epicardial adipose tissue than in SAT [29].
Animal studies with liraglutide, a GLP-1RA, demonstrated a
reduction in VAT and an increase in SAT, likely due to
altered lipid metabolism [30]. Additionally, rodent models
suggest that GLP-1 receptor activation enhances sympathetic
activity, promoting VAT lipolysis over SAT. These
medications effectively reduce VAT compared to other
treatments [31, 32].

Metabolic risk factors pre-transplant may worsen after
transplant. Our analysis also reveals that patients who
developed PTDM exhibit worsened metabolic parameters,
including elevated triglycerides, reduced HDL, and increased
BMI post-transplant (Supplementary Table S1). Therefore
reinforcing the need for early intervention pretransplant.

Advancing the research in the field of our study with a large
cohort of over 2,000 diverse participants from three different sites
provides greater reliability and generalizability compared to other
smaller studies. Using deep learning to analyze CT scans, we
achieved precise measurements of VAT, SAT, and muscle mass,
offering better insights into PTDM risk than BMI and other clinic
laboratory factors as surrogates for obesity. The identification of
VAT as a key predictor of PTDM underscores the need for CT-
based body composition analysis in pre-transplant evaluations, as
BMI may miss high-risk individuals. Targeting VAT reduction
through lifestyle changes, GLP-1 receptor agonists, or metabolic
surgery could lower PTDM risk.

While our model is comprehensive, it has limitations. It is a
retrospective study, and though we adjusted for key confounders,
unmeasured variables could still impact results, and CT scans
may not be widely done. Although CT-based VAT quantification
offers a superior metabolic risk assessment compared to BMI and
traditional clinical markers, CT imaging is not universally
performed for all kidney transplant candidates. However,
given that many centers already conduct preoperative CT
scans for vascular and anatomical evaluation, leveraging these
existing images for VAT analysis adds clinical value without
additional radiation exposure or cost. In settings where CT is not
routinely available, alternative methods such as Dual-Energy
X-ray Absorptiometry (DXA) or bioelectrical impedance
analysis (BIA) could be explored in future studies as potential
surrogates for VAT estimation.

Second, while BMI, bioelectrical impedance analysis (BIA),
and DXA are widely used for body composition assessment, they
lack the ability to precisely differentiate visceral adipose tissue
(VAT) from subcutaneous fat (SAT), which is crucial since VAT
is the primary driver of insulin resistance and PTDM. Unlike
BMI, which does not account for fat distribution, and BIA, which
is influenced by hydration status, CT directly quantifies VAT,
allowing for a more accurate assessment of metabolic risk.
Skinfold calipers, though simple and inexpensive, only
estimate subcutaneous fat and are operator-dependent, making
them unreliable for deep fat compartments such as VAT.

Future research should assess whether emerging impedance-
based technologies, such as multi-frequency BIA and phase angle
analysis, can enhance metabolic risk prediction in transplant
candidates. Third, our study excluded patients with previous

kidney transplants to maintain a homogeneous study
population and improve model validity. However, this
exclusion may limit the generalizability of our findings to
patients undergoing repeat transplantation, who often have
different metabolic profiles and long-term immunosuppression
exposure. Lastly, while the combined model incorporating
clinical and radiological data improved predictive performance
(C-statistic of 0.724 vs. 0.686 for clinical-only models), the
absolute increase is moderate. However, even small gains in
predictive accuracy are clinically relevant as they allow for
earlier identification of high-risk patients, targeted lifestyle
interventions, and personalized metabolic management
strategies to mitigate PTDM risk. The most parsimonious
model—incorporating only age, family history of diabetes,
race, and VAT area—achieved a C-statistic of 0.723,
reinforcing VAT’s independent predictive value. Unlike BMI,
which does not account for fat distribution, VAT directly
contributes to insulin resistance and systemic inflammation.
Given that VAT is modifiable, identifying high-VAT patients
early enables targeted lifestyle interventions, glucose monitoring,
and adjustments to immunosuppressive regimens.

Thus, while the numerical increase in C-statistic may seem
moderate, its clinical implications are substantial, reinforcing
VAT’s value in pre-transplant metabolic risk assessment.
Future research should explore machine learning-based models
and additional metabolic biomarkers to further refine PTDM
prediction.

This precise model provides a valuable conceptual
framework for stratifying risk, continuing efforts to adopt it
into mainstream practice, and guiding targeted therapies for
high-risk patients.

This study highlights the importance of body composition,
particularly VAT and muscle mass, in predicting PTDM risk
among kidney transplant recipients. By integrating clinical factors
with radiological metrics, our model demonstrated greater
predictive accuracy than traditional BMI-based assessments,
emphasizing the need for CT-based body composition analysis
in pre-transplant evaluations. While factors like age, family
history of diabetes, and race are nonmodifiable, VAT
represents a valuable modifiable target for intervention. Our
findings also indicate that metabolic risks often worsen post-
transplant, suggesting that transplantation alone does not fully
address these challenges.

Our model provides a more sensitive identification of high-
risk patients identified before or shortly after transplantation.
Future research is needed to validate this model across different
populations and healthcare settings to ensure broader
applicability. Additionally, studies should explore timely
interventions aimed at VAT reduction and muscle
preservation—such as lifestyle modifications, pharmacologic
agents like GLP-1 receptor agonists, or bariatric surgery—to
maximize the benefits of these strategies. Early, tailored
interventions could reduce PTDM incidence, improve patient
survival, and enhance graft outcomes. This comprehensive model
lays the framework for precision medicine, enabling early
identification of at-risk individuals for PTDM and optimizing
post-transplant care.
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