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Survival of pig cardiac xenografts in a non-human primate (NHP) model has improved
significantly over the last 4 years with the introduction of costimulation blockade based
immunosuppression (IS) and genetically engineered (GE) pig donors. The longest survival
of a cardiac xenograft in the heterotopic (HHTx) position was almost 3 years and only
rejected when IS was stopped. Recent reports of cardiac xenograft survival in a life-
sustaining orthotopic (OHTx) position for 6 months is a significant step forward. Despite
these achievements, there are still several barriers to the clinical success of
xenotransplantation (XTx). This includes the possible transmission of porcine
pathogens with pig donors and continued xenograft growth after XTx. Both these
concerns, and issues with additional incompatibilities, have been addressed recently
with the genetic modification of pigs. This review discusses the spectrum of issues related
to cardiac xenotransplantation, recent progress in preclinical models, and its feasibility for
clinical translation.
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INTRODUCTION

Xenotransplantation (XTx) is an alternative source of a human organ for patients with end-stage
organ failure. Many of these patients will die waiting for a human organ, as the current availability of
donor organs falls short of its demand. In the past few years, substantial progress has been made in
the xenotransplantation field. With the discovery and use of novel molecular biology techniques,
genetically engineered (GE) porcine organ donors have been created to overcome numerous XTx
barriers. The first transgenic pig for XTx was produced expressing human complement regulatory
protein (hCRP) decay acceleration factor (hDAF). Organs from these pigs were transplanted in non-
human primate (NHP), but hyperacute rejection (HAR) was only partially avoided (1, 2), and
antibody-mediated immune response induced to terminal galactose sugar molecules (α1-3 Galactose
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or Gal) expressed on graft vascular endothelial cells continued to
cause HAR. By using gene-editing techniques, Gal antigen was
knocked out in pigs, and organs from these pigs were protected
from HAR (3–5).

Other combinations of antigen knockout and human transgene
expressing GE pigs were produced, and xenograft survival was
extended further (6–13). We (HHTx Heart) and others (Kidney,
Liver) have also reported long-term xenograft survival in NHP from
genetically modified pigs (10, 12, 14–17). Recently, Langin et al.
reported consistent survival in an experimental life-supporting
(OHTx) in NHP (18). Strategies which have helped to achieve
this success have also been summarized in Figure 1. In this
review, we discuss the challenges faced in cardiac
xenotransplantation and solutions that have culminated from the
last several decades of work and speculate on the next steps required
to make cardiac XTx a clinical reality (19, 20).

CHALLENGES FOR CARDIAC
XENOTRANSPLANTATION

Immunological
Preformed Natural and Elicited Antibodies
The presence of natural preformed antibodies (nAbs) against pig
antigens in recipients is a primary and significant hurdle for the
success of cardiac XTx. These antibodies trigger immune
responses and causes hyperacute (HAR) and acute humoral
xenograft rejection (AHXR) (21). These nAbs against donor
antigens (xenoantigens) trigger the activation of complement
proteins, which further cause activation and damage to
endothelial cells, leading to platelet aggregation and
microvascular thrombosis. This ischemic injury leads to the
destruction of cardiomyocytes, interstitial hemorrhage, and
eventually fibrosis. Most of nAbs are against porcine
carbohydrate antigens not found in humans and NHP. The
most predominant of these is Galactose-α1-3 galactose, due to

the acquired mutation of α1-3 galactosyltransferase (GT), an
enzyme responsible for synthesizing this carbohydrate antigen.
Others include SDa, and N-glycolylneuraminic acid (Neu5Gc).
While preformed antibody responses dominate Gal antigens, it
has been shown that elicited Abs responses can occur in cardiac
XTx also towards these other antigens (i.e., non-Gal antigens) (22,
23, 24–30). Elicited Abs also play a major role in posttransplant
thrombotic microangiopathy (TM), consumptive coagulopathy
(CC), and AHXR (10, 31–34).

Cellular Xenograft Rejection
Besides HAR and AHXR, acute cellular rejection of cardiac
xenografts can be mediated by innate (i.e., macrophages,
neutrophils, dendritic cells, and NK cells) and adaptive (i.e., T
and B cells) immune responses (35–37). However, acute CXR has
not been reported frequently in xenotransplantation (34, 38).
Innate immune cells, like macrophages and NK cells, have been
found in pig organs perfused with human blood ex vivo and in
pig-to-NHP xenografts, which may trigger CXR (34).
Macrophages may also be activated by xenoreactive T cells
and release proinflammatory cytokines (e.g., tumor necrosis
factor-alpha (TNF-α, IL-1, and IL-6), which can further
stimulate T cells. Both macrophages and NK cells can also be
activated by direct interaction between donor endothelial
antigens and their surface receptors, which may trigger CXR
by direct NK cytotoxicity or antibody-dependent cellular
cytotoxicity (ADCC) (39, 40).

T cells can be activated through both direct and indirect
pathways after xenotransplantation. However, the responses
against xenoantigens, especially indirect responses, are more
robust than seen in allotransplantation (41). T cell activation
requires interaction between TCR and MHC peptide complex
from the antigen-presenting cells (APC) and a costimulatory
signal (e.g., CD40–CD154 and CD28–CD80/86 pathway
interactions) (42, 43).

Coagulation Dysfunction
Coagulation dysregulation is also another major impediment to
the success of xenotransplantation. The most extreme
manifestations of it are systemic consumptive coagulopathy,
characterized by thrombocytopenia and bleeding, which
ultimately leads to graft loss due to ischemia from thrombotic
microangiopathy (TM). Coagulation is a complex pathway that
involves interactions of inflammation, vascular injury, heightened
innate, humoral, and cellular immune responses.
Incompatibilities between primate and pig coagulation/anti-
coagulation factors can alter their function, contributing to
coagulation dysfunction (44, 46). Notable proteins with cross-
species incompatibilities include tissue factor pathway inhibitor
(TFPI), thrombin, thrombomodulin (TBM), endothelial protein
C receptor (EPCR) and CD39 (45–47).

Complement is also able to activate the clotting cascade, as it
can be activated by the binding of complement fixing antibodies
onto endothelium. As an example, activated product of
complement C5a has been reported to induce tissue factor
(TF) activity in endothelial cells (48) and has been reported to
modifying the balance between pro- and anti-coagulation (49).

FIGURE 1 | Strategies for achieving success for long term cardiac
xenograft survival.
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Preformed and elicited antibodies promote coagulation by
activating porcine endothelial cells and platelets and contribute to
graft loss due to TM (50–52). Systemic inflammatory responses and
proinflammatory cytokines (notably IL-6) also upregulate or recruit
recipient tissue factors (TF) on platelets and monocytes by
interacting with porcine vascular endothelial cells which can lead
to coagulation through thrombin production (54, 55).

Viral Transmission
A potential problem for cardiac xenotransplantation is a
zoonotic viral transmission from swine. Most notable of
which is a porcine endogenous retrovirus (PERV). There is
no report yet for in-vivo pig-to-human PERVs transmission so
the true risk in the context of xenotransplantation is not
known (56). But, in-vitro studies have shown that PERVs
could be transmitted from pig cells to human cells (57).
Provirus DNAs of PERVs can be genetically transferred to
offspring and cannot be eliminated by specified pathogen-free
(SPF) breeding. Like other retrovirus, PERV theoretically
predispose to the risks of tumors, leukemia, and
neurodegeneration (58). However, studies have shown
complete elimination of all copies of PERV in donor pigs (57).)

Porcine circovirus (PCV) from the Circoviridae family is also
highly distributed among pigs and wild boars. Previously, two
types of PCV1 and PCV2 have been characterized (59). PCV1,
which is isolated from pig kidney cell culture (PK15 cells), and
recently, Liu et al. have demonstrated that PCV2 can infect
human cells in vitro with a reduced infection efficiency
compared to pig PK-15 cells. Kruger et al. were unable to
identify PCV1 and PCV2 in GE pigs. However, two other
subtypes PCV3a and PCV3b, were found in the spleen, liver,
lung kidney, and explanted heart of recipient baboons of GE
cardiac xenografts after OHTx (60). The presence of PCV3 in the
OHTx recipient baboon was higher among long-term survivors.
However, the significance of PCV in causing clinical disease is
unknown.

Xenograft Growth
Although there are several anatomical and physiological similarities
between pigs and humans (or NHPs), their organs’ growth rate is
significantly different (61). Therefore, the use of minipigs has been
suggested as their mature growth rate is 1/3 that of wild type
Yorkshire (domestic) pigs (62). However, mostly domestic pigs
have been used even for genetic modifications, but organs from
these GE pigs continue to grow too large (61). Therefore, juvenile GE
pigs are being preferred, but even still, continued organ growth after
transplantation has been reported (8, 62, 63). Längin et al. have also
reported left ventricular hypertrophy after pig OHTx in NHPs, but it
is unclear its origin and whether this is from rejection, physiologic
mismatch or natural growth (i.e., intrinsic or extrinsic causes or a
combination of both) (18). In contrast, others have not seen pig heart
growth after HHTx until the xenograft underwent delayed xenograft
rejection (14, 15). In these experiments heart graft size was
maintained until the co stimulation pathway blockade was
reversed by stopping the anti-CD40 antibody.

While the growth of other organs such as the kidney can be
accommodated within the abdomen, the growth of a heart

xenograft could be problematic due to its position in the non-
compliant chest and must be addressed before clinical
translation.

OVERCOMING THE CHALLENGES FOR
SUCCESSFUL CARDIAC
XENOTRANSPLANTATION
Generation of Genetically Modified Donors
Several genetic strategies have been developed to prevent early
graft failure from preformed antibodies and coagulation
dysfunction resulting in generation of GE pigs. Genome
editing using zinc-finger nucleases, transcription activator-like
effector nucleases, or CRISPR-Cas9 is being used to delete
multiple genes with high precision to produce GE pigs. Several
pig genes are knocked out (e.g., α1-3 galactosyltransferase,
B4GALNT2 and CMAH) and human genes are overexpressed
(e.g., hCD46, hTBM, hEPCR, hTFPI, hCD39, etc.) in these GE
pigs (Table 1).

The genetic constructs listed in Table 1, and the GE pigs
produced, have been tested to various degrees. Kuwaki et al.
reported the longest (179 days) heterotopic cardiac xenograft
survival of GTKO hearts in NHP (6). Chen et al. also found an
advantage in using GTKO pig kidneys over previously used
transgenic kidneys (5). Recently, GTKO pigs along with other
transgene have significantly improved the cardiac xenograft
survivals in NHP to months in OHTx and years in HHTx
models (14, 15, 69, 70).

CRISPR technology has now come into vogue as it affords
complex genetic constructs to be employed with the highest
fidelity compared to other techniques. Two carbohydrate
antigen-expressing genes (e.g., GT and CMAH) have been
deleted, and “double knockouts” (GTKO.CMAHKO) have
been constructed (71, 72). Burlak et al. reported a reduced
binding of human antibodies to cells from these GTKO.
CMAH KO pigs (67). Later, Tector’s group has produced
three carbohydrate antigen knockout (TKO) pigs
(i.e., GTKO.CMAHKO.B4GALNT2KO), which included
deletion of B4GALNT2 responsible for SDa antigen along
with GT and CMAH genes (26, 31, 73). They demonstrated
that the binding of human IgG and IgM antibodies to
peripheral blood mononuclear cells and red blood cells
from triple knockout pigs was significantly reduced. Niu
et al. inactivated all known porcine endogenous retrovirus
(PERVs) within pig xenograft donors (74). A combination of
various genetic constructs is being developed by other groups
as well, a testament to the technology’s ability to move the field
forward quickly. “Multi-gene” expressing cardiac xenografts’
effect on overall graft function and survival in HHTx and
OHTx is currently a topic of investigation in our lab and
others.

Immunosuppression
To achieve long-term xenograft survival, various
immunosuppressive (IS) drug regimens have been used along
with GE pigs. Earlier conventional corticosteroids and calcineurin
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based (CSA) immunosuppression (IS) was used in NHP
recipients, which prevented acute rejection, but failed to
prolong cardiac xenograft survival (75–77). The longest
reported cardiac xenograft survival using a CSA-based IS
regimen was 32 days from a wild type (WT) pig (75) but was
extended up to 99 days (median 26 days) using hDAF transgenic
hearts (78). Various other IS regimens were used which include
splenectomy or total body irradiation, non-antigenic alpha-Gal
polyethylene glycol polymer (TPC) alone or in combination (9,
23, 79). Effect of these immunosuppression regimen on cardiac
xenograft survival has been summarized in Table 2. Later, anti-
thymocyte globulin (ATG), rituximab, mycophenolate mofetil,
tacrolimus, and sirolimus were also used in various combinations
as alternative regimens (10, 80–82). For complement inhibition,
either cobra venom factor (CVF) or overexpression of
complement regulatory protein gene expression for a donor

organ or both were used (10, 15, 81). By using these IS drugs,
McGregor et al. 2005 reported consistent graft survival (median
96 days; range, 15–137 days) in an HHTx model, but xenograft
rejection was associated with a rise in non-Gal antibody titers.
They did not observe a significant difference in graft survival
when GTKO or GTKO.hCRP donors were used (35, 64).

Significant progress in cardiac XTx occurred when newer
agents were used that block the co-stimulation, which aids in
T cell activation upon antigen exposure (10, 11, 15, 92). In 2000,
Buhler et al. demonstrated that the blocking of the CD40/CD154
pathway by anti-CD154 antibody prevents an induced anti-pig
humoral response (99). Kuwaki et al. also reported the longest
cardiac xenograft survivals for 179 days (median 78 days) (6) in
HHTx with anti-CD154 antibody treatment. We have also
reported more than 8-month survival of GTKO.CD46 cardiac
xenograft in HHTx with continuous co-stimulation blockade by

TABLE 1 | The “genetic toolbox” central to our strategies to minimize or abolish hyper-acute and delayed humoral rejection.

Genetic modification Mechanisms Properties

Alpha-Gal KO (GTKO) Deletion of immunogenic Gal antigen expression Anti-
ImmunogenicB4GalNT2 KO Deletion of B4Gal

CMAH KO Deletion of Neu5Gc

hHO-1 Decreases oxidative products Anti-Apoptotic

hHLA-E Protects the graft against human killer cells Anti-Inflammatory
hCD46 Suppresses human complement activity
hCD55 (DAF) Suppress human complement activity

hEPCR Activates Protein C Anti-Coagulation
hTFPI Inhibits Factor Xa
hvWF Reduces platelet sequestration and activation
hTBM Binds human thrombin, and activates Protein C via activated

thrombin

Multi-Genetic Modified Pigs

• GTKO.hCD46

• GTKO.CD55(DAF) (64, 65)

• GTKO.hCD46.CD55(DAF) (14)

• GTKO.hCD46.hTBM (15, 18, 63)

• GTKO.hCD46.CD55.EPCR.TFPI.CD47 (63)

• GTKO.hCD46.hTBM.CD47.EPCR.HO1

• GTKO. B4GalNT2KO (66)

• GTKO. B4GalNT2KO.hCD46.hHLAE

• GTKO.B4KO.hCD46.hTBM.hEPCR. hCD47.hHO1.hVWF

• GTKO.CMAHKO (67)

• GTKO. B4GalNT2KO CMAHKO (68)

• GTKO.CMAHKO.hCD46.hCD47. hTFPI

• GTKO.CMAHKO.hCD46.hEPCR. hDAF

• GTKO.CMAHKO.hCD46.hEPCR. hDAF.hTBM. hHO1

• GTKO.CMAHKO.B4GalNT2KO.hCD46.hDAF

• GTKO.B4GalNT2KO.GHRKO. hCD46.hTBM.hEPCR.hCD47 (69)

• GTKO.B4GalNT2KO.CMAHKO.GHRKO.
hCD46.hTBM.hEPCR.DAF.hCD47.HO1 (69)

CMAH, cytidine monophospho-N-acetylneuraminic acid hydroxylase; EPCR, Endothelial Protein C Receptor; HO-1: Heme Oxygenase -1; TFPI, tissue factor pathway inhibitor; HLA,
human leukocyte antigen; h, human; vWF, von Willebrand Factor; TBM, thrombomodulin.
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anti-CD154 antibody (25 mg/kg; clone 5C8) and B cell depletion
with Rituxan at the time of transplantation (10). Although the use
of anti-CD154 antibody has improved survival, it has been
reported that anti-CD154 antibody is associated with bleeding
and thrombotic complications such as consumptive
thrombocytopenia and venous and arterial thrombi (10, 81,
99). As a result, replacement with an anti-CD40 (25 mg/kg;
clone 2C10) monoclonal antibody (mAb), which targets the
same interaction, has been the focus of the active
investigation. When we used this antibody, there was no
significant difference found in median 70 vs. 75 days)
compared to anti-CD154 blockade.

However, we demonstrated that cardiac xenograft
(GTKO.CD46. TBM) survival in HHTx was significantly
prolonged (median 298 days) when the anti-CD40 antibody
was used at a higher dose (50 mg/kg) (15, 100). Iwase et al.
also demonstrated anti-CD40 mAb combined with belatacept
proved effective in preventing a T cell response (14). The anti-
CD40mAb used in these studies is a mouse/rhesus chimeric IgG4
antibody, which may not be suitable for use in humans. Still,
several other humanized anti-CD40 blocking antibodies under
development can be used for human use if approved as an
immunosuppression adjunct in cardiac XTx (101).

Prevention of Viral Transmission
The risk of PERV transmission can be minimized by selecting
PERV negative porcine donors. Thorough screening of PERV can
be done by serology, western blot, ELISA, immunofluorescence,
scanning electron microscopy, and PCR. Recently, Yang et al.
have inactivated all PERV proviruses (62 copies of PERV’s gene
pol, leading to a 1,000 times reduction in the virus’s ability to
infect human cells) in the pig genome the CRISPR/Cas technique

(102). The use of PERV inactivated pigs may provide tissue,
organs that may address the safety issue from a porcine virus in
pig-to-human xenotransplantation. However, the impact of
PERV inactivation and gene editing on PERV-inactivated pigs
and the necessity of these complex constructs is not known.

Prevention of Xenograft Growth
In one approach, xenograft growth is controlled by using drugs
such as rapamycin (8, 14, 18). Inhibition of mTOR protein kinase has
been shown to control cell growth and proliferation to treat cancers in
the clinical setting (103). Längin et al have used mTOR inhibitor and
anti hypertensive drugs to control the blood pressures to prevent
overgrowth cardiac xenograft in OHTx (18). Recently, Hinrichs et al.
have produced GHRKO pigs in order to address intrinsic organ
growth. They demonstrate that GHRKO pigs have slow or reduced
growth, including their organs’ growth, compared to normal wild-type
pigs (61, 104–107). Recently, Goerlich, et al. have examined intrinsic
and extrinsic causes of graft growth after transplantation in an OHTx
model using “multi-gene” pigs growth hormone receptor knockout
pigs (GHRKO) (69). Post-transplantation xenograft growth was
measured by echocardiography longitudinally after transplantation
between multi-gene cardiac xenografts with and without GHRKO.
Extrinsic causes of graft growth, namely blood pressure and heart rate,
were left without treatment. GHRKO grafts demonstrated a 50.4%
increase in LVmass up to 9months (264 days) after OHTx compared
to 140.1% in xenografts with a limited survival of less than 3months.
Terminal histology demonstrated fibrosis, interstitial edema and
hemorrhage as the cause of this growth and not classical
hypertrophy. Moreover, blood pressures and heart rates were
significantly elevated after transplantation regardless of GHRKO
status, suggesting physiologic mismatch occurs after
transplantation. Altogether, these data suggest that post-

TABLE 2 | Progress in Cardiac Xenograft Survival (Heterotopic and Life Supporting Orthotopic) and Immunosuppression Regimen used.

Type of graft Broad
immunosuppression category

GE cardiac
xenograft

survival (Days)

References

Heterotopic <1 (10)
Without Immunosuppression
With Immunosuppression
• Without Corticosteroidsa 3–62
• Total body irradiationa 8–15 (9)
• Immunoadsorptiona 9–39 (32, 83)
• Thymic irradiationa 8–15 (84)
• Splenectomya 0–139 (84–87)
• Immunosuppressive Reagents e.g., Cyclosporine, MMF 15-Desocyspergualin TPC,

Gas914,Tacrolimus, Rapamycina
0–139 (64, 76, 78, 82,

84, 91)
• CVFa 16–179 (10, 14, 15, 81,

92, 93)
• ATGa 5–236 (10, 14, 15, 86)
• Anti-CD20a 0–236 (10, 14, 15, 86)
• Costimulation blockade (Anti CD154 and anti CD40 Antibody)a 8–945 (10, 14,15, 81, 92, 93)

Orthotopic
With Immunosuppression
• Immunoadsorption, TBI, CsA, Methotrexatea 18–19 (79)
• Immunosuppressive reagents, e.g., Cyclosporine, Cyclophosphamide, MMF, Tacrolimus, Rapamycina 1–25 (75, 94–96)
• CVF, ATG, Anti CD20, Anti-CD40 antibody, Non-ischemic preservation techniquea 51–264 (18, 23, 69, 97)

aIntroduction of new agents along with other immunosuppressive drugs.
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transplantation xenograft growth in OHTx is multifactorial; largely
driven by intrinsic growth with some extrinsic component not related
to physiologic mismatch. Terminal histology would suggest this
extrinsic component could be rejection related.

PROGRESS IN CARDIAC
XENOTRANSPLANTATION TOWARD
CLINICAL TRANSLATION
The progress of cardiac xenotransplantation has been immense
(Figure 2) but the transition from HHTx to OHTx (i.e., to the
life-supporting function of xenografts) has been fraught with its
own challenges as the recipient’s native heart is replaced entirely
by the xenograft (108–112). Thus, any perturbations in the graft
(arrhythmias, ventricular function, or rejection) can have
devastating consequences to the recipient. Peri operative
cardiac xenograft dysfunction (PCXD) has been observed in
40%–60% of OHTx which has also made the transition
difficult (23). However, there has been a success in the OHTx
with GTKO.hCD46.hTBM (3-GE) graft survival up to 6 months,
despite these hurdles with the aid of non-ischemic continuous
xenograft preservation (70, 112). This has been observed by
others as well, but the underlying mechanism in cardiac
preservation preventing primary graft dysfunction in this
setting is poorly understood (113).

The advancement in donor genetic engineering capabilities
has also resulted in xenografts with additional transgenes and
knockouts for successful long-term OHTx survival. While multi-
gene xenografts have certainly fallen into favor, there has been a
recent increase in interest for “triple knock out (TKO)”
xenografts, which lacks three carbohydrate antigens. In
addition to Gal antigens, knockout for additional non-Gal
antigens addresses other preformed antibodies that can
contribute to humoral rejection. However, like our HHTx

experience, we have also seen that hTBM is important in
increased survival in xenografts, but specifically, we have seen
that TKO grafts exhibit accelerated antibody-mediated rejection
and increased incidence of thrombotic complications (16). This
could be because of the lack of human transgenes in these TKO
xenografts or because TKO xenografts create de novo synthesis, a
novel xenoantigen on their surface due to CMAH knockout in the
TKO pig that baboon recipients see as foreign (114).

However, multi-gene pigs with double and triple carbohydrate
knockouts have been developed for cardiac xenotransplantation
and are currently being tested in OHTx and HHTx models.
Recently, we have achieved up to 264 day survival of a multi-gene
cardiac xenograft with additional human transgene and
knockouts (69). Notable modifications in these pigs were are
carbohydrate enzyme KO (GTKO and β4GalNT2), growth
hormone receptor knockout (GHRKO) and the addition of
human transgenes (hCD46, hTBM, hEPCR and hCD47). We
are testing cardiac xenograft survival which have over expression
of other human genes (8–10 GE) in addition to these from pigs in
OHTx with mixed success. These studies, along with others, will
soon shed light on the advantages and disadvantages of iterative
genetic modifications and pave the way for pre-clinical efficacy
required for human clinical trials.

Conclusion
We are now entering an exciting time in xenotransplantation with
the progression of survival in preclinical models of pig cardiac
xenotransplantation. With the understanding now that a multi-
pronged approach toward these recipients’ immunosuppression
increases graft survival, most critical of which to date is co-
stimulation blockade, attempts to reduce the burden of
immunosuppression has placed genetic engineering of cardiac
xenografts in the forefront. Increasing the immunocompatibility
of xenografts from genetically engineered pigs are a noble approach
utilizing technology that has progressed the field further. However,

FIGURE 2 | Timeline showing the progress in pre-clinical model of cardiac xenotransplantation.
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genetic engineering should proceed with caution, utilizing in vitro
evidence for every iterative improvement in the genetically
engineered cardiac xenograft. Given the field’s current progression
and demonstration of success, it is our opinion that multi-gene
xenografts which include iterative addition of human transgenes or
knockouts of pig genes along with targeted immunosuppression will
pave the wave for clinical translation a reality.
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