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The physiology of a transplanted kidney is affected from the moment it is separated from
the donor. The risk of complications arising from surgery are highly associated with
ischemic-reperfusion injury (IRI) due to the effects of hypoxia and oxidative stress during
the procurement, preservation and reperfusion procedures. Hypoxia promotes the
formation of reactive oxygen species (ROS) and it seems apparent that finding ways of
optimising the metabolic milieu for the transplanted kidney would improve recovery and
graft survival. Studies have demonstrated the benefits of nutrition and antioxidant
compounds in mitigating the disturbance of energy supply to cells post-transplant and
at improving long-term graft survival. Particularly in patients who may be nutritionally
deficient following long-term dialysis. Despite the high incidence of allograft failure, a search
of the literature and grey literature reveals no medical nutriti on therapy guidelines on
beneficial nutrient intake to aid transplant recovery and survival. This narrative review aims
to summarise current knowledge of specific macro and micronutrients and their effect on
allograft recovery and survival in the perioperative period, up to 1-year post transplant, to
optimise the metabolic environment and mitigate risk to graft injury.
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INTRODUCTION

The physiology of a transplanted organ is affected from the moment it is separated from the donor.
The risk of complications arising from surgery are highly associated with ischemia-reperfusion injury
(IRI) due to the effects of hypoxia and oxidative stress during the procurement, preservation and
reperfusion procedures [1, 2]. As hypoxia promotes the formation of reactive oxygen species (ROS),
it seems apparent that finding ways of improving antioxidant levels would optimise the milieu within
which the transplanted organ is placed.

Nutrition is broadly accepted as playing a role in optimizing patients’ health pre- and post-
transplant, and requirements for different nutrients change significantly as kidney function declines.
Renal insufficiency is associated with significant changes in electrolyte handling and cellular balance
of sodium, potassium, phosphate and calcium, all of which are biologically vital. Dietary restriction
contributes significantly to reducing kidney disease progression in more advanced disease [3, 4].
Dietary restrictions limit the options of access to whole foods rich in these minerals, such as
vegetables, dairy and nuts, which can cause patients to increase their intake of ultra processed foods
(UPF). UPFs typically contain additives, preservatives, artificial sweeteners, and emulsifiers, with
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limited dietary fibre, all of which impact the biodiversity of the
microbiome [5]. Kidney transplant recipients (KTR) are therefore
at risk of nutritional deficiencies by the time they receive their
donor organs, affecting antioxidant status, and potential
imbalance in the gut microbiota, with increased production of
uremic toxins [4, 6, 7].

The Role of the Gut Microbiome
Evidence suggests that gut microbiota play an important role in
the metabolism, storage, and expenditure of energy and
nutrients, and play a pivotal role in host immunity, and
metabolic function [8, 9]. The integrity of the gut
microbiome therefore affects the host’s ability to absorb
nutrients and regulate immunity [9].

Dysbiosis of intestinal flora is associated with complications in
KTR, and many patients experience dysbiosis particularly in the
first month post-transplant [10–12]. The causes of dysbiosis are
multifactorial and can be assigned to the use of preparative
regimens prior to transplantation as well as prophylactic
antibiotics and immunosuppressant drugs [13]. Dysbiosis may
influence graft outcomes, causing acute rejection, infection, renal
fibrosis, and modification of drug metabolism [8, 14, 15].

Given the ability of the microbiota to influence
isoimmunity and drug metabolism, data suggest that
modifying the microbiota could contribute to more targeted
immunosuppressive and post-transplant complication
therapies, to improve graft survival and patients’ quality of
life (QoL) [13, 16, 17]. Diet modification particularly the
inclusion of prebiotic and prebiotic foods is beneficial in
altering an abnormal microbiota to produce the host’s own
antimicrobial substances, thereby improving immune function
and graft survival [18, 19]. These prebiotic foods contain high
amounts of fibre which serve as a food source for many of the
gut microbiota, and a commensal partnership exists between
the host and these bacteria [20].

While there is consensus on the increased risk of foodborne
infection, especially in the first 6 months post-transplant,
recommendations for the avoidance of consuming fresh
fruit and vegetables vary across national guidelines [21, 22].
Several studies have questioned whether these protective diets
provide any significant benefit in terms of infection rates,
compared to a non-restrictive diet and may contribute to
nutritional deficiencies [23, 24]. A common metric of gut
health is the diversity of microbial species, and any acute
changes can modify this composition within just 24 h [25,
26]. There is currently a lack of relative evidence referring to
the microbiota in renal transplantation, with most studies
conducted on animals [8, 27]. Research is therefore needed
to understand the implications of chronic dysbiosis and its
effect on graft survival in humans.

As nutrition is a vast subject, we acknowledge that this review
does not cover all aspects of nutrition that might affect individual
patients. We therefore focus specifically on nutrients that are
highly monitored during ESKD to determine their effect on
allograft health post-transplant and highlight the relevance of
continued monitoring particularly in the critical early (up to
1 year) period post post-transplant.

MATERIALS AND METHODS

Published data were searched using the Medline National Library
of Medicine, MEDLINE and Embase. No date restriction was
applied, to broaden the search, however only English language
papers were included. Search terms used included Diet, Nutrition
Therapy, Dietary Guideline*Intervention* Nutrition*, Policy,
AND Transplant*, Renal, Kidney Transplantation. 68 papers
were identified, and after initial review of titles and abstracts
for relevance, three duplicates were removed. A secondary review
revealed no papers focused specifically on dietary guidelines
post kidney transplant, although 20 covered individual macro
and micronutrients which served as thematic insight for this
paper. A grey literature search within the major national and
international Kidney transplant organisations was also
conducted to confirm whether any nutrition guidelines were
available for post-transplant support. None were found
(Figure 1). A narrative review, adopting a systematic
synthesis of the available evidence of the individual macro
and micronutrients was conducted with all papers reviewed by
authors. Thematic analysis was identified by the primary
author and confirmed by author 2 and 3. These themes will
be discussed here.

RESULTS

Our findings show a paucity of specific dietary recommendations
for KTR, and the studies currently available focus on single
nutrient intakes, and not on the overall eating pattern.
Considering that individuals do not typically consume
nutrients in isolation it is challenging for single nutrient
interventions to demonstrate conclusive effects and modifying
dietary patterns as a whole may present a more realistic
alternative or provide a complementary approach to single-
nutrient interventions. We discuss these individual nutrients
here, and demonstrate how the composition of the diet,
particularly one that focuses on lower carbohydrate intake
may be of increased relevance to graft survival.

Macronutrients: Protein
Protein requirements change during various phases post-
transplant. The first few weeks post-transplant are
characterized by increased nutritional demands due to the
associated stress of surgical insult to the body and the high
doses of immunosuppressive medications [28]. During this
critical phase large glucocorticoid doses cause accelerated
protein catabolism to achieve positive Nitrogen balance and
improve wound healing while conserving muscle [29, 30].
There are currently no agreed guidelines on a recommended
protein intake for KTR, although a review by Chadban et al [29]
recommends around 1.4 g/kg/day protein intake during the first
4 weeks post transplantation to reverse negative Nitrogen balance
and increase muscle mass. This was also found protective in
reducing the risk of increased fat mass and muscle loss up to
1 year post transplant. Once patients are on a maintenance diet,
research suggests a distinction be made between diabetic and
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non-diabetic KTR patients, advocating slightly higher protein
requirements in diabetic patients (0.8–0.9 g/kg/day vs.
0.6–0.8 g/kg protein/day) based on the beneficial effects of
protein in stabilising blood glucose [31, 32].

KTR frequently suffer with severe fatigue, which ultimately
affects quality of life (QoL), and the role of protein in muscle
repair, energy metabolism and neurotransmitter production
(such as dopamine and serotonin) are well documented [33,
34]. A cross-sectional study, involving 730 stable KTR [median
age 58 years (IQR 48–65), 57% male] with a mean protein intake
of 82.2 ± 21.3 g/d were assessed to examine the association of
protein intake with fatigue and QoL. Moderate and severe fatigue
were present in 254 (35%) and 245 (34%) of KTR. Higher protein
intake was significantly associated with lower risk of moderate
fatigue (OR 0.89 per 10 g/d; 95%CI 0.83–0.98, p = 0.01), severe
fatigue (OR 0.85; 95%CI 0.78–0.92, p < 0.001) and was
associated with higher physical component summary scores
for QoL (β 0.74 per 10 g/d; 95%CI 0.39–1.09, p < 0.001) [35].
This suggests that higher protein intake is independently
associated with lower risk of moderate and severe fatigue
and better QoL in KTR. It is important to note that
enhanced protein intake alone, without resistance training
may limit this benefit, due to the anabolic stimulus that
exercise provides in muscle maintenance [36].

Several studies have however found that restricting dietary
protein in KTR with chronic allograft nephropathy or chronic
rejection may be beneficial, with respect to kidney function;
however, further research is needed to identify the magnitude
of benefit and a safe level of intake for this patient
group [37, 38].

Carbohydrates
Metabolic disorders after kidney transplantation are common,
and various dietary approaches have been studied regarding their
effects on co-morbidity progression such as weight gain,
hypertension, hyperlipidaemia, and insulin resistance [39].
Exposure to immunosuppressive medications such as
glucocorticosteroids can cause or worsen preexisting
hyperglycemia and weight gain [40–44], and regulating blood
glucose has favourable downstream implications in slowing
kidney disease progression [45–47].

As carbohydrates are the major contributor to post prandial
hyperglycemia, increasing evidence highlights the benefits of very
low-carbohydrate (ketogenic) diets to reduce inflammation,
maintain euglycemia and weight, by improving satiety,
reducing hyperglycemia and hyperinsulinemia. [48–50]. These
diets are generally cautioned against for individuals with
impaired kidney function, partly due to concerns about
increased protein intake, which is associated with
hyperfiltration and potentially, a decline in kidney function
[51–53]. While classification of these diets differ greatly within
the literature, differences are based on the proportion of total
daily energy from carbohydrate and/or absolute carbohydrate
intake [54]. Dietary analysis of very low carbohydrate studies
usually report daily protein intake from 0.6 g/kg to 1.4 g/kg;
which is below the high protein threshold (≥2.0 g/kg) believed to
be of concern [55, 56].

The available literature on very low carbohydrate diets in KTR
is scarce, although several studies recommend it as a therapy for
preventing or assisting in recovery from ischemic and
traumatic injuries [57–59]. The extensive topic of ketone

FIGURE 1 | Literature review strategy: post kidney transplant dietary guidelines.
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body metabolism is beyond the scope of this article, but in
brief, when following a keto diet (KD) or during fasting, fatty
acids are relocated from adipocytes to liver cells, and
transformed into the Acyl-CoA form, then transported to
the liver to produce ketone bodies, which provide an
alternative form of ATP energy [60]. Since disturbances in
the energy supply of cells during ischemia cause a transient
interruption of normal blood flow to the kidney, there is an
increase in oxidative stress and inflammation [61]. Ketone
bodies have demonstrated nephroprotective effects in IRI, due
to their ability to suppress the concentration of
proinflammatory factors, such as tumour necrosis factor
alpha, interleukins including IL-6; IL-1β, IL-18, IFN, and
decreased expression of the NF-κB and MCP-1 which
induce the expression of various proinflammatory genes
[57, 62]. The natriuretic and diuretic effect of the KD may
also provide additional kidney protection by helping to
alleviate sodium retention and improve systemic and
glomerular blood pressure [63, 64].

As there is currently no agreement on isocaloric comparisons
recommending a specific carbohydrate intake for KTR, clinicians
are challenged to provide risk assessments and guidance [65].
While the KD implies an increased intake of fat, this definition is
not standard across studies, and it is important to distinguish
between the types of fat and their ratios in the overall diet, which
will be discussed in the section below [66].

Fats
There are currently no specific recommendations for dietary fat
intake post kidney transplant, and patients are advised to follow
the recommendations for the general population [31]. There is
also no consensus on what the optimal ratio of n-6: n-3
polyunsaturated fats (PUFA) should be. Few studies
investigate Essential Fatty Acid (EFA) deficiency in KTR,
although low intakes have been attributed to renal
hypertension, mitochondrial activity disorders, Cardiovascular
Disease (CVD), type 2 diabetes, and decreased resistance to
infection [67, 68].

Inflammation is part of the body’s immediate response to
injury or infection, and it begins the immunological process of
eliminating pathogens and toxins to repair damaged tissue [69].
Although inflammation is a normal response, when it occurs in
an uncontrolled or inappropriate manner excessive damage and
disease to the affected tissue(s) can ensue. Dyslipidaemia is a
known risk factor for CVD and evidence suggests that KTR have
significantly lower serum content of potentially beneficial
Polyunsaturated Fatty Acids (PUFA) compared to CKD
patients not on dialysis [70]. PUFAs help regulate the
antioxidant signalling pathway and modulate inflammatory
processes. Both Omega 6 and Omega 3 play a key part in
balancing inflammation to achieve homeostasis. Several
sources suggest that humans evolved on a diet that had a ratio
of omega-6 to omega-3 EFA of about 1:1; whereas today, Western
diets have a ratio of approximately 10:1 to 20:1 [71, 72]. While
pro-inflammatory omega 6 plays an important part in host
defence, by creating a hostile environment for microbes and
later by initiating tissue repair, recovery, and maintenance of

homeostasis, prolonged (unresolved) inflammation can cause
tissue damage and metabolic changes [73]. By contrast,
Omega −3 (n-3) have shown improved renal and
cardiovascular prognosis, and protective benefits against
inflammation and overall mortality in KTR, due to their
antithrombotic, anti-inflammatory, and antiarrhythmic
effects [74–77].

In one study investigating the effects of n-3 PUFA
supplementation on kidney allograft function and lipid profile,
60 long-term, first time KTR were assigned to 2 groups: a CON
group (n = 28), who continued with their usual diet, and the DIET
group (n = 32), who followed an n-3-PUFA rich diet for 6 months
to investigate changes in n-3 PUFAs intake; the n-6: n-3
PUFAs ratio, systemic inflammation markers, and renal
function. At 3 and 6 months the DIET group had
significantly higher n-3 PUFA levels and a markedly lower
n-6: n-3 PUFA ratio than baseline. This group also had
reduced systemic inflammation with decreased plasma total
cholesterol, triglycerides, C-reactive protein, and decreased
interleukin (IL)-6. While eGFR remained unchanged, this
group also experienced 50% reduction in proteinuria and
microalbuminuria compared to baseline [78].

Further clinical studies are needed to confirm beneficial ratios
of n6: n3, particularly in the initial weeks and months post-
transplant, to gauge the positive effects of controlled
inflammation as part of the healing process, and the protective
effects of n3 in renal function long term.

Micronutrients
Sodium
The literature regarding sodium intake and hypertension in KTRs
is scarce and gaps in knowledge still exist on the exact amount
needed to optimize graft outcomes and reduce the risk of CVD.
This is mostly due to the lack of clarification on the best methods
to measure sodium intake; and the often-complex co-morbidities
experienced by KTR. The 2012 KDIGO Clinical Practice
Guideline recommend a salt intake to <90 mmol (<2 g)/day of
sodium (corresponding to 5 g of sodium chloride) for CKD
patients with high blood pressure, the same as for the general
population [79]. The supporting evidence for this
recommendation is of low quality as it references only an
adequate intake for adults aged 19–50 years, “based on
meeting sodium needs of apparently healthy individuals.” This
infers that the guidelines are relevant to those who are moderately
active, live in a temperate climate and have no metabolic diseases
or compromised kidney function, which does not apply to KTR.

A 2024 literature review by Afsar et al investigating sodium
intake and renal transplantation showed continued
inconsistencies [80]. Some studies found no relationship
between sodium intake and hypertension [81–83] while others
found a positive association, although these studies were
conducted on rats [84, 85]. Contrasting views also found no
association between sodium intake and proteinuria/albuminuria
in graft function [86] while others showed a positive
association [87, 88].

Numerous studies highlight the effect of insulin on renal
sodium transport and metabolism; and demonstrate that
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individuals with arterial hypertension have reduced insulin
sensitivity and hyperinsulinemia, compared to subjects with
normal blood pressure [89–91].

As a mineralocorticoid, insulin plays an important role in
sodium balance, particularly in conditions of elevated circulating
plasma insulin concentrations. Plasma insulin stimulates sodium
reabsorption by the distal nephron segments, causing
hyperfiltration and a rise in intra-glomerular pressure [64]. As
carbohydrates are the major contributor to post prandial
hyperglycemia and subsequent insulin secretion, it seems
logical that to achieve sodium balance and insulin homeostasis
it is necessary to modify the diet, by substitution of carbohydrates
with lower carb alternatives [45, 92].

Prospective long-term, randomised controlled studies of the
effect of the KD in KTR are warrened specifically investigating
their effect on electrolyte imbalance, hyperfiltration and the
downstream effects on allograft function [93].

Potassium
Disturbances of potassium balance is a frequent complication
among KTR notably immediately post-transplant, and in those
with suboptimal graft function and higher calcineurin inhibitor
levels [94, 95]. Despite the high incidence and potential life-
threatening implications, consensus on potassium management
in KTR is lacking – with post-transplant medications and dietary
induced hyperkalemia associated with decreased glomerular
filtration rates and impaired sodium delivery in the distal
nephron [96].There is currently a lack of research on the
specific consequences of untreated hyperkalemia to KTR,
although insights from CKD populations highlight the
importance of maintaining normal serum K+
concentrations particularly in IRI post transplantation,
where cells experience metabolic shifts that lead to the
inhibition of sodium-potassium ATPase. This inhibition
disrupts ion homeostasis, contributing to increased ROS
production and subsequent cellular damage [97]. Potassium
also helps regulate the inflammatory response by influencing
the activation of immune cells and the release of cytokines.
Post transplant K+ balance is also vital for cardiovascular and
renal outcomes [98–100].

Dietary guidelines for potassium vary greatly across the
literature and none are specifically directed at KTR (Table 1).
KTR that do experience hyperkalemia are frequently advised to
avoid high-potassium plant-based foods, although the associated
effectiveness is weak as the bioavailability and metabolism of K+
is naturally influenced by the other nutrients consumed

[105–107]. K+ from plant-based sources in particular have
proved beneficial, as they provide alkali and antioxidant
vitamins, trace elements and fibre, which promotes
intracellular entry and excretion of K+ in stool by increasing
faecal volume [108]. As constipation is a frequent symptom in
KTR, restricting fibre-rich foods can impact intestinal microbiota
composition and increase the risk of metabolic acidosis and
inflammation [109–111].

The Influence of Insulin on K+ Balance
Multiple compensatory mechanisms are enhanced in CKD to
maintain potassium homeostasis. Insulin facilitates the uptake of
K+ into the cells by activating the Na+/Ka+-ATPas pump [112].

In hyperglycemia, elevated glucose leads to osmotic diuresis,
causing significant loss of water and electrolytes, including K+,
resulting in an apparent elevation of serum K+ while depleting
cellular stores [100]. Studies show that reducing insulin
requirements through reduced carbohydrate consumption
improves insulin sensitivity which in turn helps to stabilise K+
levels [100, 113].

As new onset diabetes after transplant (NODAT) is a common
complication occurring in up to 50% of KTR, there is a need for
more specific dietary guidelines to optimise insulin balance [114].
Latest guidelines from KDIGO (2023) [115] contain no references
to dietary recommendations for K+, despite commendation that
“a healthy diet should be maintained.”

Vitamin D
Numerous studies demonstrate a high prevalence of vitamin D
deficiency in KTR, likely due to the effects of immunosuppressive
regimens and renal function impairment which affects the ability
of the kidneys to convert 25-hydroxyvitamin D [25(OH)D] into
1,25-dihydroxyvitamin D [1,25(OH)2D] (the active form), and
advice that transplant recipients avoid sunlight to minimise the
risk of skin cancer [116, 117]. Existing research in KTR highlights
the challenges of achieving adequate vitamin D through
diet alone and that even after successful kidney
transplantation, the activity of 25-dihydroxyvitamin D may
not fully normalize [118]. Supplementation is therefore
considered more effective, particularly in vitamin D deficiency
and excessive immune inflammation [119–121].

Vitamin D has an established function in immunological
health, due to its role in calcium homeostasis and restoring
mitochondrial membranes by regulating intracellular Ca2+

concentrations to decease ROS production in IRI [122].
Several studies show that low levels of 25(OH) vitamin D can

TABLE 1 | Variations in potassium recommendations across the general and CKD population.

US food and nutrition
board (IOM. 2005) [101]

The World Health Organization
(WHO, 2012) [102]

K/DOQI, National Kidney Foundation
(2000) [103]

Comprehensive review by Kalantar-Zadeh et al.,
(2017) [104]

4.7 g (120 mmol) per day
in healthy adults

3.9 g (100 mmol) per day or at least
90 mmol/day (3,510 mg/day) in healthy
adults.
No specific guidelines for kidney
disease (CKD stage 1–5)

Unrestricted potassium intake in non-
dialysis dependent patients with CKD stage
1–5
In hemodialysis patients, up to 2.7–3.1 g/
day and in peritoneal dialysis patients up to
3–4 g/day

Intake of 4.7 g/day in the early stages of CKD without
risk of hyperkalaemia, but a dietary potassium
restriction of less than 3 g (77 mmol) per day in CKD
patients prone to hyperkalaemia
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have deleterious effects on renal allograft health and increase the
risk of NODAT [123–127]. Severe vitamin D deficiency is defined
as having a serum 25OHD concentration of <10 ng/mL (25 nmol/
L) [128]). KDIGO (2020) guidelines for patients with CKD (stage
1–5) suggest that vitamin D deficiency and insufficiency be
treated using strategies recommended for the general
population. However, a 2015 study of 289 KTR showed that
vitamin D status is negatively affected by calcineurin inhibitors
(specifically tacrolimus), the most commonly used
immunosuppressant, but not experienced in newer mTOR
inhibitors, such as sirolimus and rapamycin [117]. Appropriate
management of immunosuppression therapy and monitoring of
vitamin D status in KTR therefore warrants a more careful and
individualised approach compared to the general population.

It is worth noting that studies on vitamin D deficiency in
KTR only proves association and adverse outcomes, but not
causality. Continuation of the primary disease (i.e.,: presence
of CKD) or a de novo disease in the kidney graft could also
contribute to proteinuria, worse kidney function and
mortality [120]. Larger prospective and interventional
RCTs are needed to fully assess the influence of vitamin D
on post-transplant outcomes, and the benefits of long-term
supplementation.

Vitamin C
KTR are prone to vitamin C deficiency mostly due to the potential
remnant long-term effects of dialysis and higher requirements due
to the enhanced pro-oxidative and pro-inflammatory status
following IRI [129, 130]. Vitamin C is a powerful biological
antioxidant which serves as cofactor for several enzymes
involved in anti-inflammatory responses, collagen hydroxylation,
carnitine and catecholamine biosynthesis [131]. KTR with low
levels of vitamin C are therefore at increased risk of poor wound
healing and infection immediately post-surgery, and face higher risk
of long-term graft failure, due to reduced biosynthesis of collagen
and regulatory T cells [132–134].

In a trial assessing Vitamin C in 598 KTR at 3-, 6-, 12-, 24-,
and 60-month post-transplantation, Vitamin C deficiency was
defined as plasma vitamin C ≤ 28 μmol/L [135]. At all
measurement points, KTR had lower plasma vitamin C than
potential donors (30–41 μmol/L vs. 58 μmol/L), with deficiency
ranging from 46% (6-month post-transplantation) to 30% (≥1-
year post-transplantation). Dietary vitamin C intake and vitamin
C supplementation were associated with lower odds (OR per
100 mg/day 0.38, 95% CI 0.24–0.61 and OR 0.21, 95% CI
0.09–0.44, respectively). This suggests a strong need for
vitamin C analysis and potential supplementation, particularly
in individuals with delayed graft function.

Supplemental doses of vitamin C of 90 mg to 3 g/day are
considered safe, with mild adverse effects, including
gastrointestinal disturbances [136]. Studies on long term, high
dose supplementation show increased risk of kidney stones
(particularly in males with renal insufficiency), due to increased
urinary excretion of oxalate [137, 138]. This risk is not replicated in
dietary vitamin C due to the saturable absorption of vitamin C
from the gastrointestinal tract [139], and the fact that most dietary
sources (such as fruit and vegetables) include a high water content.

The Effect of Vitamin C on Delayed
Graft Function
In IRI, endothelial cells are activated by the upregulation of pro-
inflammatory cytokines. Vitamin C reduces inflammation and
endothelial permeability by increasing pro-inflammatory
cytokines and phagocytes that contribute to ROS reduction
[41, 42, 140, 141]. In a small (19 participant) double-blinded
RCT, investigating the effect of vitamin C on delayed graft
function (DGF), KTR in the treatment group received an
intravenous vitamin C infusion (70 mg/kg diluted in 0.45%
saline), with the control group receiving only the dilute
solution. The incidence of DGF was not significantly different
between the groups after a single dose of vitamin C, although the
duration of DGF was substantially shorter in the vitamin C group
than the placebo group (7.33 ± 5.68 versus 19.66 ± 0.57 days; P =
0.02) [142]. It is important to note that this study did not include
the nutrition status of participants and therefore those with
higher deficiency rates may have experienced more dramatic
outcomes. Additionally, considering the short half-life of the
vitamin and the nature of surgical delays, a bolus intravenous
dose of vitamin C may have produced more accurate results.

While vitamin C supplements, particularly in the first month
post-transplant might provide a safer and more measurable form
of intake, the sodium content of vitamin C preparations should
be considered, particularly in sodium-restricted
patients [70, 136].

DISCUSSION

Our research showed a positive association between poor nutrition
status and impact on allograft recovery and survival. There is
consensus grounded in evidence that transplant patients have
distinct nutritional needs, with many KTR being nutritionally
deficient by the time they receive their donor organ, placing
them at increased risk of IRI, graft failure and mortality [143,
144]. There are currently limited studies investigating the
longitudinal dietary intake of KTR, yet as this group are still
considered a subset of patients with CKD they remain at high
risk for progression to dialysis and mortality [145]. Our research
highlights the difficulty of investigating the effect of individual
macro- and micronutrients on allograft health although there is
sufficient evident to highlight the negative impact of higher
glycaemic diets, due to the downstream effects on renal sodium
transport and the effects of hyperinsulinemia on intra-glomerular
pressure. While most metabolic disorders post-transplant cannot be
modified, diet and obesity are two factors that can safely be
manipulated particularly in preventing metabolic disorders such
as NODAT and CVD [146]. Obesity is associated with the
prevalence and progression of CKD and low carbohydrate diets
are recognised as an effective treatment in weight loss [147, 148]. In a
context where the prevalence of nutrition-related health conditions
is growing, there is an urgent need for nutrition education for
physicians, who receive on average less than 24 contact hours of
nutrition instruction across the medical degree [149]. Many do not
feel comfortable, confident, or adequately prepared to provide
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nutrition counselling and this gap in knowledge is contributing to
poorer patient outcomes [150, 151].

Findings on PUFA intake demonstrated that the beneficial
effects of anti-inflammatory n-3 depend primality on the dietary
n6: n3 ratio. There is no consensus in the literature on what
constitutes an optimal ratio, but the benefits of PUFA
homeostasis demonstrate that for KTR there is a need for
further research particularly to understand whether a higher
n-6 ratio in the period immediately post-transplant might
enhance immunity, tissue repair and recovery. Longer term
maintenance strategies which include a reduction in
carbohydrates will naturally have a higher percentage of
protein and fat to compensate for the reduced calories [54]
and future guidelines are needed to guide patients on optimal
composition of dietary fats at various stages post-transplant.

Evidence on protein requirements post-transplant remain
contentious and updated research is needed to ascertain a safe
level of intake. It is likely that future guidance on protein intake
will be based on prevailing renal function and themagnitude of benefit
of higher intake to counteract protein catabolism and muscle protein
wastage. Literature on hypovitaminosis D in KTR suggest that low
sunlight exposure and the accelerated catabolism of vitamin D
secondary to glucocorticoid use increases the risk of renal allograft
failure and development of NODAT [123]. Evidence suggests that the
general population in the UK are deficient of vitamin D, specifically in
the winter months [122]. There is therefore a case for individualised
monitoring and replacement therapy in this group.

KDIGO clinical guidelines (KDIGO, 2020) recognise that
immunosuppression and graft function are only one component
of healthcare, yet it makes no mention of the role of nutrition on
allograft health and survival. This research demonstrates that
monitoring of nutritional status post-transplant should be a
clinical priority, with personalised dietary recommendations and
provision for self-management strategies.

CONCLUSION

Despite significant medical advances over the last few decades,
kidney transplants frequently do not function for the lifetime of the
recipient, with more than a third of kidney grafts failing within

10 years following transplantation [152, 153]. It is widely known that
nutrition influences all metabolic disease, health and recovery and
more specific research is needed on the beneficial effect of targeted
nutrition in establishing an optima metabolic milieu for the
transplanted organ to thrive. Clear guidelines which are accessible
to patients and clinicians are we suggest, essential since these will
provide the missing link in post-transplant care.
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