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Tacrolimus is an immunosuppressant with a narrow therapeutic index and a high intra- and
inter-patient variability showing significant challenges in optimal dosing and monitoring.
Historically, pre-dose concentration monitoring and simplified area under the curve
measurements have been the standard approach. However, recent advances in
pharmacokinetic modeling have improved individualized dosing strategies, moving
beyond empirical methods. This review explores the evolving landscape of Tacrolimus
therapeutic drug monitoring, focusing on advanced modeling techniques that support
personalized dosing. Key methodological approaches include Population
Pharmacokinetic (PopPK) modeling, Bayesian prediction, Physiologically-Based
Pharmacokinetic (PBPK) modeling, and emerging machine learning and artificial
intelligence technologies. While no single method provides a perfect solution, these
approaches are complementary and offer increasingly sophisticated tools for dose
individualization. The review critically examines the potential and limitations of current
modeling strategies, highlighting the complexity of translating advanced statistical and
mathematical techniques into clinically accessible tools. A significant challenge remains the
gap between sophisticated modeling techniques and the practical usability for healthcare
professionals. The need for user-friendly platforms is emphasized, with recognition of
existing commercial solutions while also noting their inherent limitations. Future directions
point towards more integrated, intelligent systems that can bridge the current
technological and practical gaps in personalized immunosuppressant therapy.
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INTRODUCTION

The landscape of solid organ transplantation witnessed a transformative shift during the 1990s,
with the new immunosuppressive strategies significantly changing short-term graft and patient
survival [1]. Despite these advances, long-term outcomes continue to front challenges, with
tacrolimus remaining the cornerstone of post-transplant immunosuppression [1]. Tacrolimus
pharmacokinetic is characterized by a narrow therapeutic window and high variability between
and within patients underscoring the critical importance of personalized therapeutic drug
monitoring (TDM). Transplant medicine represents a delicate balance between immunological
management and pharmacological precision. The current clinical paradigm presents a critical
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challenge: preventing organ rejection while simultaneously
avoiding the risks of over-immunosuppression. Current
standard practices, particularly weight-based dosing, are a
poor predictor of tacrolimus exposure, with only 20%–35%
of transplant recipients achieving target therapeutic levels at
first steady state [2–5]. During this period, accurate adjustments
of immunosuppressants are vital to prevent risks such as
allograft rejection, nephrotoxicity, and therapeutic
failure [6–10].

Several studies have demonstrated that tacrolimus levels below
the therapeutic target are associated with an increased risk of
allograft rejection within the first 3–6 months post-
transplantation [11, 12]. Careful management of
immunosuppression is crucial, as under-immunosuppression can
lead to acute rejection, while over-immunosuppression increases the
risks of infections and malignancies. As transplant patient life
expectancy continues to improve, the focus has evolved from
preventing early graft rejection to managing the long-term
consequences of prolonged immunosuppressive therapy and its
associated adverse effects [13]. Adjusting both under- and over-
exposure remains a significant challenge due to the considerable
variability among transplant recipients [14, 15].

Population pharmacokinetic (PopPK) modeling has emerged
as a promising bridge research insights and clinical application,
offering a sophisticated approach for drug dosing that
incorporates multiple variables affecting drug metabolism
and distribution. The integration of single Nucleotide
polymorphisms (SNP), particularly CYP3A variants, provides
opportunities for more precise dosing strategies. Guidelines
from both the Clinical Pharmacogenetic Implementation
Consortium (CPIC), the Dutch Pharmacogenomics Working
Group, and the International Association of Therapeutic Drug
Monitoring and Clinical Toxicology (IATDMCT) have
emphasized the importance of genetic variants in tacrolimus
metabolism. However, a significant gap remains between these
theoretical frameworks and their practical implementation in
clinical care.

Current TDM approaches rely on a trial-and-error method that
can take up to 3 weeks to achieve target drug levels, leaving patients
vulnerable to potential complications. Recent modeling advances
have expanded the variables considered in tacrolimus
pharmacokinetics, including clinical factors such as age, body
composition, albumin levels, demographic characteristics like
ethnicity, and SNPs affecting drug transport and metabolism. The
concentration-to-dose (C/D) ratio has emerged as a valuable tool for
ongoing dose adjustment [16–18], while Bayesian modeling
approaches show promise for more precise initial dosing strategies.

This review aims to explore the complex landscape of tacrolimus
pharmacokinetic variability by critically analyzing PopPK models
and advanced modeling strategies. These include Bayesian
prediction, Physiologically-Based Pharmacokinetic (PBPK)
modeling, and machine learning technologies as innovative tools
for individualizing immunosuppressive therapy. The authors seek to
bridge sophisticated mathematical techniques with clinical
implementation, highlighting the need for user-friendly platforms
that can translate complex statistical methodologies into accessible
clinical tools for therapeutic optimization.

CONVENTIONAL THERAPEUTIC DRUG
MONITORING OF TACROLIMUS

Traditional TDM protocols for tacrolimus starting dose fail to
account for the multifaceted nature of tacrolimus
pharmacokinetics. This conventional approach runs under the
presumption that a linear relationship exists between body weight
and both drug clearance and volume of distribution–an
assumption that has proven to not be the best tool to apply in
clinical practice [15]. Tacrolimus maintenance dosing is usually
adjusted based on pre-dose trough levels (C0), a widely accepted
parameter for TDM due to its presumed strong correlation with
the area under the curve (AUC) [19].

Pre-Dose Concentration Versus AUC
The measurement of C0 has emerged as the standard of care in
transplant centers globally. However, the correlation between
C0 and AUC has shown varying degrees of reliability across
different studies [19]. Recent real-world data analysis of patients
in their second and third post-transplant years demonstrated that
while both C0 and AUC correlated with BPAR incidence, AUC
proved superior in identifying patients with exposure
irregularities despite apparently adequate C0 levels [20]. The
C0/dose ratio has emerged as a valuable predictor of CNI
nephrotoxicity, with studies by Thölking et al. [16, 21, 22] and
others [23, 24] demonstrating its prognostic value for renal
function outcomes. Fast metabolizers, identified by lower C0/
dose ratios, showed higher peak concentrations despite similar
trough levels, suggesting that C0 monitoring alone might miss
important exposure patterns [17, 25].

Sources of Variability in Tacrolimus
Pharmacokinetics
Numerous factors have been identified that impact tacrolimus
pharmacokinetics, contributing to the inter-patient variability
[26–28]. Tacrolimus displays variable absorption in the
gastrointestinal tract, with factors like gastric pH, motility, and
the presence of food impacting its bioavailability. Reduced
absorption can be observed in conditions such as delayed
gastric emptying or gastrointestinal inflammation, leading to
subtherapeutic drug levels. Gastrointestinal motility disorders,
particularly diarrhea, can markedly enhance tacrolimus
absorption, potentially leading to toxic levels in certain
patients [29–33]. Lemahieu et al mentioned a decreased
intestinal p-glycoprotein activity as a potential cause for higher
absorption of tacrolimus. Moreover, the accelerated movement
through the intestinal tract results in increased tacrolimus
exposure to both the distal portion of the small intestine and
colonic tissue, where absorption can occur [34]. This drug is
extensively metabolized in the liver by cytochrome
P450 enzymes, primarily CYP3A4 and CYP3A5, with hepatic
function variations significantly altering drug clearance.

Pharmacokinetic variability is further complicated by
physiological factors like erythrocyte binding, where lower
hematocrit levels result in higher free drug concentrations and
increased clearance [27]. Alterations in albumin levels and
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hematocrit enhance tacrolimus elimination and dosing
requirements, although these changes do not substantially
impact the unbound drug fraction [27, 35–41].

Patient demographics play a crucial role, with pediatric
patients requiring higher doses due to enhanced hepatic
enzyme activity, while elderly individuals (≥65 years)
experience slower metabolism from age-related liver and
kidney function decline, potentially leading to up to 50%
higher tacrolimus exposure despite lower dose-to-body weight
ratios [42–47].

Drug metabolism through oxidative pathways predominantly
involves the Cytochrome P450 (CYP) 3A subfamily, which
significantly influences tacrolimus concentrations [44, 45].
CYP3A5*1 (*1 allele expressers) (rs776746) demonstrate
markedly increased tacrolimus clearance, requiring
approximately 50% higher doses to achieve therapeutic levels
compared to non-expressors (*3/*3 genotype) [50–54]. This
pharmacogenetic effect underscores the importance of
CYP3A5 genotyping in optimizing tacrolimus therapy [2,
50–52, 55]. In contrast, the CYP3A4*22 variant also
demonstrates clinical relevance. Carriers of the T variant allele
exhibit reduced CYP3A4 activity [56], requiring approximately
33% lower tacrolimus doses [57]. The combined influence of
CYP3A4/5 SNPs according to metabolizer phenotypes have
significant impact on tacrolimus pharmacokinetic. Different
studies have demonstrated that integrating both CYP3A5/
4 genotypes can explain over 60% of observed variability in
tacrolimus concentrations [57, 58]. Current clinical guidelines
from CPIC and IATDMCT [15] recommend increasing doses by
1.5–2 times for patients with enhanced metabolism, highlighting
the practical application of this genetic information in
personalizing tacrolimus therapy.

Tacrolimus transport is primarily mediated by P-glycoprotein
(Pgp), an efflux pump encoded by the ABCB1 gene, which
facilitates drug movement across multiple physiological
barriers including intestinal epithelium, hepatic tissue, blood-
brain barrier, renal tubules, pancreatic cells, and lymphocytic
membranes [59]. The ABCB1 gene’s widespread distribution is
crucial in determining tacrolimus pharmacokinetics, particularly
in absorption, distribution, and elimination [49]. Over
50 ABCB1 SNPs have identified with three key variants in
clinical research: 3435C>T (rs1045642), 1236C>T (rs1128503),
and 2677G>T/A (rs2032582). These SNPs exist in linkage
disequilibrium, suggesting potential coordinated effects on Pgp
function. However, despite theoretical expectations of decreased
Pgp activity associated with these variants, multiple clinical
investigations have failed to demonstrate consistent
correlations between these polymorphisms and systemic
tacrolimus concentrations [60–65].

Drug-drug interactions with tacrolimus, primarily mediated
by CYP3A4 and Pgp, are well-documented [66]. Co-
administration of drugs that interact with ABCB1 and/or
CYP3A can significantly alter the bioavailability and
metabolism of tacrolimus [67]. This may result in high levels
of immunosuppression, increasing the risk of toxicity, or in levels
that are too low, raising the likelihood of organ rejection [68].
Inhibitors like azole antifungals, calcium channel blockers (e.g.,

verapamil, diltiazem), HIV protease inhibitors (e.g., ritonavir),
macrolides (excluding azithromycin), amiodarone, and
nefazodone increase tacrolimus exposure. While azole
antifungals are strong inhibitors of tacrolimus metabolism,
others, such as azithromycin, have minimal clinical effects. In
contrast, inducers like rifampicin, anticonvulsants, and
corticosteroids significantly decrease tacrolimus levels.
Therefore, in addition to making dosage adjustments,
therapeutic drug monitoring (TDM) is essential in clinical
practice for transplant patients, especially when changes to
their treatment regimen are necessary.

OVERVIEW OF PHARMACOKINETIC
MODELS FORTACROLIMUS: POPULATION
PHARMACOKINETIC (POPPK) MODELS,
PHYSIOLOGICALLY-BASED
PHARMACOKINETIC (PBPK) MODELS,
AND MACHINE LEARNING (ML)
APPROACHES

Currently, the two primary approaches for describing the
pharmacokinetics of tacrolimus and predicting its
concentrations in transplant patients are population
pharmacokinetic (PopPK) and physiologically based
pharmacokinetic (PBPK) models. Recently, a new approach,
machine learning (ML), has also emerged. While PopPK and
PBPK models use differential equations, ML relies on statistical
relationships between variables to make predictions.

It is worth noting that PopPK and PBPK models each have
unique strengths and limitations, and they are not mutually
exclusive; instead, they can be used complementarily. Table 1
summarizes the main differences between these two approaches,
meanwhile Table 2 summarizes the limitations of each one.

Population Pharmacokinetic Models
The PopPK approach aims to identify the sources of variability
in the pharmacokinetic profile of a drug within the target
population, but sufficient data are required. This is a
necessary step in the successful clinical translation of any
drug. The number of subjects included in the study
determines the precision and clinical relevance of the effect
of a covariate. PopPK models are compartmental models that
describe the dose–concentration relationship from all available
data by building a model with structural and statistical
components that fits the data (Figure 1). PopPK modeling
enables us to optimize the dose regimens, based on the
predictive factors of PK variability in the target population.

Model-Informed Precision Dosing
Model-Informed Precision Dosing (MIPD) is an advanced
quantitative approach used to optimize individualized dosing.
This method combines TDMmeasurements with PopPK models
to individualize treatment regimens by applying Bayesian
forecasting [69, 70].

Transplant International | Published by Frontiers September 2025 | Volume 38 | Article 142013

Lloberas et al. Tac TDM: What’s Next?



MIPD is a promising alternative to conventional dosing
approaches. It enables faster initial dose titration through a
priori MIPD based on baseline covariate values that predict
variability. It also improves subsequent achievement of C0 or
AUC targets via a posteriori MIPD based on prior
pharmacokinetic assessments and updated covariate
information over time [71, 72].

Widespread use of MIPD is currently limited by several
challenges, including limited clinical modelling expertise,
limited generalizability and harmonization of models across
different patient populations, and a lack of conclusive evidence
that it actually improves outcomes [73]. Despite these barriers,
considerable progress has been made, providing a valuable source
of evidence to support and guide future clinical pharmacometrics
efforts in the context of renal transplantation [72]. As mentioned
above, tacrolimus by concentration-guided dose titration has
certain limitations and the MIPD represents a viable

alternative to optimize the individualized dosing regimen in
transplant TDM [35, 74].

Model-Informed Precision Dosing Modeling Software
Several software programs have been developed to enhance the
prediction of patient drug concentrations and provide individualized
dose recommendations to minimize PK variability. Notably, Fuchs
et al., followed by Del Valle-Moreno et al., conducted extensive
reviews to catalog MIPD software tools, offering detailed
descriptions of their primary features. These reviews place
particular emphasis on selecting the most appropriate software
tools to align with specific clinical needs [70, 75].

The use of MIPD software continues to grow, driven by its
precision, advancements in PopPKmodels, and the expanding set
of drugs that can benefit from optimization. This trend reflects an
increasing awareness of the importance of dose individualization
for vulnerable populations, such as elderly patients, individuals

TABLE 1 | Summary of Characteristics of each approach, Pop-PK and PBPK models.

Feature PBPK modeling Pop-PK modeling

Methodolgy Mechanistic Empirical/Statistical
Sparse Data analysis Less efficient than Pop-PK Very useful and efficient
Extrapolation capability Interspecies, age, disease states Descriptive capability. Extrapolation only within the range of variation of the identified

covariates in the target population
Drug-Drug interactions (DDI)
Prediction

Powerful Limited

Special Population Suitability High suitability for pediatric, geriatric, disease
states

Aims at identifying factors of variability within a given population

Regulatory Acceptance High, especially for DDIs and special populations High, widely used for dose recommendations
Real-World Application Limited as it requires detailed physiological

parameters to be available
Useful for clinical PK studies and as support tool during the therapeutic drug
monitoring (TDM) using bayesian prediction

TABLE 2 | Summary of limitations of each approach, Pop-PK and PBPK models.

PBPK modeling Pop-PK modeling

Model complexity and computational complexity due to the multiple
interconnected compartments and the differential equations required to define the
system

Computational complexity: Typically, mathematically less complex than PBPK
because less parameters are involved, but large datasets and complex non-
linear mixed-effects models can still require long computing times

Requires knowledge of species-specific anatomical, physiological and
biochemical parameters such as tissue volumes, blood flow, metabolic enzyme
and transporter expression and also drug specific such as partition coefficients
Not all these parameters can be experimentally measured, and then they have to be
estimated from other data
Variability: Physiological parameters (Flows, Volumes. . .) can vary across
populations or disease states, leading to uncertainty and variability

Large population studies are required: Pop-PK modeling aims at identifying the
sources of PK variabilty to optimize the dose regimens in the target population
If the range and effect of a physiological parameter observed in the target population is
small, it will be misleading to identify this as an influential covariate within the study,
even though the parameter may be truly influential.Therefore it requires large
population studies to capture variability, but data collection limitations may restrict the
range of accuracy of covariates that are physiologically meaningful to explain PK
variability in the target population

Oversimplifications under certain circumstances:
i) Lack of homogeneity within the same compartment exists (i.e., Brain)
ii) Lack of PK linearity occurs
iii) Changes of physiological conditions with time

Oversimplifications of the real-world drug processes that have an impact on
model predictions

Software Limitations: Lack of flexibility of some platforms to handle highly complex
or non-standard models, requiring modelling expertise

There are commercially available powerful softwares but they require
expertise modelers in pharmacometrics, biostatistics and non-linear mixed-
effects models which may not be available in all clinical or research settings
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with renal or hepatic impairment, pregnant women, critically ill
patients, and children. Consequently, these computer programs
have become indispensable tools in routine clinical
practice [70, 75].

Hoffert et al. identified seven software tools currently utilized
in clinical settings to guide tacrolimus dosing for renal transplant
patients: Rx Studio, PrecisePK, InsightRx Nova, MwPharm,
DoseMeRX, BestDose, and ISBA [76].

PrecisePK, MwPharm, DoseMeRX, and BestDose underwent
prospective validation of their tacrolimus modules prior to their
integration into clinical practice. Software tools designed for
clinical decision-making may obtain CE marking, which
signifies compliance with European Union regulations,

although this certification is not mandatory. These tools serve
as decision-support systems, providing dosing recommendations
to clinicians, who ultimately make the final therapeutic decisions.

For tacrolimus dosing, CE marking has been obtained by
PrecisePK, InsightRx Nova, MwPharm, and DoseMeRX.
Additionally, some software modules offer multiple PopPK
models to facilitate MIPD for renal transplant patients.
However, only InsightRx Nova and MwPharm support MIPD
for pediatric populations [76].

Population Pharmacokinetic Models for Tacrolimus
Four comprehensive reviews of tacrolimus PopPK models have
been published [74, 76–78]. Brooks et al. and Kirubakaran et al.

FIGURE 1 | Pharmacokinetic modeling approaches used for PK prediction of tacrolimus. Upper left pannel: Schematic representation of a population
pharmacokinetic model with a deport compartiment and two open compartments (central and peripheral). Ka absorption rate constnat, Vc and Vp central and peripheral
distribution volumes. CLd distribution clearance, CL elimination clearance. “Central” and “peripheral” compartments, do not represent actual physiological tissues and
provide only empirical descriptions of drug pharmacokinetics in the body. The model building process starts with simple models and increases in complexity
depending on the complexity of the pharmacokinetic behavior of the drug under study. This approach based on observed data, is widely known as “top-down”. Upper
right panel (Taken from Henin et al, with permission): Schematic representation of LCPT model structure. F relative bioavailability; PA, PB, PC proportion of dose following
fast (chain A), medium (chain B) and slow (chain C) absorption processes respectively; MTTA mean transit time for chain A (fast absorption); MTTB mean transit time for
chain B (medium absorption); MTTCmean transit time for chain C (slow absorption); TR_AX (X being from 1 to 3) Xth transit compartment in chain A; TR_BX (X being from
1 to 6) Xth transit compartment in chain B; TR_CX (X being from 1 to 9) Xth transit compartment in chain C; V C volume of central compartment; CL clearance; BW0 body
weight at baseline (covariate on V C and CL); CYP CYP3A5 single nucleotide polymorphism (covariate on CL). Lower panel: PBPK model (adapted form Prado-velasco
et al 2019 with permission). Physiological plausibility is present in this approach flow diagram for TAC PBPK model with 4 flow-limited tissues (fat, kidneys, liver and
others) and 2 membrane-limited tissues (gut and blood). The blood compartment is defined through the red blood cell- plasma component. The gastric system is
comprised of a gut lumen where the TAC form is liberated following a zero-order kinetic with sink condition, a one-order absorption membrane and gut tissue perfused
with blood.
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compiled detailed information on models for solid organ
transplant recipients, including transplant type, formulations,
sampling times, and bioanalytical methods [74, 78]. Nanga
et al. proposed a meta-model applicable across different
populations [77], while Hoffert et al. reviewed MIPD software
modules and covariate impacts on exposure [76].

Most studies focused on the first post-transplant year, with
patients on tacrolimus, mycophenolate, and corticosteroids [74,
76–78]. For kidney transplants, models primarily covered
immediate-release formulations, with fewer studies on
extended-release versions like Envarsus® [79–82]. NONMEM
was the predominant modeling software, though some studies
used non-parametric approaches like Pmetrics [74, 76–78].

Two-compartment models were most common, particularly
with intensive sampling data, while trough concentration studies
typically used one-compartment models. Various absorption
models were tested, reflecting tacrolimus’ complex absorption
patterns [47]. Most models derived from White populations,
potentially limiting their applicability to other ethnic groups.
Hispanic patients showed 40% lower apparent clearance
compared to non-Hispanic populations [83].

Key factors affecting tacrolimus clearance include
CYP3A5 genotype, hematocrit, and post-transplant time [74,
77, 78]. CYP3A5*3/*3 variant carriers show lower clearance
and higher dose requirements than CYP3A5 expressors [15,
84]. Studies also examined CYP3A4, ABCB1, ABCC2, and
POR28 polymorphisms [79, 85–94]. Long-term administration
shows decreasing dose requirements due to reduced
corticosteroids, improved CYP3A5/CYP3A4 activity, and
increasing hematocrit [78]. Størset et al. standardized
concentrations to 45% hematocrit for better pharmacokinetic
assessments [95].

Body composition significantly affects distribution volume.
Fat-free mass better predicts tacrolimus clearance than total body
weight, as demonstrated by Holford and Størset [35, 95].
Overweight patients risk overexposure with weight-based
dosing [96]. Bio-impedance spectroscopy studies suggfance
variability [97]. Model validation remains limited compared
with the high rate of published models, with few studies
including external cohort validation. Zhao et al carried out
external evaluation of 16 models developed in kidney
transplant recipients with data from 52 external patients [72].
According to the authors, the published models were
unsatisfactory in prediction- and simulation-based diagnostics,
thus inappropriate for direct extrapolation correspondingly.
However, Bayesian forecasting could improve the predictability
considerably with priors.

Physiologically-Based
Pharmacokinetic Models
PBPK models represent a significant advancement over
traditional PopPK approaches in their ability to predict drug
concentrations across multiple organs. These models integrate
both physicochemical properties and physiological
characteristics, creating a comprehensive framework based on
physiologically meaningful compartments interconnected

through blood circulation. The mathematical foundation relies
on mass-balance differential equations that precisely define drug
movement throughout the system [98].

The architecture of PBPK models demonstrates remarkable
flexibility in compartment selection, adapting to specific study
objectives. In tacrolimus modeling, particular emphasis is placed
on pharmacokinetically significant tissues such as red blood cells,
fat, liver, and intestinal tissues, while other less relevant tissues
may be consolidated into broader compartments.

Three distinct approaches have emerged in PBPK modeling,
each offering unique advantages. The bottom-up approach
predicts pharmacokinetics by leveraging drug physicochemical
characteristics and in vitro ADME data. This strategy proves
particularly valuable when clinical data is limited, with flexibility
to be adapted to different populations through physiological
parameter adjustments. In contrast, the top-down approach
relies heavily on clinical data for model optimization,
providing high accuracy for studied populations but with
limited extrapolation capabilities. The middle-out approach
bridges these methodologies, combining mechanistic and
clinical data to enable iterative model refinement.

Model evaluation follows rigorous criteria as outlined in
regulatory frameworks [98]. These include detailed comparisons
of simulations with experimental concentration-time profiles,
utilizing both graphical representations and error function
analyses. Models must demonstrate consistency across various
scenarios, including different doses, species, populations, and
similar compounds. Sensitivity analysis plays a crucial role in
identifying key parameters and establishing their plausible ranges.

The importance of PBPK modeling in drug development and
clinical applications has been recognized by regulatory bodies,
with both the EMA and FDA issuing comprehensive guidance
documents for model evaluation. These guidelines, while
primarily focused on regulatory applications, provide valuable
frameworks that inform broader research applications in human
drug modeling.

Physiologically-Based Pharmacokinetic
Modeling Software
Once the entire system is defined and all relevant tissue
compartments are established according to the study’s objectives,
the model’s equations must be coded to enable simulations or
parameter estimation, depending on the study’s goals. This coding
can be done using general mathematical modeling software,
commonly used by engineers, or specialized PBPK modeling
software. Most of these options are commercial products [99,
100]. Generally, none of these tools are particularly beginner-
friendly but offer an exponential learning curve (Table 3).

Physiologically-Based Pharmacokinetic Models for
Tacrolimus
Despite the established history of PopPK models in tacrolimus
dosing support, PBPK modeling adoption faces several
challenges. The complexity of drug disposition mechanisms in
transplantation and limitations of closed-code software packages
necessitate more complex models, requiring flexible platforms
and specialized expertise.
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PBPK models for tacrolimus must address multiple factors
contributing to patient variability. Critical considerations include
low and variable bioavailability due to poor solubility, first-pass
effects influenced by CYP3A5 and P-glycoprotein transport, and
elimination pathways particularly relevant in transplant patients.
Models must also account for hematocrit’s influence on blood-
plasma partitioning and distribution across tissues, including
liver, kidneys, adipose tissue, and blood cells.

Among PBPK modeling publications for tacrolimus, four
significant studies focused on kidney transplantation. Emoto
et al. developed a comprehensive Simcyp-based model using a
middle-out approach [101]. Their work confirmed the impact of
CYP3A4 abundance, hematocrit, and serum albumin levels on
tacrolimus pharmacokinetics, though P-glycoprotein
contributions were not considered. The model successfully
explored pediatric populations, attributing age-dependent
changes primarily to CYP3A ontogeny.

Prado-Velasco et al. advanced the field by investigating
circadian modulation in pediatric patients using Phys-PK [102].
Their model, incorporating major organ compartments and

demographic variables, demonstrated superior predictions
compared to PopPK approaches. They applied Poulin and Theil
methods for tissue-plasma partitioning [103], revealing significant
intra-patient variability during formulation transitions.

A minimal PBPK model by Itohara et al. using Simcyp focused
on absorption parameters [104], though it excluded critical factors
like solubility and P-glycoprotein polymorphisms. Van der Veken
et al. later addressed these limitations by incorporatingmechanistic
absorption modeling [105]. Their work revealed that amorphous
solid dispersion causes tacrolimus to behave as a BCS class 1 rather
than class 2 compound, suggesting absorption may not be the
primary source of variability in exposure. Recent advances include
El-Khateef et al.’s work combining therapeutic drug monitoring
with PBPK modeling to investigate chronic kidney disease effects
[106]. The approach has also expanded to other transplant types,
including liver [107], lung [108], and heart [109], with applications
extending to pregnancy populations [110].

PBPK modeling has emerged as a valuable tool for
understanding tacrolimus pharmacokinetics across diverse
populations and conditions. While these models demonstrate

TABLE 3 | Summary of some fo the most commonly used PBPK softwares and characteristics.

General mathematical modelling softwares not specific to
PBPK (open softwares)

Characteristics (model structure not defined a priori)

Company
MATLAB, Berkeley Madonna,
ModelMaker, acsIX

http://www.mathworks.com/products/matlab/, http://www.
modelkinetix.com/modelmaker/, http://www.berkeleymadonna.
com/, http://www.acslX.com

Very flexible but require programming skills and modelling expertise

Phys-PK https://www.physpk.com/ Not free programme. Very flexible. Require programming skills but it
also allows interface model building. Exponential learning curve.
User-customisation management for simulation of special
populations (paediatrics, geriatrics, and hepatic and renal
impairment). This is achieved by adjusting physiological and
pharmacokinetic parameters according to the demographic and
physiological characteristics of each group. Drug-Drug interactions

PBPK specific softwares (Designed softwares) Characteristics (Model structure typically defined a priori)
Company Less flexible but require less mathematical modelling expertise

GastroPlus Simulation Plus https://www.simulations-plus.com/ Exponential learning curve. Not free programme. Customised user
management for simulations in pediatrics, geriatrics and pregnancy.
Also focused on dissolution, formulation development and virtual
bioequivalence. Advanced compartment absorption and transit
(ACAT) model to predict oral bioavailability. Drug-Drug inteactions

Phoenix-WinNonlin Certara https://www.certara.com Not specific for PBPK modeling and simulation, but it can be also
used for this purpose. Not free programme

PK-Sim and Mobi$ Open system Pharmacology https://www.open-systems-
pharmacology.org/

Exponential learning curve. Free program. Customised user
management for simulations in special populations (pediatrics,
geriatrics and hepatic and renal impairment, pregnancy and obesity),
genetic variability.Absorption compartment models GI-Sim to predict
oral bioavailability. Drug-Drug inteactions

Simcyp Certara https://www.certara.com/software/simcyp-pbpk/ Exponential learning curve. Not free programme. Customised user
management for simulations in special populations (pediatrics,
geriatrics hepatic and renal impairment, pregnancy and obesity),
genetic variability, reduced cardiac output). Also focused on
dissolution, formulation development and virtual bioequivalence,
food effect. ADAM model: Advanced dissolution, absorption
metabolism model, to predict oral bioavailability. Drug-Drug
interactions. Mechanistic transdermal absorption model

(*) In general, all them allow the simulation of different clinical scenarios, such as dose changes, chronic administration, or enzymatic variability, which is useful for optimizing therapy and
assessing possible drug-drug interactions. This table highlights key characteristics of the software solutions, including whether they are free or paid software and the specific capabilities
they offer are showed.
$Mobi allows custom models using programming approaches within PK-Sim.
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https://www.simulations-plus.com/
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https://www.open-systems-pharmacology.org/
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promise in optimizing dosing strategies and predicting drug
interactions, external validation remains crucial for broader
clinical implementation. These insights are particularly
valuable for special populations, where personalized dosing
strategies significantly impact therapeutic outcomes.

Machine Learning
Machine learning (ML) is a branch of artificial intelligence (AI)
that allows computers to learn and make predictions from data
without being explicitly programmed to perform each task [111].
Instead of following pre-defined instructions, ML systems use
algorithms that analyze data and look for patterns to improve
their performance on specific tasks autonomously. The modeling
steps consist of: i) data collection and clearing of data for
inconsistencies, ii) selection of the best algorithm suitable for
the specific purpose (supervised learning, unsupervised learning
and reinforcement learning algorithms), iii) training of the model
with training data to adjust parameters and learn, iv) performance
evaluation of the model with unseen test data, v) optimization of
parameters and model deployment in a real-world environment
where it can adapt and improve with new data.

PBPK modeling approach offers the possibility of minimizing
the animal studies and only using drug-related input parameters for
PK predictions in humans. The evaluation of the prediction
performance of different software packages as a function of data
availability and software options, in a bottom-up approach, showed
that predictions are not always within the acceptable range.
Moreover, model prediction could not be improved with
modeling strategies, but with unbiased parameters used to
inform the model [111, 112]. ML is already available to generate
unbiased and optimized parameters to be used in bottom-up PBPK
modeling approach [113]. The top-down and middle-out
approaches can also benefit from AI and ML. For example, AI
can contribute to identifying all published PK data of the literature
for a drug. Also, these approaches can contribute to optimizations of
parameters in the middle-out approach such as tissue Kp values,
specific enzyme intrinsic clearance values, or unbound fractions
among others. Parameter optimization is particularly labour-
intensive and typically not automated, relying heavily on the
modeler’s expertise to identify the best-fit parameters. AI and
ML could help in this process with ML algorithms. These
technologies can test numerous combinations at a speed far
beyond human capabilities. Therfore, AI could identify the
optimal model configuration that best fits all available clinical data.

ML is still evolving, so that its contribution to advances in
MIPD is still scarce. Few ML models have been developed for
tacrolimus in renal transplantation with good predictions in both
cases. Tang et al [114] used ML to predict stable dose in a large
Chinese cohort (N = 1,045 recruited patients, 80% used for the
derivation cohort and 20% used for the validation cohort).
Among all the ML models, regression tree performed best in
both derivation and validation cohorts. Covariates statistically
significant in the derivation cohort were CYP3A5 genotype,
hypertension and use of omeprazole. Sanchez-Herrero et al
also applied ML to predict tacrolimus blood concentrations in
a paediatric cohort of renal transplant patients (N = 21) [115].
The ExtraTrees Regressor algorithm had superior performance

than the other algorithms tested. In both studies the authors
reported acceptable values of metrics used to evaluate the
accuracy of predictions. Woillard et al investigated whether
ML models (Xgboost) accurately estimated tacrolimus AUC in
transplant patients using sparse concentration data [116] and also
explored the training of Xgboost ML models on simulated
tacrolimus concentration-time profiles [117]. Xgboost machine
learning models trained on simulated concentration-time profiles
from literature PopPK models enable precise tacrolimus AUC
estimation based on sparse concentration data. Further studies
are still required to advance on the application of ML on MIPD.

Other Tools for a More Efficient Modeling
With NONMEM: ChatGPT and Gemini Large
Language Models for Generating Initial
Codes Templates of NONMEM
Shin et al evaluated the utility of the ChatGPT4.0 and Gemini
Ultra 1.0 large language models for NONMEM coding tasks
relevant to pharmacometrics and clinical pharmacology [118].
Their conclusions were that these tools could be useful in the
earlier steps to obtain early versions of the codes, but that these
codes still require careful checking for errors and improvements
before implementation.

CONCLUSION

In conclusion, understanding the predictive factors of variability
in tacrolimus pharmacokinetics is essential for achieving
precision dosing and optimizing therapeutic outcomes. Factors
such as genetic polymorphisms (e.g., CYP3A5 expression),
demographic characteristics, comorbidities, drug-drug
interactions, and physiological changes significantly influence
tacrolimus absorption, distribution, metabolism, and clearance.
Recognizing these variables allows for more accurate dose
adjustments, reducing the risk of underdosing or overdosing
and minimizing associated adverse effects or graft rejection.

The integration of these predictive factors into MIPD
frameworks, supported by advanced PopPK models and
decision-support software, enables individualized treatment
strategies tailored to each patient’s unique profile. This
approach not only enhances the safety and efficacy of
tacrolimus therapy but also underscores the importance of
personalized medicine in improving outcomes for vulnerable
populations, including pediatric, elderly, and critically patients.

MIPD is endorsed by tacrolimus PopPK modelling of
tacrolimus. Population and PBPK models, together with
individualized adjustment tools such as Bayesian prediction,
allow for more accurate drug management. However,
challenges such as high variability and integration of complex
clinical covariates remain. Future research aims to integrate more
detailed physiological models and pharmacogenetic approaches
to further optimize therapy. None of these approaches replace the
others, rather they complement each other.

Despite the promise of MIPD in optimizing therapeutic drug
monitoring, several hurdles must be addressed to facilitate its
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implementation in clinical practice. Key challenges include limited
availability of robust data for model validation, unclear regulatory
pathways for endorsing MIPD tools, and the high costs associated
with software licenses and training healthcare professionals.
Additionally, the complexity of MIPD models and tools can
hinder their practical use, requiring user-friendly interfaces and
continuous updates to maintain relevance and accuracy.
Prospective clinical studies demonstrating improved outcomes,
such as reduced toxicity or enhanced efficacy, would be
valuable. Furthermore, collaborative efforts involving diverse
stakeholders -such as researchers, clinicians, regulators, and
patient groups- could support model validation and integration
into routine care. Education and training programs tailored to
healthcare providers will enhance trust and adoption of MIPD
approaches. By addressing these challenges through targeted
studies and multistakeholder collaboration, the widespread
implementation of MIPD can become feasible and impactful.
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