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Diagnosing acute rejection after intestinal transplantation currently heavily relies on
histopathological analysis of graft biopsies. However, the invasive risks associated with
ileoscopic examination and the inaccessibility for biopsy after ileostomy closure hinder real-
time detection of rejection responses. Molecules comprising the intestinal barrier have
been identified as physiological andmolecular biomarkers for various bowel conditions and
systemic diseases. To investigate the potential of barrier function-related molecules in
diagnosing rejection after intestinal transplantation, plasma samples were collected
longitudinally from transplant recipients. The samples were categorized into
“indeterminate for rejection (IND)” and “acute rejection (AR)” groups based on clinical
diagnoses at each time point. The longitudinal association between plasma levels of these
barrier function-related molecules and acute rejection was analyzed using the generalized
estimating equations (GEE) method. Logistic GEE models revealed that plasma levels of
claudin-3, occludin, sIgA, and zonulin were independent variables correlated with the
clinical diagnosis of acute rejection. The subsequent prediction model demonstrated
moderate ability in discriminating between IND and AR samples, with a sensitivity of
76.0%, specificity of 89.2%, and accuracy of 84.6%. In conclusion, monitoring plasma
levels of claudin-3, occludin, sIgA, and zonulin shows great potential in aiding the diagnosis
of acute rejection after intestinal transplantation.
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GRAPHICAL ABSTRACT |

INTRODUCTION

Intestinal transplantation (ITx) is considered the definitive
treatment for patients with irreversible intestinal failure or life-
threatening complications after long-term reliance on parenteral
nutrition [1, 2]. The small intestine, with its abundant lymphoid
tissue and diverse bacterial flora, has a higher incidence of acute
rejection compared to other organ transplants [3, 4].
Approximately 50%–75% of small bowel transplantation
patients experience acute rejection, ranging from mild forms
with cryptic apoptosis to severe cases that result in ulcerative
destruction of the epithelial mucosa, posing a challenge to graft
and patient survival [3–6].

At present, the gold standard for diagnosing acute rejection
following ITx depends on endoscopic observation and biopsy
histology [7, 8]. However, the discontinuation of scheduled
biopsies after ileostomy closure poses challenges in the early
detection of acute rejection [9, 10]. Therefore, the identification
of novel molecular biomarkers that can be non-invasively
detected with high accuracy has been a crucial goal in aiding
the clinical detection of rejection in intestinal transplantation
[11–13].

The intestinal barrier plays a pivotal role in maintaining
immune response homeostasis and immune tolerance by
protecting the mucosal surface of the intestine [14–17]. The
“microbiota-immune axis” concept has linked the intestinal
barrier to various pathological conditions. Impairment of the
intestinal barrier can lead to increased microbial translocation,
inducing pro-inflammatory conditions in the intestine and
subsequent systemic disorders [15–19]. Research has identified
junctional molecules such as claudins, occludin, zonula
occludens-1 (ZO-1), and regulatory proteins like secretory IgA

(sIgA) and zonulin as potential biomarkers for several
pathological conditions, including inflammatory bowel disease
(IBD), irritable bowel syndrome (IBS), food allergy, metabolic
diseases, and leaky gut syndrome [20–23].

From 2007 to 2022, we conducted 31 ITx surgeries for
30 patients, with 5 year survival rates of 71.0% for patients and
51.6% for grafts, comparable to global figures [4, 5, 24]. To
improve long-term outcomes by reducing graft loss related to
acute rejection, we aimed to explore non-invasive biomarkers
to enhance the accuracy and timeliness of acute rejection
diagnosis. This study aimed to investigate the correlation
between molecular levels of intestinal barrier components
in plasma and the incidence of acute rejection, with the
goal of developing a predictive model for diagnosing acute
rejection.

MATERIALS AND METHODS

Study Design and Sample Collection
To establish a time-series database for monitoring the plasma
levels of intestinal barrier molecules in intestinal transplant
recipients, plasma sample collection commenced on the day of
transplantation, prior to the operation. Subsequent plasma
collections followed the blood draw schedule outlined in the
post-transplant monitoring protocol (see below). Blood samples
were promptly transferred into heparin-containing tubes upon
collection. After undergoing standardized centrifugation at
300×g, the plasma was divided into polypropylene tubes and
stored at −80°C until analysis. The listing of plasma samples was
documented based on the clinical manifestations and diagnosis
recorded on each respective day.
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Post-Transplant Monitoring Protocol and
Diagnosis of Acute Rejection
At the time of ITx surgery, a Santulli’s proximal chimney
ileostomy was created in each recipient for endoscopic
examination and biopsy of the graft. The frequency of
endoscopic examination was twice a week in the first month,
once a week in the second month, once every other week in the
third month, once a month in the fourth to sixth month, and
whenever necessary.

The frequency of drawing blood was per day in the first week,
twice a week in the second to the fourth week, once a week in the
second month, once every other week in the third month, once a
month in the fourth to sixth month, and whenever necessary.

The diagnosis of acute rejection was established through the
pathological analysis of the biopsy, in conjunction with the
identification of significant morphological changes in the graft
mucosa during endoscopic examination [3, 25].

Quantification of Plasma Levels of the
Intestinal Barrier Molecules
The plasma samples were thawed and vortexed before being
subjected to ELISA assays. The procedure for detection and
determination of their concentrations were performed
according to the manufacturer’s protocols. The ELISA kits
used in the study included: Citrulline (CEA505Ge, Cloud-
Clone Corp., Katy, TX 77494, USA), Claudin-1 (CSB-
EL005490HU, Cusabio Life Science, Houston, TX 77054,
USA), Claudin-2 (CSB-EL005500HU, Cusabio Life Science),
claudin-3 (CSB-EL005505HU, Cusabio Life Science), Claudin-
4 (CSB-E17961h, Cusabio Life Science), L-FABP (HA404-1,
Hycult Biotech Inc., Wayne, PA 19087, USA), Occludin
(SEC228Hu, Cloud-Clone Corp.), sIgA (SEA641Hu, Cloud-
Clone Corp.), zonular occludens-1 (CSB-E13916h, Cusabio
Life Science) and zonulin (K5601, Immundiagnostik AG,
64625 Bensheim, Germany).

Statistical Analysis
This study employed generalized estimating equations (GEE)
models to account for the effect of repeated measures, with
Patient ID serving as the subject variable to define individual
subjects within the dataset. Age and the concentrations of ten
barrier function-related molecules were treated as continuous
variables, while gender was considered as a categorical variable.
The biopsy result was used as the binary outcome variable. Binary
logistic GEE analysis was utilized to calculate the regression
coefficients and odds ratios for the independent variables. The
predictive probability of acute rejection and the clinical incidence
of acute rejection were further analyzed using ROC (Receiver
Operating Characteristic) curves.

Statistical analysis was conducted using SPSS software (version
22.0, IBM Corp., Chicago, IL, USA). The statistical data are
presented as mean ± SE. The significance level was indicated
by p-values, with a value of p < 0.05 considered statistically
significant for all analyses.

RESULTS

Patients and the Grouping of Plasma
Samples
A total of 172 time-series plasma samples were collected from
seven patients between September 2016 and June 2022, along
with their corresponding medical records, including
histopathological reports of graft biopsies during the same
period. Plasma samples corresponding to non-rejection
intestinal conditions (e.g., enteritis) and other systemic
situations (e.g., sepsis) were excluded from the analysis. The
basic information of the seven patients and the number of
plasma samples collected are presented in Table 1. Next,
based on clinical findings and/or biopsy reports on the day of
blood collection, 143 plasma samples were categorized as IND
(indeterminate for acute rejection, n = 93) and AR (acute
rejection, n = 50). The mean plasma levels of ten intestinal
barrier-related molecules are shown in Table 2.

Univariate Analysis
The association between plasma levels of intestinal barrier
molecules and the diagnosis of AR was investigated by using
univariate GEE analysis (Table 3). Among the examined
variables, claudin-3 demonstrated a significant positive
association with AR (coefficients = 0.013, p < 0.001).
Conversely, citrulline demonstrated a significant negative
association with acute rejection (coefficient = −0.121, p =
0.022). Notably, occludin and zonulin also exhibited significant
negative association with acute rejection with the
coefficients −0.339 (p = 0.010) and −0.367 (p < 0.001),
respectively. The remaining variables, including claudin-1,
claudin-2, claudin-4, L-FABP, sIgA, ZO-1, did not
demonstrate statistically significant associations with AR in
this univariate analysis (Table 3).

Multivariable Analysis
Further multivariate GEE analysis was conducted to better
understand the collective impact of these molecules on the risk
of acute rejection. In Table 4, three regression models revealed
certain significant associations between plasma levels of intestinal
barrier molecules and acute rejection. Claudin-3 demonstrated a
consistent positive association with acute rejection across all
models, with odds ratios (OR) of 1.026 (95% C.I. 1.012–1.040,
p < 0.001) in model 1, 1.025 (95% C.I. 1.013–1.037, p < 0.001) in
model 2, and 1.022 (95% C.I. 1.011–1.032, p < 0.001) in model 3.
On the other hand, occludin showed consistent negative
associations with acute rejection, with ORs of 0.566 (95% C.I.
0.390–0.820, p = 0.003) in model 1, 0.627 (95% C.I. 0.459–0.857,
p = 0.003) in model 2, and 0.574 (95% C.I. 0.417–0.791, p = 0.001)
in model 3. Zonulin also exhibited a significant negative
association with acute rejection, with ORs of 0.743 (95% C.I.
0.582–0.947, p = 0.016) in model 1, 0.778 (95% C.I. 0.631–0.960,
p = 0.019) in model 2, and 0.817 (95% C.I. 0.684–0.975, p = 0.025)
in model 3. Additionally, sIgA demonstrated a significant
negative association with acute rejection in model 1, with an
OR of 0.986 (95% C.I. 0.973–0.999, p = 0.031). However, other
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variables, including citrulline, claudin-1, claudin-2, claudin-4,
L-FABP, and ZO-1, did not exhibit statistically significant
associations with acute rejection in the multivariable analysis
models.

Evaluation of the AR Prediction Models
The model performance, as assessed by the QICC (corrected
quasi-likelihood under the independence model criterion),
showed that GEE model 2 had the lowest value (QICC =
139.552), suggesting a better fit compared to model 1

(QICC = 150.572) and model 3 (QIC = 145.405). The
diagnostic sensitivity, specificity, and accuracy of model 2 were
76.0%, 89.2%, and 84.6%, respectively (Table 4).

The predictive probability of acute rejection was calculated for
each sample using regression model 2, and the relationship
between the predictive probability and the incidence of acute
rejection was analyzed using the ROC curve. The AUC was
calculated as 0.862 (95% C.I. 0.794 to 0.930, p < 0.001), with a
model probability cut-off of 0.432 being identified as the optimal
threshold (Figure 1).

DISCUSSION

In the present study, our results demonstrated that there were
significant changes of claudin-3, occludin, sIgA, and zonulin
during the onset of acute rejection after intestinal
transplantation. These four molecules were independent
factors most related to the clinical diagnoses of acute rejection,
with that the increase in claudin-3 was associated with higher
probability of acute rejection while increased occludin, sIgA and
zonulin were negatively associated with acute rejection.

Endoscopic examination and tissue biopsy, as the most
conventional method for graft monitoring, is still holds as the
most definite way of confirming the diagnoses of rejection after
intestinal transplantation [8, 9]. The search for non-invasive

TABLE 1 | Basic characteristics of the patients whose plasma samples were used in this research.

Patient ID Age Gender No. of plasma samples Episode(s) of AR Severity and timing of ARa

Pt-1 31 Female 42 4 mild (D13)
severe (D30)
severe (D175)
severe (D234)

Pt-2 58 Male 21 2 mild (D21)
mild (D82)

Pt-3 29 Female 22 0
Pt-4 37 Male 23 2 severe (D16)

mild (D73)
Pt-5 58 Female 14 1 severe (D36)
Pt-6 28 Female 10 1 mild (D20)
Pt-7 63 Male 11 0

aTiming of AR was represented as the day after transplant.

TABLE 2 | Mean plasma levels of intestinal barrier molecules in the IND and AR
groups.

IND (Mean ± S.E.) AR (Mean ± S.E.) Unit

N 93 50
citrulline 17.03 ± 0.50 16.21 ± 0.51 ng/mL
claudin-1 309.76 ± 65.01 240.09 ± 15.05 pg/mL
claudin-2 319.76 ± 38.20 276.58 ± 31.86 pg/mL
claudin-3 76.20 ± 5.07 109.45 ± 8.04 pg/mL
claudin-4 47.43 ± 5.29 50.62 ± 8.08 pg/mL
L-FABP 21.40 ± 2.30 16.52 ± 2.00 ng/mL
occludin 4.02 ± 0.43 2.34 ± 0.25 ng/mL
sIgA 120.17 ± 7.24 81.64 ± 5.26 μg/mL
ZO-1 403.13 ± 25.04 437.91 ± 30.32 pg/mL
zonulin 5.99 ± 0.32 4.02 ± 0.24 ng/mL

TABLE 3 | Longitudinal association between the plasma levels of intestinal barrier molecules and acute rejection by univariate GEE analysis.

Regression coefficient Standard Error Wald p-value OR 95% C.I. for OR

Lower Upper

citrulline −0.121 0.053 5.245 0.022 0.886 0.799 0.983
claudin-1 <0.001 <0.001 0.056 0.813 1.000 0.999 1.001
claudin-2 <0.001 0.001 0.156 0.693 1.000 0.999 1.001
claudin-3 0.013 0.003 15.078 < 0.001 1.013 1.006 1.020
claudin-4 0.003 0.003 0.814 0.367 1.003 0.997 1.009
L-FABP <0.001 <0.001 0.840 0.360 1.000 1.000 1.000
occludin −0.339 0.132 6.601 0.010 0.712 0.550 0.923
sIgA −0.002 0.004 0.442 0.506 0.998 0.990 1.005
ZO-1 <0.001 0.001 0.361 0.548 1.000 0.999 1.002
zonulin −0.367 0.082 20.113 < 0.001 0.693 0.590 0.813
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biomarkers for diagnosing acute rejection had been on in the
recent decade. For example, blood citrulline and stool
calprotectin had been considered as potential biomarkers for
this purpose. Decreased citrulline was reported to reflect reduced
enterocyte mass and intestinal insufficiency during acute
rejection [11, 26, 27]; increased fecal calprotectin implicated
ongoing immune responses in the intestine [28]. However, the
lack of diagnostic specificity had limited their application in
diagnosing acute rejection [29–31].

The molecules regulating intestinal barrier function had been
identified as biomarkers to evaluate intestinal permeability thus
being applied in the diagnosis of inflammatory bowel diseases
[20–23]. We therefore investigated the applicability of these
biomarkers in the detection of acute rejection after intestinal
transplantation. As the results shown, we have tracked down to
four molecules with different roles in barrier functions.

Secretory IgA serves as a crucial defense effector in the
intestinal barrier, playing a key role in microbial neutralization
and immune exclusion It is produced by plasma cells in the
epithelial lamina propria, transported across epithelial cells, and
then secreted into the lumen [32, 33]. Quantifying sIgA in serum
or saliva has been applied for diagnosing Crohn’s disease (CD),
ulcerative colitis (UC), and mucositis, with elevated levels
observed in active CD and reduced levels in UC [34–36]. In
our study, we found a negative association between sIgA levels
and the onset of acute rejection (Table 4), suggesting altered sIgA
production or depletion during rejection. Intestinal microbial
stimulation and Th1-inhibiting/Th2-stimulating cytokines play a
role in balancing sIgA levels [37]. Given that Th1-inhibiting
cytokines (e.g., IL-6, IFN-γ and TNF-α) are involved in acute
rejection, the downregulation of sIgA could serve as an early
indicator of the acute rejection-associated Th1 immune response.

Altered expression of claudins in intestinal tissue has been
extensively studied in patients with various intestinal disorders.
Reduced expression of claudin-1 was observed in patients with
inflammatory bowel disease (IBD) and irritable bowel syndrome
(IBS) [38, 39], while an increase in claudin-2 was found in the
inflamed epithelium of patients with ulcerative colitis (UC) [40,
41]. The variation in claudin-3 and claudin-4 expression in IBD
remains controversial, with studies reporting both reduced and
increased expression [42–44]. In our study, we found a significant
association between claudin-3 and acute rejection (Table 4),
suggesting increased levels of claudin-3 in circulation due to
intestinal tissue destruction during rejection.

The expression of occludin has shown variability in intestinal
biopsies of patients with Crohn’s disease (CD) and ulcerative
colitis (UC), suggesting inconsistent patterns in occludin
expression within these studies [45, 46]. However, limited
research has explored the use of plasma occludin as a marker
for intestinal diseases. Interestingly, plasma occludin has gained
attention in the context of blood-brain barrier damage,
demonstrating fluctuating levels of occludin in different types
of stroke [47].

TABLE 4 | Multivariate GEE analyses of the association between the plasma levels of intestinal barrier molecules and acute rejection.

Model 1a Model 2a Model 3a

ORb (95% C.I.) p-value OR (95% C.I.) p-value OR (95% C.I.) p-value

claudin-3 1.026 (1.012–1.040) <0.001 1.025 (1.013–1.037) <0.001 1.022 (1.011–1.032) <0.001
occludin 0.566 (0.390–0.82) 0.003 0.627 (0.459–0.857) 0.003 0.574 (0.417–0.791) 0.001
zonulin 0.743 (0.582–0.947) 0.016 0.778 (0.631–0.960) 0.019 0.817 (0.684–0.975) 0.025
sIgA 0.986 (0.967–0.999) 0.031 0.990 (0.978–1.001) 0.082
citrulline 0.906 (0.791–1.039) 0.157
claudin-1 1.000 (0.999–1.001) 0.972
claudin-2 1.001 (0.999–1.004) 0.315
claudin-4 1.007 (0.996–1.017) 0.209
L-FABP 1.000 (1.000–1.000) 0.847
ZO-1 0.999 (0.996–1.001) 0.258

QICCb 150.572 139.552 145.405
sensitivity 72.0% 76.0% 68.0%
specificity 94.6% 89.2% 79.6%
accuracy 86.7% 84.6% 75.5%

aAnalyses were adjusted for gender and age.
bOR, odds ratio; QICC, corrected quasi likelihood under independence model criterion.

FIGURE 1 | ROC curves of the predictive probability (PP) values from
GEE model 2 in the prediction of acute rejection.
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Zonulin is an important regulator of barrier function that
can disrupt the tight junctions between cells [48]. Previous
research has highlighted the association between increased
zonulin expression and various conditions, including
inflammatory bowel disease (IBD), food allergy, diabetes,
arthritis, liver disease, and aging [49–52]. In our study, we
initially hypothesized that higher zonulin levels would
contribute to the compromised intestinal integrity observed
during acute rejection. However, contrary to our expectations,
we found lower levels of zonulin in the acute rejection group. It
is worth noting that the intestinal epithelial cells are a
significant source of zonulin [53]. The reduction in zonulin
levels in the acute rejection group could potentially be
attributed to impaired or dysfunctional intestinal cells
during the onset of acute rejection.

Our investigation into predictive factors for acute rejection,
including claudin-3, occludin, sIgA, and zonulin, has illuminated
distinct roles in maintaining intestinal barrier integrity. While
claudin-3, occludin, and zonulin consistently emerged as
significant factors associated with acute rejection in both
univariate and multivariable analyses, sIgA demonstrated
significance when other variables were considered. Excluding
sIgA from model 2 led to reduced prediction sensitivity and
accuracy in model 3, underscoring its crucial contribution.

ROC curves were generated to determine the optimal cutoff
values for claudin-3, occludin, sIgA, and zonulin in predicting the
occurrence of acute rejection. The analysis revealed that claudin-3
levels above 90.32 pg/mL (p < 0.001), occludin levels below
2.55 pg/mL (p = 0.185), sIgA levels below 63.37 μg/mL (p <
0.001), and zonulin levels below 2.95 ng/mL (p < 0.001) were
indicative of the diagnosis of acute rejection, as depicted in
Supplementary Figure S1. It is important to note, however,
that the ROC analyses did not take into consideration the
potential impact of repeated measurements within individual
samples. Therefore, these cutoff values should not be used for
clinical purposes at this time.

The quest for acute rejection-specific biomarkers is a
challenging endeavor. Low specificity in differentiating acute
rejection from enteritis complicates conclusive outcomes [31].
Due to the dispersed distribution of samples representing
enteritis and sepsis outcomes within our patient cohort, we
opted not to include these groups in our GEE analysis.
However, we conducted a detailed comparison of relative
changes in claudin-3, occludin, sIgA, and zonulin levels across
the IND, AR, enteritis, and sepsis samples, as outlined in
Supplementary Table S1. Noteworthy differences emerged
among these sample groups, with both enteritis and sepsis-
related samples displaying elevated concentrations of barrier
markers compared to the IND group. In sepsis cases, we
observed an exceptionally high mean level of claudin-3,
spanning a wide range. This suggests the possibility that a
simultaneous increase in these markers might indicate
pathological conditions such as enteritis and sepsis.
Importantly, this finding highlights that elevations in claudin-3
alone may not reliably indicate acute rejection, emphasizing the
need for a more comprehensive diagnostic framework or a
combination of markers.

Furthermore, our prediction model revealed a significant
insight: the variation trends in sIgA and zonulin for patients
with acute rejection were opposite to those observed in patients
with other inflammatory or ulcerative intestinal diseases, both in
existing literature and our own data. The mean values of sIgA and
zonulin were relatively correlated with the severity of acute
rejection with the AR-severe group displaying greater
significance (p = 0.011 for sIgA; p = 0.002 for zonulin) than
the AR-mild group (p = 0.023 for sIgA; p = 0.006 for zonulin)
(Supplementary Table S2; Supplementary Figure S2). This
finding holds significant potential when differential diagnoses
must be made, providing a valuable advantage.

Our study, although illuminating, faces certain limitations,
primarily due to a small number of patients and sample size.
Enhancing the model’s sensitivity, specificity, and accuracy
would benefit from additional laboratory data, including white
blood cell counts, immunosuppressant concentrations, liver
function parameters, and renal function indicators. Another
limitation stems from the restricted quantity of plasma
samples, limiting the exploration of potential molecules
associated with barrier function. However, the innovative
aspect of our study lies in our statistical approach,
acknowledging the importance of individual variations.
Accounting for repeated measures within each patient
enables the capture of dynamic trends in diagnostic
markers, creating a more comprehensive and reliable basis
for detecting rejection. This approach differentiates our study
from prior research, emphasizing the need to consider
nuanced variations for a more accurate diagnosis.

CONCLUSION

In conclusion, our study has identified claudin-3, sIgA, and
zonulin as promising non-invasive biomarkers for diagnosing
acute rejection in recipients of intestinal transplants. Notably, this
is the pioneering investigation to employ GEE analysis for
comparing plasma levels of intestinal barrier molecules in the
rejection and non-rejection phases of intestinal transplant
recipients. We anticipate that our model holds significant
potential to enhance post-transplant monitoring of intestinal
grafts, ultimately advancing patient care in this critical domain.
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