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This opinion paper evaluates the potential of porcine islets as a promising alternative in beta
cell replacement therapy for Type 1 Diabetes (T1D), juxtaposed with the current limitations
of human donor islets. It analyzes the compatibility of pig islets with human glucose
metabolism, their prospects as a limitless and high-quality source of beta cells, and the
unique immunogenic challenges they present in xenotransplantation. Additionally, the
paper discusses the regulatory and ethical considerations pertinent to the use of porcine
islets. By synthesizing current research and expert perspectives, the paper highlights both
the opportunities and significant barriers that need addressing to advance pig islets as a
viable therapeutic option. The findings advocate for a balanced and forward-looking
approach to the integration of pig islets in T1D treatment, underscoring the need for
continued research and dialogue in this evolving field.
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INTRODUCTION

The path to curing Type 1 Diabetes (T1D) through beta cell replacement is filled with both promise and
complexity [1, 2]. At its core, the strategy is simple and compelling: by restoring the insulin-producing
function of pancreatic beta cells, one can tackle T1D at its root [3]. The use of islets from organ donors in
these therapies has convincingly shown that such an approach can significantly improve or even
temporarily reverse diabetes [4–8]. Yet, this achievement also highlights the critical hurdles that need to be
cleared to reach a universal cure. The main challenges in beta cell replacement therapies involve finding a
limitless supply of beta cells, reducing or avoiding the need for immunosuppressive drugs, and ensuring
the transplanted cells survive and function over the long term [9]. The reliance on donor islets is severely
limited by donor scarcity, variable islet quality, and the complexities tied to working with primary culture
cells, which together pose a significant challenge to the broad applicability of beta cell replacement
methods. The pursuit of alternative sources of cells holds potential; however, these alternatives should
deliver distinct advantages over current options in terms of availability, quality consistency, and ease of
handling to truly transform the landscape of beta cell replacement therapies. Given these foundational
challenges, it becomes crucial to consider if pig islets could potentially offer advantages over traditional
organ donor sources or alternative strategies, such as those involving the differentiation of pluripotent
stem cells [10]. Addressing this issue effectively requires answering some key questions.
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HOW COMPATIBLE IS THE GLUCOSE
METABOLISM REGULATION OF PIG
ISLETS WITH HUMAN PHYSIOLOGY FOR
TRANSPLANTATION PURPOSES?

The critical prerequisite for evaluating pig islets for
transplantation is that the regulation of glucose metabolism by
the pig islet must be compatible with human physiology [11].
While pig and human insulin are remarkably similar, differing
only in the 30th amino acid of the β-chain, and despite the
historical use of porcine insulin in treating human diabetes, there
are differences in how porcine islets respond to glucose and other
stimuli compared to human islets (summarize inTable 1) [12–22,
24–26]. Although the precise long-term consequences of these
differences in pig islet function remain uncertain, they seem to
align with the requirements for a short to medium-
term approach.

IS THE SUPPLY OF INSULIN-PRODUCING
CELLS FROM PIG ISLETS A LIMITLESS
AND CONSISTENTLY
HIGH-QUALITY SOURCE?

Bypassing the obstacles related to genetic adjustments and the
circumvention of immune system rejection, the notion of pig
islets serving as an endless and consistently superior source of
insulin-producing cells encounters multiple critical areas in need
of continuous improvement [27]. It is imperative to ensure the
uniform quality and longevity of islet cells across various
preparations, which mandates the formulation of uniform
protocols for the extraction, refinement, and preservation of
pig islets to maintain their operational effectiveness and
durability post-transplant [28–30]. Additionally, the ability to
upscale the production of pig islets poses an essential challenge
[31, 32]. This encompasses the initiation of responsible and
ethical practices in pig rearing, the advancement of proficient
methods for islet extraction, and the creation of effective logistical
solutions for their distribution [33]. These factors need to be
refined to address the worldwide demand for insulin-producing
cells while safeguarding animal wellbeing and ecological integrity.

The ongoing debate (summarize in Table 2), indicating that after
extensive research there still has not been a consensus on the most
suitable pig age and strain for providing sufficiently viable
isolated islet cells for clinical xenotransplantation [47–50],
underscores the current limitations in achieving a limitless and
consistent supply [51].

DO PIG ISLET CELLS POSSESS INHERENT
ADVANTAGES IN TERMS OF
IMMUNOGENICITY FOR
XENOTRANSPLANTATION PURPOSES?

In principle, xenotransplantation of pig islets could present a less
specific target for the recipient’s autoimmune response compared
to human islets, due to the differences in cellular antigens
between species. Thus, while the pig islet cells could still be
recognized as foreign by the recipient’s immune system, they
might not be specifically targeted by the autoreactive T cells that
are involved in the autoimmune attack on native pancreatic beta
cells. However, this potential advantage is complicated by the
broad immune response against xenogeneic tissue, which
includes not only adaptive immune responses [52–56] but also
innate responses [57] and issues like the instant blood-mediated
inflammatory reaction (IBMIR) [58–63], hyperacute rejection,
and acute cellular rejection. These xenogeneic reactions can be
strong and present significant barriers to the long-term survival
and function of the transplanted islets. Furthermore, cross-
reactivity between swine leukocyte antigen (SLA) and human
anti-HLA-specific antibodies is another factor that complicates
xenotransplantation [64]. It is well-known that human anti-HLA
antibodies, especially in sensitized individuals, can sometimes
bind to SLA molecules due to structural similarities [65, 66]. This
cross-reactivity can lead to both innate and adaptive immune
responses, potentially causing early rejection of the pig islets.
While the basic concept of cross-reactivity is established and
supported by various experimental studies [67–70], the extent to
which cross-reactivity impacts clinical outcomes is still debated
[71, 72]. The predictability of which specific human antibodies
will cross-react with SLA, and how this cross-reactivity might
vary among different individuals or pig donors, remains an area
of ongoing research [73, 74]. There is also debate about the best

TABLE 1 | Comparative analysis of porcine and human islet function and potential in xenotransplantation.

Aspect Details Consequences

Insulin Response [12–16] Porcine islets secrete 3–6 times less insulin than human islets in
response to glucose

May require transplantation of more islets or genetic modification to meet
human insulin requirements

Metabolic Control
[17, 18]

Pigs have more glucose tolerance and lower basal insulin levels
compared to humans

Adjustments in insulin therapymight be necessary post-transplantation to
ensure metabolic control

Glucagon Response [19] Porcine islets show a strong glucagon response to hypoglycemia,
beneficial for clinical applications

Could enhance safety by preventing hypoglycemia in recipients

Diabetes Resistance
[20–23]

Pigs are resistant to amyloidosis, unlike humans, possibly due to
differences in IAPP sequence

Might reduce risk of islet dysfunction and extend longevity of the
xenotransplant

Genetic Engineering [18,
24–26]

Human transgenes in pigs do not adversely affect glucose
metabolism

Genetic modifications can make xenotransplantation a viable solution
without disrupting glucose levels
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strategies to mitigate these risks, including whether genetic
modifications to reduce SLA expression or to incorporate
human-like antigens in pigs are sufficient to prevent cross-
reactivity [75]. Thus, while pig islet cells might have certain
inherent advantages in terms of reduced targeting by
autoreactive T cells, the risk of cross-reactivity with pre-
existing anti-HLA antibodies adds a significant layer of
complexity to the immunogenicity of xenotransplanted pig islets.

ARE METHODS TO ALLEVIATE
XENOGENEIC REJECTION MORE
FEASIBLE OR PRACTICAL COMPARED TO
THOSE USED FOR OTHER
TRANSPLANT SOURCES?

Alleviating xenogeneic rejection involves several unique and
sophisticated approaches due to the significant biological
differences between species. These methods can be
categorized into three main strategies: gene editing of the
donor (e.g., pigs), pharmacological immunosuppression, and
physical barriers such as encapsulation. Focusing specifically
on gene modification efforts, pig islet xenotransplantation
indeed represents the most extensive application of genetic
engineering in the realm of islet transplantation (Table 3) [91].
The most extensively modified animals have undergone
69 genomic alterations, which include the removal of glycan
antigens, the enhancement of human transgene expression,
and the deactivation of porcine endogenous retroviruses [92].
This extensive level of genetic editing is primarily possible

because of the wider array of modifications that are both
ethically and technically feasible in pigs, in contrast to what
is possible with human islets or stem cells. Conversely,
evidence suggests that traditional immunosuppressive
treatments, such as those based on tacrolimus, are less
effective at managing the adaptive immune response against
pig xenografts [93]. Instead, targeting the CD40/CD154 T-cell
co-stimulation pathway has shown greater efficacy [94].
Notably, islets from adult wild-type (non-genetically
modified) pigs have successfully functioned in diabetic non-
human primates (NHPs) treated with anti-CD154 monoclonal
antibody-based immunosuppression for up to 965 days [95].
Nonetheless, genetically editing pigs could potentially achieve
comparable or superior outcomes with less aggressive
immunosuppression (Table 4). The concern, however, lies
in the intensity of immunosuppressive protocols required,
particularly for conditions requiring long-term management
like diabetes. Islet encapsulation may offer greater immediate
benefits for pig islet transplantation compared to human islets
[110]. This is due to pig islets’ higher immunogenicity and the
ample supply they offer, which is critical for overcoming
xenotransplantation’s unique challenges [111]. While both
pig and human islet transplants can benefit from
encapsulation technologies, the necessity and feasibility of
these strategies might be more pronounced for pig islets to
ensure successful transplantation outcomes. Although
significant progress has been made [112–114], most
strategies are yet to meet the criteria of obtaining
sustainable and consistent diabetes management
for >6 months in preclinical trials before they can be
introduced in human clinical trials.

TABLE 2 | Advantages and disadvantages of fetal, neonatal and adult pig islets for clinical xenotransplantation.

Aspect Fetal pig islet-like cell clusters (ICCs) Neonatal pig islets (NPIs) Adult pig islets (APIs)

Source Age Fetal <14 days old >12 weeks old
Isolation and Preparation
Challenges [32, 34–37]

Straightforward; includes enzymatic digestion
and culture

Comparable to ICCs, with effective recovery
thanks to damage resistance

Echoes human islet isolation, accounting for
donor pancreas condition, blood removal, and
warm ischemia. Density gradient
centrifugation with Ficoll and Iodixanol
enhances yield and viability

Islet yield/pancreas
(Beta cells %) [32,
34, 38]

7,000–10,000 (<10%) 25,000–50,000 (25%) 200,000–500,000 (>70%)

Maturation for In Vivo
Functionality [39–45]

2–3 months maturity required for in vivo
functionality

More responsive to glucose, leading to
restoration of normoglycemia due to β cell
expansion and differentiation

Immediate functionality post-transplantation

Safety In vivo proliferation, minimal tumorigenic risk,
low pathogen transmission risk

In vivo proliferation, minimal tumorigenic risk,
low pathogen transmission risk

No in vivo proliferation or tumorigenic risk, low
pathogen transmission risk

Cost and Practicality
Considerations [31]

Not directly stated Low cost of maintenance pre-
pancreatectomy, simpler isolation, lower
costs than APIs, but requires more donors for
sufficient islets

High maintenance cost, isolation difficulty and
cost, but greater yield of high-quality islets
from retired breeders

Pig islet donor for a
primate recipient

Not currently being considered for
xenotransplantation (because of limited β-cell
yield, poor insulin response to glucose and high
destruction rate post-transplantation)

Requires a minimum of four neonatal donors
per diabetic primate

A single adult donor may be sufficient

Pig islet donor for a
human recipient

14–28 donors needed 1–2 donors sufficient

Clinical Application
Potential [39, 46]

Limited by the need for multiple donors and
additional maturation steps

Significant, with the potential for single-donor
clinical transplantation
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IS THERE EVIDENCE THAT PIG ISLETS ARE
MORE EFFECTIVE IN REGULATING
HUMAN BLOOD SUGAR LEVELS
COMPARED TO OTHER SOURCES IN
CLINICAL TRIALS?

Beyond the pioneering studies by Groth et al. [115] and Wang
et al. [116], which examined free islet xenotransplantation, there’s
a notable scarcity of clinical trials in this area (Table 5). Instead,
much of the focus has been on encapsulated islets transplanted
without the need for immunosuppression [117]. These endeavors
have yet to achieve unequivocal success. In several instances,
improvements in blood sugar management could be attributed to
rigorous medical oversight, including dietary changes, strict
glucose monitoring, and specialized healthcare, rather than the
transplanted pig islets themselves. However, research led by
Matsumoto et al. stands out, having successfully reduced
HbA1c levels significantly over 600 days in recipients of
encapsulated pig islets, without resorting to
immunosuppressive medications [118, 119]. Despite minimal
side effects reported, the quest for more dependable and
enhanced results continues. When these findings are weighed
against the outcomes from human islet and stem cell-derived islet
transplants, it’s clear that transplants using human islets are

currently the most effective for clinical management of
diabetes, primarily due to their significant impact on glycemic
control [6]. While pig islet xenotransplantation holds potential
and has shown varied degrees of success, it still needs further
development for it to be consistently reliable and widely
applicable. On the other hand, islets derived from stem cells
hold immense promise due to their potentially unlimited
availability and fewer compatibility challenges. However, while
their effectiveness has been shown in limited trials [120],
confirmation of their clinical efficacy is still awaiting results
from larger-scale studies.

IS THERE EVIDENCE TO SUGGEST THAT
PORCINE ISLETS ARE SAFER AND MORE
REGULATORILY STRAIGHTFORWARD
COMPARED TO ALTERNATIVE SOURCES?

The safety and regulatory ease of using porcine islets compared to
other sources such as human islets or stem cell-derived islets are
areas of active research and debate. Adult porcine pancreatic islets
could represent a safer and more effective alternative for
therapeutic use than stem cells, due to their complete and
immediate hormonal compatibility with human physiology

TABLE 3 | Targeted deletions/insertions in pig genome for xenotransplantation.

Gene modification Purpose Impact on transplantation

α1,3-Galactosyltransferase Knockout (GTKO) [69, 76] Eliminates α-Gal epitopes to reduce hyperacute and
acute vascular rejection

Significantly decreases antibody-mediated rejection; first
major step towards viable xenotransplants. Knockout of
the genes for the 3 glycan xenoantigens (providing triple-
knockout, [TKO] pigs) is generally considered the basis of
the pigs that will be sources of organs and cells for clinical
transplantation

Cytidine monophosphate-N-acetylneuraminic acid
hydroxylase Knockout (CMAH-KO) [77]

Eliminates Neu5Gc to reduce hyperacute and acute
vascular rejection

β-1,4N-acetylgalactosaminyltransferase Knockout
(β4GalNT2-KO) [69]

Eliminates Sd(a) to reduce hyperacute and acute
vascular rejection

CD55 (DAF) Transgenic [78] Regulates complement activation, reducing
complement-mediated cell lysis

Enhances graft survival by protecting against
complement-mediated damage

CD59 Transgenic [79] Prevents the formation of the Membrane Attack
Complex (MAC), protecting cells from complement-
mediated lysis

Further protects xenografts from complement-mediated
injury, complementing CD55 effects

CD46 (MCP) Transgenic [80] Regulates complement activation on cell surfaces Provides broad protection against complement activation,
enhancing graft protection

Human Heme Oxygenase-1 (HO-1) Transgenic [81] Provides cytoprotective, anti-inflammatory, and anti-
apoptotic effects

Reduces ischemia/reperfusion injury and improves graft
survival by mitigating acute inflammatory responses

Human Thrombomodulin (hTBM) Transgenic [82] Modifies the coagulation cascade to reduce thrombosis
in the graft

Addresses the issue of coagulation dysregulation in
xenotransplants, improving graft function and longevity

α1,2-Fucosyltransferase (H Transferase)
Transgenic [83]

Masks non-Gal antigens to further reduce antibody-
mediated rejection

Complements GTKO by masking remaining
xenoantigens, further reducing the immune response
against the xenograft

SLA Class I and II Knockout [84, 85] Reduces the expression of swine leukocyte antigens,
decreasing T-cell mediated rejection

Aims to minimize direct T-cell recognition and response,
lowering the risk of cellular rejection and the cross-
reactivity of anti-HLA antibodies with SLA antigens

CD39 Transgenic [86] Increases ATP and ADP hydrolysis, reducing platelet
aggregation and thrombosis

Targets the prevention of thrombotic microangiopathy,
promoting longer graft survival

PD-L1 Transgenic [87] Inhibits T-cell activation and proliferation by engaging
PD-1 on T cells

Contributes to creating an immunotolerant environment
around the xenograft, reducing cellular rejection

HLA-E and HLA-G Transgenic [88, 89] Engages inhibitory receptors on NK cells and certain
T cells, reducing their activity

Aims to protect xenografts from NK cell-mediated
damage and modulate T-cell responses, enhancing
tolerance

CTLA4-Ig Transgenic [90] Provides local immunosuppression by blocking
costimulatory signals necessary for T-cell activation

Reduces the need for systemic immunosuppression,
lowering side effects while protecting the graft
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and lower oncogenic risk, as they skip the need for differentiation
and do not proliferate. While neonatal and fetal pig islets are less
ideal due to their immature and proliferative characteristics, they
likely still pose a lower oncogenic risk than stem cells. On the
other hand, porcine pancreatic islets raise concerns regarding the
risk of infectious disease transmission. Porcine islets carry the risk
of transmitting porcine endogenous retroviruses (PERVs) to
humans. However, extensive research and clinical trials have
shown no evidence of PERV transmission so far, which is
encouraging for their safety profile [121–125]. Nonetheless, the
long-term risks of zoonotic disease transmission remain a
concern that requires ongoing surveillance [126]. One of the
key challenges limiting the widespread adoption of human islet
allo-transplantation in countries like the USA is the stringent
regulatory framework [127]. While porcine islets are subject to
established xenotransplantation guidelines, which include

rigorous safety and ethical evaluations, it is not entirely clear if
they are better positioned to meet these requirements compared
to human islets. Genetic modifications to reduce xenoreactivity
and address safety concerns are promising but their effectiveness
in fully satisfying regulatory criteria remains to be confirmed.
Additionally, while regulatory frameworks for
xenotransplantation aim to facilitate approval, the comparative
ease with which porcine islets might navigate these requirements
versus human islets is still uncertain. Ongoing research and
regulatory developments will be essential to determining
whether porcine islets can more effectively meet these
stringent standards. Lastly, the employment of porcine islets in
certain contexts could be perceived as more ethically permissible
than the use of islets derived from stem cells, contingent upon the
origins of these stem cells. Specifically, the ethical controversies
surrounding the utilization of embryonic stem cells are not

TABLE 4 | Immunosuppressive protocols associated with prolonged periods of insulin-independence and islet xenograft survival.

Donor Recipient Islets (IEQ/kg) Immunosuppression Max graft
survival
(days)

Ref.

Wild type Adult SNU Miniature Pig STZ-induced diabetic
rhesus monkeys

96,090 Anti-CD40 mAbs (2C10R4), Sirolimus, ATG, CVF,
Tacrolimus, Adalimumab, Methylprednisolone

>320 [96]

93,575 ATG, sirolimus, tacrolimus, anti-CD40 mAb,
tocilizumab, CVF, adalimumab

176 [97]

100,000 ATG, anti-CD154 mAbs (5C8), Sirolimus, CVF, TNF-
a-neutralizing mAb (adalimumab)

603 [95]

50,000–150,000 ATG, Rituximab, Belimumab, Sirolimus, Tacrolimus,
Tofacitinib, Adalimumab, Anakinra, CVF, IVIg

201 [98]

100,000 ATG, Belimumab, Sirolimus, Tacrolimus, Abatacept,
Tofacitinib, Adalimumab, Anakinra, Tocilizumab, IVIg,
Aspirin

222 [99]

100,000 ATG, CVF, anti-CD154 mAbs (5C8), Anti-CD40
mAbs (2C10R4), Sirolimus, TNF-a-neutralizing mAb
(adalimumab), Treg

965 [100]

93,575 ATG, sirolimus, tacrolimus, anti-CD40 mAb,
tocilizumab (IL-6 receptor antagonist), CVF,
adalimumab

176 [97]

Neonatal Duroc or
Large White
Crossbreeds

Rhesus macaques s/p
pancreatectomy

50,000 Anti-CD 154 mAb, basiliximab, sirolimus, belatacept >260 [101]
50,000 Anti-CD40 mAbs (Chi220), aIL-2R (Basiliximab),

Belatacept, Sirolimus
>203 [102]

Rhesus macaques/STZ 50,000 MMF + CTLA4-Ig + LFA-3-Ig + anti-IL-2R + anti-
LFA-1

114 [103]

Adult Outbred swine
and inbred miniature
swine

Cynomolgus
monkeys/STZ

25,000 Basilixumab, FTY720 or tacrolimus, everolimus, anti-
CD154 mAb, leflunomide

>187 [104]

Rhesus macaques/STZ up to 280,000 Anti-ICAM-1 mAbs (MD-3), anti-CD154 mAbs (5C8),
Sirolimus, TNF-a-neutralizing mAb (adalimumab),
Anakinra, Ganciclovir, Clopidogrel, Heparin

520 [105]

Genetic
Modifications

Adult GTKO hCD46
hCD39 or similar

Cynomolgus
monkeys/STZ

85,000 ATG, Anti-CD154 mAbs (h5c8), MMF, Dextran
sulfate, Prostacyclin, Methylprednisolone, Aspirin,
Ganciclovir, Famotidine, Heparin

365 [22]

Neonatal
GTKO hCD55
hCD59
HT

Nondiabetic baboons 17,889 ATG, MMF, tacrolimus 30 [106]

Adult GTKO Cynomolgus
monkeys/STZ

40,000 ATG, tacrolimus, rapamycin, anti-CD154 mAb, MMF >58 [107]

Adult, hCD46 Cynomolgus
monkeys/STZ

85–100,000 ATG, Anti-CD154 mAb (ABI7953), Dextran sulfate,
Methylprednisolone, Aspirin, Prostacyclin

396 [108]

Fetal, hCD55 Cynomolgus monkeys Not reported Cyclosporine + steroids + cyclophosphamide or
brequinar

7–40 [109]
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relevant to porcine islets. Nonetheless, employing animal organs
and tissues introduces distinct ethical challenges, such as those
pertaining to the welfare of animals involved in breeding and
procurement processes, as well as cultural and religious
considerations. Regulatory agencies have established
frameworks for xenotransplantation [128], which includes the
transplantation of porcine islets. These frameworks address both
safety and ethical issues, but they also mean that porcine islets
must undergo rigorous preclinical and clinical testing to prove
their safety and efficacy. In comparison, human islets and stem
cell-derived islets, while also subject to strict regulatory scrutiny,
are not confronted with the same level of concern regarding
zoonotic disease transmission.

CONCLUSION

The quest for a cure for T1D through beta cell replacement therapy
encompasses a dynamic interplay of potential and complexities. The
efficacy of islet transplantation from human donors underscores the
foundational promise of this approach by directly addressing T1D’s
root cause. However, the realization of a universal cure is hindered
by several critical challenges: the quest for an inexhaustible and high-
quality source of beta cells, the minimization or elimination of
reliance on immunosuppressive drugs, and the assurance of the
long-term viability and functionality of the transplanted cells.
Alternative sources such as porcine islets and stem cell-derived
islets offer intriguing possibilities, each with its unique set of
advantages and challenges. Porcine islets, while providing a
potentially unlimited supply, raise concerns regarding
physiological compatibility, immunogenicity, and regulatory

complexities. On the other hand, stem cell-derived islets,
benefiting from advancements in cellular reprogramming and
differentiation, appear to have a slight edge in current
discussions, primarily due to their potential for unlimited supply
and reduced ethical concerns compared to embryonic stem cells.
However, the recent successes in whole organ xenotransplantation
inject a renewed vigor into the exploration of porcine islets
[129–135]. These advancements may pave the way for addressing
some of the longstanding issues in a relatively short timeframe,
particularly those related to immunogenicity and physiological
compatibility [136]. This progress, alongside the ongoing
refinement of techniques for stem cell-derived islets, underscores
a dynamic research landscape. Thus, the future of beta cell
replacement therapy for T1D remains an open field of scientific
inquiry and innovation. It is propelled by the collective goal of
developing a comprehensive, effective cure, navigating through the
interwoven challenges of supply, compatibility, safety, and regulatory
acceptance. The path forward is marked by the potential of recent
breakthroughs and the promise of overcoming current limitations
through concerted research efforts.
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TABLE 5 | Clinical trials involving porcine islets.

Trial Islet source Recipient
details

Islet type Average number
of islets (IEQ/kg)

Site of
transplant

Immunosuppression Outcome

Groth
et al. [115]

Swedish
Landrace

T1D with kidney
transplant
(n = 10)

Fetal Free 200,000–1 million Kidney capsule
or intraportal

ATG, 15-deoxyspergualin,
cyclosporine, prednisolone,
azathioprine

No improvement in
glycemic control

Elliott et al.
[124, 137]

Cross-White
Breed

T1D with and
without kidney
transplant (n =
1 each)

Neonatal
Encapsulated

15,000 Peritoneum None (n = 1) and Standard
(n = 1)

Short-term insulin
requirement and
HbA1c improvement,
no PERV transmission

Valdes-
Gonzalez et al.
[138, 139]

New Zealand
bred

T1D adolescents
(n = 12)

Neonatal with
Sertoli cells

13,000–20,000 (first
transplant)

Subcutaneous None Half achieved insulin
reduction,
improvement in HbA1c
and less chronic
complications

Wang
et al. [116]

Xeno-1 T1D (n = 21) Neonatal Free 55,000 Intraportal Comprehensive regimen Reduction in insulin
requirements,
improvement in
HbA1c, no PERV
transmission

Matsumoto
et al. [118]

Auckland
Island

T1D (n = 14) Neonatal
Encapsulated

5,000–20,000 Peritoneum None Reduction in unaware
hypoglycemic events,
minimal HbA1c or
insulin dose change

Matsumoto
et al. [119]

Auckland
Island

T1D (n = 8) Neonatal
Encapsulated

5,000 and 10,000 Peritoneum None
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