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Optimizing lung transplant candidate selection is crucial for maximizing resource efficiency
and improving patient outcomes. Using data from the International Society for Heart and
Lung Transplantation (ISHLT) registry (29,364 patients), we developed a deep learning
model to predict 1-year survival after lung transplantation. Initially, 25 pretransplant factors
were identified, and their importance was assessed using SHapley Additive exPlanations
values. We refined the model by selecting the top 10most influential factors and compared
its performance with the original model. Additionally, we conducted external validation
using an independent in-house dataset. Among the 29,364 patients, 4,729 (16.1%) died
within 1 year, while 24,635 survived. The Gradient Boosting Machine (GBM) model
achieved the highest performance (AUC: 0.958, accuracy: 0.949). Notably, the
streamlined model using only the top 10 factors maintained identical performance
(AUC: 0.958, accuracy: 0.949). The in-house dataset used for external validation
showed significant compositional differences compared to the ISHLT dataset. Despite
these differences, the GBMmodel performed well (AUC: 0.852, accuracy: 0.764). Notably,
the Multilayer Perceptron model demonstrated superior generalization with an AUC of
0.911 and accuracy of 0.870. Our machine learning-based approach effectively predicts
1-year mortality in lung transplant recipients using a minimal set of pretransplant factors.
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INTRODUCTION

Lung transplantation is a critical intervention for patients with end-stage lung disease, providing
significant survival benefits. As the population ages and medical technologies advance, the demand
for lung transplants continues to rise [1]. However, the global supply of organ donors is insufficient
to meet this growing demand [2]. Despite advancements in surgical techniques and
immunosuppressive therapies, the post-transplant environment remains challenging, with
various factors influencing outcomes [3]. Given the scarcity of medical resources, prioritizing
patients with a low risk of mortality post-transplant is imperative. Predicting 1-year mortality
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following lung transplantation is, therefore, a critical
goal to optimize patient care and enhance clinical
decision-making.

Traditional methods for predicting mortality after lung
transplantation have primarily relied on clinical judgment and
risk-scoring systems [4–7]. While these scoring systems aid in
prioritizing candidates, they often fail to account for the
complexity of individual patient trajectories. This is due to the
limited number of variables they include and their heavy reliance
on clinical judgment. Additionally, several factors traditionally
considered important, such as recipient age, body mass index
(BMI), and the duration of preoperative mechanical ventilation,
have not consistently shown the expected prognostic impact in
previous studies [8]. A recent meta-analysis found that only one
factor, postoperative extracorporeal membrane oxygenation
(ECMO) use, was significantly associated with 1-year
mortality, while other commonly accepted risk factors
demonstrated minimal prognostic significance [8]. These
limitations emphasize the need for more accurate, personalized
risk prediction methods, as existing models may lack the
granularity required for individualized treatment.

In this context, machine learning approaches offer the
potential to develop predictive algorithms that can integrate
diverse patient data and identify subtle patterns that
traditional methods may overlook. Machine learning models
can enhance pretransplant risk stratification, assist clinicians
in selecting and counseling candidates, guide post-transplant
surveillance strategies, and inform interventions to mitigate
adverse outcomes. By providing timely insights into individual

patient trajectories, these models can improve resource
allocation and patient-centered care. Despite their potential,
however, machine learning models predicting patient
prognosis post-lung transplantation have not been
extensively studied [9–11]. In this study, we developed and
validated a machine learning-based model to predict 1-year
mortality among lung transplant recipients using data from
the International Society for Heart and Lung Transplantation
(ISHLT). Additionally, we performed external validation using
the in-house dataset from our hospital.

MATERIALS AND METHODS

Patients who underwent lung transplantation and who were
registered in the ISHLT registry from June 2009 to June
2018 were included (Figure 1). By early 2019, 45 centers
worldwide had submitted data to the ISHLT International
Thoracic Organ Transplant Registry using a secure, web-
based data entry system. Detailed spreadsheets of the data
elements collected in the Registry are available on the ISHLT
International thoracic organ transplant website1. We excluded
patients < 18 years, those who had undergone retransplantation
or multiple organ transplants, and those with unavailable follow-
up status or missing data. Consequently, 29,364 patients were
available for analysis. The ethics committees and review board of
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1https://ishlt.org/research-data/registries/ttx-registry
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Pusan National University Yangsan Hospital (PNUYH) (55-
2024-128) approved the current study, and informed consent
was waived due to the retrospective nature of the study. This
study adhered to the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) reporting guideline. Initially, key variables were
selected through regression analysis to develop a predictive
model for 1-year mortality following lung transplantation.
This analysis identified 25 variables significantly associated
with 1-year mortality. We then evaluated feature importance
using SHapley Additive exPlanations (SHAP) values (Figure 2A)
(Supplementary Figure S1) and developed a refined model
incorporating the top 10 most important features. The
performance of this refined model was compared with that of

the original model, which included all 25 variables. Finally,
external validation was conducted using our hospital’s in-
house dataset.

Machine Learning-Based Model
Development
We employed six machine learning models to predict 1-year
mortality after lung transplantation: Logistic Regression (LR)
[12], Support Vector Machine (SVM) [13], Random Forest
(RF) [14], Gradient Boosting Machine (GBM) [15], Balanced
Random Forest (BRF) [16], and a neural network model,
Multilayer Perceptron (MLP) [17]. To evaluate model
performance, we conducted five-fold cross-validation. The
entire dataset was divided into five subsets, and during each
iteration, one subset was used for validation while the remaining
four were used for training. This process was repeated until each
subset had been used for validation once, and the final results
were reported as the average performance across all five iterations
(Supplementary Figure S2). To interpret the predictions of our
models, we employed SHAP [18], a widely used method for
estimating the contribution of each feature to a prediction. SHAP
provides explanations based on Shapley values derived from
game theory. Specifically, we utilized the Python SHAP
package [18] and applied the TreeExplainer for GBM. We
used the scikit-learn package [19] for most models, except for
BRF, which was implemented using the imbalanced-learn

FIGURE 1 | Patient inclusion. A total of 29,364 lung transplant patients
were included in this study.

FIGURE 2 | Shapley Additive explanations (SHAP). A SHAP plot illustrates the influence of each feature’s value on the prediction outcome, with red indicating an
increase in prediction and blue indicating a decrease. It demonstrates notable impacts in the following sequence: albumin, mean pulmonary artery pressure, and
functional status. Increasing albumin levels correlate with decreased mortality (blue), while higher mean pulmonary artery pressure correlates with increased mortality
(red). (A) SHAP plot of 25 features, (B) SHAP plot of 10 features.
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package [20]. Default model settings were applied without
additional hyperparameter tuning. However, due to class
imbalance in the ISHLT dataset, class weight adjustments were
applied for LR, RF, SVM, and BRF to account for the imbalance.
Additionally, survival analysis based on model predictions was
performed using the lifelines Python package [21]. Finally,
external validation of the developed models was conducted
using our hospital’s in-house dataset, further assessing their
generalizability and robustness.

Statistical Analyses
Variables with excessive missing values (defined as more than
20% missing data) were removed, and patient samples with any
missing data were excluded. This approach ensures that the
analysis is based on complete cases, minimizing potential
biases from missing data. Continuous variables are reported as
either the mean ± standard deviation or the median with
interquartile range (IQR), depending on their distribution.
Statistical comparisons of continuous variables were performed
using the Student’s t-test or the Mann-Whitney U test, as
appropriate. Categorical variables are expressed as frequencies
and percentages and analyzed using the chi-square or Fisher’s
exact test, as appropriate. To identify factors associated with 1-
year mortality after lung transplantation, we conducted
univariate regression analysis. Additionally, we validated the
GBM model by comparing the actual survival curves of
patients, grouped based on the model’s predictions. Patients
predicted by the model to die were classified into the high-risk
group (death group), and those predicted to survive were
classified into the low-risk group (survival group). Survival
curves for these two groups were illustrated using Kaplan-
Meier plots, and the log-rank test was performed to compare
survival rates between the groups. All statistical analyses were
performed using R software (version 4.2.0; R Foundation for
Statistical Computing, Vienna, Austria2). Statistical significance
was set at P < 0.05.

RESULTS

Patient Characteristics
Among the 29,364 patients included in the study, 4,729 (16.1%)
died within 1 year, whereas 24,635 survived. The baseline
pretransplant characteristics of the patients are summarized
in Table 1. Their average age was 53.4 ± 13.4 years, with 17,032
(58%) males, and the average body mass index (BMI) was 24.9 ±
4.5. The primary diagnoses were as follows: chronic obstructive
pulmonary disease (COPD) in 27.9%, idiopathic pulmonary
fibrosis (IPF) in 26.8%, cystic fibrosis in 14.6%, nonidiopathic
interstitial pneumonia (nonIIP) ILD in 7.3%, nonIPF idiopathic
interstitial pneumonia (IIP) in 4.7%, alpha-1 antitrypsin
deficiency in 3.4%, idiopathic pulmonary arterial hypertension
(IPAH) in 2.8%, noncystic fibrosis (nonCF) bronchiectasis in
2.6%, sarcoidosis in 2.5%, nonIPAH pulmonary hypertension in

1.7%, connective tissue disease-associated ILD (CTDILD) in
1.3%, obliterative bronchiolitis in 0.9%, lymphangioleiomyomatosis
in 0.8%, and other diagnoses in 2.6%. Pretransplant, 1,757 patients
(6%) were admitted to the intensive care unit (ICU), 1,515
(5.2%) were hospitalized in general wards, and 26,092 (88.9%)
were not hospitalized. Additionally, 1,021 patients (3.5%) were
on ventilators, and 642 (2.2%) were on extracorporeal
membrane oxygenation (ECMO). Pretransplant diabetes was
present in 3,288 patients (11.2%), pretransplant dialysis was
performed in 61 patients (0.2%), and 64 patients had a history
of organ transplantation other than the lung. Additionally, 781
(2.7%) and 2,601 (8.9%) patients had previous heart and lung
surgeries, respectively.

TABLE 1 | Baseline characteristics of patients before the transplant.

Variable Survivors
(N = 24,635)

Death
(N = 4,729)

P

Age, years 53.2 ± 13.5 54.5 ± 13.1 <0.001
Male 14,186

(57.6)
2,846
(60.2)

0.001

BMI, kg/m2 25.3 ± 4.3 23.1 ± 4.9 <0.001
Total bilirubin, mg/dL 0.6 ± 0.9 2.0 ± 2.0 <0.001
Creatinine, mg/dL 0.8 ± 0.3 1.7 ± 1.0 <0.001
Albumin, g/dL 3.7 ± 0.4 3.1 ± 0.6 <0.001
Diagnosis
COPD 7036 (28.6) 1,171

(24.8)
<0.001

Alpha-1 antitrypsin deficiency 847 (3.4) 151 (3.2) 0.394
Cystic fibrosis 3,782 (15.4) 516 (10.9) <0.001
Non-cystic fibrosis bronchiectasis 616 (2.5) 147 (3.1) 0.016
IPF 6,425 (26.1) 1,438

(30.4)
<0.001

IIP, non-IPF 136 (4.6) 254 (5.4) 0.024
ILD, non-IIP 1803 (7.3) 352 (7.4) 0.763
CTD ILD 319 (1.3) 52 (1.1) 0.271
Sarcoidosis 612 (2.5) 134 (2.8) 0.162
Lymphangioleiomyomatosis 200 (0.8) 35 (0.7) 0.612
Idiopathic pulmonary artery

hypertension
652 (2.6) 184 (3.9) <0.001

Pulmonary hypertension- not idiopathic 385 (1.6) 102 (2.2) 0.003
Obliterative bronchiolitis 236 (1.0) 29 (0.6) 0.022
Other 586 (2.4) 164 (3.5) <0.001

Diabetes 2,826 (11.5) 462 (9.8) 0.001
Malignancy history 1,205 (4.9) 196 (4.1) 0.027
Ventilator use 818 (3.3) 203 (4.3) 0.001
ECMO use 508 (2.1) 134 (2.8) 0.001
Prior cardiac surgery 637 (2.6) 144 (3.0) 0.072
Dialysis 45 (0.2) 16 (0.3) 0.031
Prior lung surgery 2,234 (9.1) 367 (7.8) 0.004
Chronic steroid use 6,185 (25.1) 1,079

(22.8)
0.001

Tracheostomy before transplant 484 (2) 122 (2.6) 0.006
Previous transplant history except lung 48 (0.2) 16 (0.3) 0.053
Pulmonary embolism 60 (0.2) 24 (0.5) 0.002
FEV1 39.2 ± 20.9 40.7 ± 20.1 0.002
Mean pulmonary artery pressure, mmHg 27.9 ± 8.4 32.4 ± 9.1 <0.001
Medical condition before transplant <0.001
ICU admission 1,401 (5.7) 356 (7.5)
General ward admission 1,304 (5.3) 211 (4.5)
No admission 21,930 (89) 4,162 (88)

Data are presented as means ± SD, or number (%).

2https://www.R-project.org/
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Machine Learning-Based Model
Performance and Model Interpretation
We performed univariate regression analysis of 1-year mortality.
Table 2 presents the odds ratio of the 25 factors used in the

model. We evaluated the performance of six machine learning
models with 25 pretransplant features for predicting 1-year
mortality after lung transplantation. The results are presented
in Table 3. We used area under the curve (AUC), accuracy,
sensitivity, specificity, positive predictive value, and negative
predictive value as evaluation metrics. Most models exhibited
high performance, with AUC and accuracy either surpassing or
closely approaching 0.9. The GBM model achieved the highest
performance, with an AUC and accuracy of 0.958 and 0.949,
respectively.

Feature importance was analyzed using SHAP, with Figure 2
displaying the feature importance for the GBM model. The most
important feature was albumin, with lower levels associated with
higher mortality 1-year post-transplant. Other significant
predictors included mean pulmonary artery pressure,
creatinine levels, total bilirubin, and age.

Based on the SHAP results, we trained a new model using the
top-10 most important features (Table 4). Despite reducing the
number of features from 25 to 10, the performances of the six
models remained largely unchanged. Some models, including LR,
RF, SVM, and MLP, exhibited slight improvements in AUC,
although accuracy was slightly decreased. The GBM model
continued to demonstrate the highest performance with an
AUC and accuracy of 0.958 and 0.949, respectively, even with
only 10 features.

Actual Survival Curves: Low-Risk vs.
High-Risk Groups by the GBM Model
We further validated the GBM model by comparing the actual
survival curves of patients who were classified into two groups
based on the model’s predictions. Patients predicted by the model
to die were assigned to the high-risk group (death group), while
those predicted to survive were placed in the low-risk group

TABLE 4 | Performance of 1-year mortality prediction model after lung
transplantation with 10 features.

Model AUC Accuracy Sensitivity Specificity PPV NPV

LR 0.882 ±
0.005

0.884 ±
0.005

0.786 ±
0.003

0.902 ±
0.006

0.607 ±
0.015

0.956 ±
0.001

SVM 0.869 ±
0.005

0.917 ±
0.002

0.786 ±
0.006

0.942 ±
0.003

0.722 ±
0.010

0.958 ±
0.001

RF 0.951 ±
0.003

0.948 ±
0.002

0.735 ±
0.008

0.989 ±
0.002

0.926 ±
0.013

0.951 ±
0.001

GBM 0.958 ±
0.002

0.949 ±
0.002

0.755 ±
0.003

0.986 ±
0.002

0.914 ±
0.009

0.955 ±
0.001

BRF 0.953 ±
0.002

0.938 ±
0.002

0.791 ±
0.005

0.967 ±
0.002

0.821 ±
0.009

0.960 ±
0.001

MLP 0.939 ±
0.005

0.935 ±
0.001

0.664 ±
0.008

0.987 ±
0.002

0.906 ±
0.011

0.939 ±
0.001

This Table summarizes the performance indicators of various prediction models using
10 factors for 1-year mortality after lung transplantation.
AUC: area under the curve, PPV: positive predictive value, NPV: negative predictive
value, LR: logistic regression, RF: random forest, SVM: support vector machine,
GBM: gradient boosting machine, MLP: multilayer perceptron, BRF: balanced
random forest.

TABLE 2 | Univariate associations of pretransplant characteristics with 1-year
survival.

Variable OR (95% CI) P

Age 1.01 (1.00–1.01) <0.001
Male 1.10 (1.04–1.17) 0.001
Prior lung surgery 1.17 (1.06–1.31) 0.003
any previous transplantation history 1.67 (1.03–2.74) 0.040
Albumin 0.22 (0.21–0.22) <0.001
Chronic steroid use 0.88 (0.83–0.95) <0.001
Diabetes 1.20 (1.09–1.32) <0.001
total bilirubin 1.09 (1.09–1.10) <0.001
BMI 0.90 (0.90–0.91) <0.001
creatinine 1.32 (1.31–1.33) <0.001
Previous malignancy history 1.18 (1.03–1.37) 0.021
mean pulmonary artery pressure 1.04 (1.04–1.04) <0.001
non-hospitalized before transplant 0.91 (0.82–1.00) 0.043
non-ICU hospitalized before transplantation 0.84 (0.72–0.97) 0.018
ICU hospitalized before transplantation 1.35 (1.20–1.52) <0.001
Ventilator 1.27 (1.10–1.46) 0.001
ECMO 1.36 (1.14–1.61) <0.001
COPD 0.82 (0.77–0.88) <0.001
Cystic fibrosis 0.68 (0.61–0.75) <0.001
IPF 1.49 (1.26–1.76) <0.001
non-CF bronchiectasis 1.25 (1.04–1.50) 0.016
IPAH 1.43 (1.23–1.66) <0.001
Dialysis 1.80 (1.10–2.94) 0.019
Pulmonary embolism before transplant 1.93 (1.29–2.88) 0.001
Tracheostomy before transplantation 1.29 (1.08–1.54) 0.006

OR; odds ratio, CI; confidence interval, BMI; body mass index, ICU; intensive care unit,
ECMO; extracorporeal membrane oxygenation, COPD; chronic obstructive pulmonary
disease, IPF; idiopathic pulmonary fibrosis, CF; cystic fibrosis, CTD-ILD; connective
tissue disease associated interstitial lung disease, IPAH; idiopathic pulmonary artery
hypertension.

TABLE 3 | Performance of 1-year mortality prediction model after lung
transplantation with 25 features.

Model AUC Accuracy Sensitivity Specificity PPV NPV

LR 0.884 ±
0.005

0.881 ±
0.006

0.792 ±
0.006

0.898 ±
0.007

0.600 ±
0.017

0.958 ±
0.001

SVM 0.870 ±
0.004

0.917 ±
0.002

0.790 ±
0.006

0.941 ±
0.003

0.719 ±
0.009

0.959 ±
0.001

RF 0.951 ±
0.004

0.948 ±
0.002

0.731 ±
0.011

0.989 ±
0.002

0.929 ±
0.012

0.950 ±
0.002

GBM 0.958 ±
0.002

0.949 ±
0.002

0.756 ±
0.003

0.986 ±
0.002

0.911 ±
0.011

0.955 ±
0.001

BRF 0.954 ±
0.003

0.939 ±
0.002

0.788 ±
0.006

0.968 ±
0.002

0.826 ±
0.010

0.960 ±
0.001

MLP 0.924 ±
0.005

0.930 ±
0.004

0.649 ±
0.020

0.984 ±
0.002

0.886 ±
0.015

0.936 ±
0.003

This Table summarizes the performance indicators of various prediction models using
25 factors for 1-year mortality after lung transplantation.
AUC: area under the curve, PPV: positive predictive value, NPV: negative predictive
value, LR: logistic regression, RF: random forest, SVM: support vector machine, GBM:
gradient boosting machine, MLP: multilayer perceptron, BRF: balanced random forest.
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(survival group). As shown in Figure 3, the survival curves
demonstrated a statistically significant difference between the
two groups (p < 0.001). Among the predicted high-risk group,
91.4% experienced actual mortality, while 95.5% of the predicted
low-risk group survived. These findings highlight the model’s
robust predictive performance for distinguishing between
mortality and survival outcomes.

External Validation on In-House Dataset
of PNUYH
To evaluate the generalizability of our model, we conducted an
external validation using data from Pusan National University
Yangsan Hospital (PNUYH) (Table 5). The model was developed
using all 29,364 samples included in this study and subsequently
validated on the in-house dataset of PNUYH. Between January
2012 and March 2024, a total of 228 adult patients
(aged ≥18 years) underwent lung transplantation at PNUYH.
After excluding 12 patients who underwent retransplantation,
216 patients were included in the external validation cohort.
Among them, 70 (32.4%) died within 1 year of transplantation.
Key preoperative characteristics of these patients are summarized
in Supplementary Table S1. Notably, the mortality group had a
significantly higher BMI compared to the survival group (23.2 vs.
21.3, p = 0.001). Serum albumin levels were lower in the mortality
group (2.5 vs. 3.7, p < 0.001), and steroid use was more frequent
(47.1% vs. 24.0%, p = 0.001). Additionally, a history of lung
surgery prior to transplantation was more common in the
mortality group (5.7% vs. 0.7%, p = 0.021).

The PNUYH dataset used for external validation had a
significantly different distribution compared to the ISHLT dataset
used for training (Supplementary Table S2), with all 10 model
variables showing statistically significant differences between the two
cohorts. Despite these differences, the GBM, which had the highest

performance in the ISHLT dataset, demonstrated excellent external
validation results (AUC: 0.852, accuracy: 0.764). Among all tested
models, the highest AUC was observed for the SVM model (0.936).
However, when considering both AUC and accuracy, the best-
performing model was the MLP, a deep learning-based approach.
The MLP achieved an AUC of 0.911 and an accuracy of 0.870,
consistently outperforming other models across all evaluation
metrics. Given the substantial distributional differences between
the ISHLT and PNUYH datasets, the MLP model’s strong
generalization performance underscores its robustness. These
findings highlight the model’s ability to maintain high predictive
performance in an external population, supporting its potential
clinical utility in lung transplant candidate selection.

DISCUSSION

In this study, we developed and validated a deep learning-based
model to predict 1-year survival following lung transplantation
using a large, multicenter, international dataset. Our model
demonstrated strong predictive performance, effectively
identifying key determinants of post-transplant survival. By
leveraging GBM techniques, we constructed a highly accurate
and robust prediction model. Notably, a simplified version of our
model, incorporating only the 10 most influential predictors,
achieved performance comparable to that of more complex
models utilizing 25 variables. Furthermore, the model’s
generalizability was confirmed through external validation
using the in-house dataset from PNUYH. The GBM model
achieved an AUC of 0.852 and an accuracy of 0.764, and
the MLP model demonstrated superior performance,
achieving an AUC of 0.911 and accuracy of 0.870. These
findings underscore the potential clinical applicability of
our model in improving risk stratification and decision-
making for lung transplant recipients.

The 10 predictors identified in this study were critical in
assessing the potential benefit of lung transplantation. Among
these, age, BMI, creatinine levels, total bilirubin levels, and mean
pulmonary artery pressure have been well-established as critical
indicators for assessing patient urgency and potential benefit in
previous Lung Allocation Scores (LAS) [22] and the current

TABLE 5 |Results of External Validation for 1-Year Mortality PredictionModel After
Lung Transplantation Using 10 Features on in-house dataset of PNUYH.

Model AUC Accuracy Sensitivity Specificity PPV NPV

LR 0.905 0.708 0.986 0.575 0.527 0.988
SVM 0.936 0.750 0.957 0.651 0.568 0.969
RF 0.870 0.769 0.443 0.925 0.738 0.776
GBM 0.852 0.764 0.529 0.877 0.673 0.795
BRF 0.888 0.815 0.857 0.795 0.667 0.921
MLP 0.911 0.870 0.886 0.863 0.756 0.940

This table summarizes the results of external validation on in-house dataset of PNUYH,
using various prediction models with 10 features for 1-year mortality after lung
transplantation.
AUC: area under the curve, PPV: positive predictive value, NPV: negative predictive
value, LR: logistic regression, RF: random forest, SVM: support vector machine, GBM:
gradient boosting machine, MLP: multilayer perceptron, BRF: balanced random forest.

FIGURE 3 | Actual survival curves: low-risk vs. high-risk groups by the
GBM model. Graph depicting actual survival curves of the group whose
survival was predicted by the GBM model.
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Composite Allocation Score (CAS) [23]. Factors such as albumin
levels, chronic steroid use, and prior lung surgery, newly
highlighted in our study, further emphasize their potential to
refine patient assessments and improve prediction accuracy.
Albumin is traditionally a marker of nutritional status and
inflammation, with lower levels associated with poorer post-
transplant outcomes in previous studies [24]. This underscores
the importance of evaluating nutritional and inflammatory status
during pretransplant assessments. Chronic steroid use, identified
in earlier studies, increases post-transplant morbidity and
mortality [25], with some suggesting that long-term steroid
use may be a contraindication for surgery [26]. Long-term
steroid usage increases the risk of infection, poor wound
healing, and other complications, all of which may be
important predictors of transplant outcomes. Furthermore,
prior major lung resection has been recognized as a significant
risk factor for increased perioperative mortality and
complications such as the need for dialysis [27]. This
increased risk can be attributed to factors such as altered
anatomy, potential for adhesions, and bleeding, all of which
complicate the transplant procedure. These findings highlight
the importance of thorough preoperative assessment in patients
with a history of major lung resection.

Traditionally, prognosis following lung transplantation has
been significantly influenced by the underlying primary
disease necessitating the transplant. Different lung diseases
impact post-transplant outcomes due to their distinct
pathophysiology, patient demographics, and associated
comorbidities. For example, patients with cystic fibrosis
(CF) generally exhibit better post-transplant survival rates
compared to those with idiopathic pulmonary fibrosis or
chronic obstructive pulmonary disease [8]. In that regard,
patient diagnosis plays an important role in both LAS and
CAS, and several studies have incorporated diagnoses into
prediction models. In our study, only cystic fibrosis was
included as a predictor, but it had the lowest importance in
the model (Figure 2B). Additionally, no patients with cystic
fibrosis were included in the PNUYH in-house dataset used for
external validation. Nevertheless, our model demonstrated
excellent predictive performance, suggesting that
preoperative conditions, such as organ function, nutritional
status, and preoperative hospitalization, may be more critical
prognostic indicators than the underlying disease itself. Thus,
general aspects of patient health prior to transplantation could
be more important than the specific underlying disease in
pretransplant management.

While several studies have attempted to predict mortality in
lung transplant patients, accurate predictions have not always
been achieved due to limited performance (Supplementary
Table S3) [28–30]. A recent study accurately predicted 1-year
survival using 22 factors, including postoperative variables
such as operation time, donor PaO2/FiO2 ratio,
postoperative ECMO time, ventilator time, ICU stay,
primary graft dysfunction grade, and cold ischemic time,
achieving an AUC of 0.921 in patients from a single center
[9]. Although these factors provide valuable insights into post-
transplant outcomes, they are not available preoperatively,

limiting their utility in pretransplant decision-making and
patient prioritization. Our study addresses this limitation
by focusing on preoperative variables that can be assessed
before transplantation, thereby enhancing the ability to
predict transplant outcomes and prioritize patients more
effectively. Notably, achieving similar predictive accuracy
with fewer variables has significant implications for clinical
practice, as it simplifies the assessment process and makes it
more feasible to implement in diverse healthcare settings
without compromising predictive power. Furthermore, the
external validation using in-house datasets further
underscores the high generalizability of our model. Despite
the fundamental differences between the training and
validation datasets, the model demonstrated excellent
performance, emphasizing its robustness and applicability
across varied populations.

The use of machine learning approaches, particularly GBM, in
this study highlights the transformative potential of these methods
in healthcare. Machine learning models can handle complex
interactions between variables and provide more accurate
predictions compared to traditional statistical methods. This
study demonstrates how machine learning models, such as
GBM, can capture nonlinear relationships between variables,
such as pulmonary artery pressure and BMI, which may not
follow linear patterns. By incorporating these nonlinear
interactions, the predictive performance of the model is
significantly improved compared to traditional methods. SHAP
values were used to visually explore the interactions between
variables, providing insights into which characteristics contribute
most to predictions. This ability to visualize complex interactions
enhances the interpretability of the model, offering a deeper
understanding of its decision-making process. Furthermore,
comparing linear models (e.g., logistic regression, support vector
machines) to nonlinear models (e.g., random forest, XGBoost)
illustrates how traditional methods may miss out on capturing
nonlinear patterns, which are crucial for accurate prediction of
post-transplant outcomes. Our study advocates for the integration
of machine learning technologies into clinical workflows. This
integration can enhance clinical decision-making, providing
more accurate predictions and improving patient outcomes. By
leveraging machine learning models, clinicians can identify high-
risk patients and tailor pretransplant management strategies to
optimize post-transplant survival.

One significant limitation of our study was its reliance on
registry data, meaning that the model’s performance depends
on the accuracy and completeness of the recorded information.
We mitigated this issue by excluding instances with missing
data to use the most precise data available. We developed and
internally validated the model using the ISHLT registry, which
offers a large and diverse sample, and externally validated it
using our own cohort, demonstrating the model’s
generalizability. Future research should explore
incorporating additional potential predictors and leveraging
longitudinal data to further refine the model. These efforts
would contribute to enhancing the model’s robustness and
applicability in clinical practice. Additionally, further
validation and ethical considerations should be conducted
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before applying the model to donor lung allocation, ensuring it
addresses any ethical concerns.

In conclusion, our study confirmed that a machine learning-
based approach can accurately predict 1-year mortality in lung
transplant recipients using a minimal set of pretransplant factors.
The development of a streamlined model with high predictive
accuracy facilitates better patient selection, ensuring that lung
transplantation resources are utilized efficiently and patient care
is optimized. This model holds promise for enhancing clinical
decision-making and improving post-transplant outcomes in lung
transplant recipients. Investigating the underlying mechanisms by
which specific pretransplant characteristics influence post-transplant
outcomes could further enhance patient management strategies.
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