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SUMMARY

In donation after circulatory death (DCD), (thoraco)abdominal regional per-
fusion (RP) restores circulation to a region of the body following death decla-
ration. We systematically reviewed outcomes of solid organ transplantation
after RP by searching PubMed, Embase, and Cochrane libraries. Eighty-eight
articles reporting on outcomes of liver, kidney, pancreas, heart, and lung
transplants or donor/organ utilization were identified. Meta-analyses were
conducted when possible. Methodological quality was assessed using National
Institutes of Health (NIH)-scoring tools. Case reports (13/88), case series (44/
88), retrospective cohort studies (35/88), retrospective matched cohort studies
(5/88), and case-control studies (2/88) were identified, with overall fair qual-
ity. As blood viscosity and rheology change below 20 °C, studies were grouped
as hypothermic (HRP, ≤20 °C) or normothermic (NRP, >20 °C) regional
perfusion. Data demonstrate that RP is a safe alternative to in situ cold preser-
vation (ISP) in uncontrolled and controlled DCDs. The scarce HRP data are
from before 2005. NRP appears to reduce post-transplant complications, espe-
cially biliary complications in controlled DCD livers, compared with ISP.
Comparisons for kidney and pancreas with ISP are needed but there is no evi-
dence that NRP is detrimental. Additional data on NRP in thoracic organs are
needed. Whether RP increases donor or organ utilization needs further
research.
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Introduction

Donation after circulatory death (DCD) expands the

deceased donor pool (Fig. S1), but faces two major hur-

dles linked to detrimental effects of warm ischaemia.

Compared with donation after brain death (DBD),

more post-transplant complications and lower utiliza-

tion rates are reported in DCD (Fig. S2) [1–9]. In con-

trast to rapid recovery after in situ cold preservation

(ISP) [10], regional perfusion (RP) in DCD restores cir-

culation following death declaration [11,12]. Perfusion

is limited to the abdomen (abdominal-RP, A-RP) or

abdomen and chest (thoracoabdominal-RP, TA-RP). RP

is thought to improve post-transplant outcomes by

minimizing the impact of warm ischaemia, as ATP con-

centrations are restored, and ischaemic preconditioning

mechanisms might be triggered [13–15]. This is impor-

tant as DCD livers experience higher rates of primary

non-function (PNF), early allograft dysfunction (EAD),

and biliary complications; DCD kidneys higher rates of

PNF and delayed graft function (DGF); and DCD pan-

creata more thrombosis [6,16–19] compared with DBD

though the latter has been contradicted in a recent

study from the United Kingdom [20]. DCD lungs offer

similar outcomes compared with DBD [21,22]. DCD

heart transplantation is in its infancy and uses ex situ or

in situ organ perfusion [23]. RP is also believed to

increase the utilization rates because organ viability can

be assessed and recovery is less hurried [24].

In Europe, RP has become the standard or preferred

method for DCD donation in at least five countries [1]. In

December 2019, the European Society for Organ Transplan-

tation (ESOT) established a Work stream of European

experts to create a consensus statement within the Transplan-

tation Learning Journey project (Box 1) [25]. As no random-

ized controlled trial (RCT) has compared RP with ISP in

DCD and different protocols, with temperatures ranging

from 4 to 37 °C, have been described, we undertook a sys-

tematic review to inform the consensus Worksteam. The sys-

tematic review and meta-analyses aimed to summarize the

outcomes after transplantation of livers, kidneys, pancreata,

hearts, and lungs from RP-DCD donors.

Methods

Search strategy

PubMed, Embase, and Cochrane libraries were searched

from inception through August 27, 2020 with support of an

experienced librarian (search strategies in Appendix S1). Ref-

erence lists of included articles were manually searched for

additional records. Articles needed to report on in situ perfu-

sion using extracorporeal membrane oxygenation technol-

ogy, regardless of temperature, in human subjects that were

potential deceased organ donors (Appendix S2). Records

were screened by at least two independent reviewers, who

achieved consensus on included studies. This systematic

review, registered with PROSPERO (CRD42019120480), uses

MOOSE-guidelines for reporting [26].

Outcome measures

Primary outcome measures were post-transplant out-

comes (early graft function, graft failure, patient sur-

vival). Secondary outcome measures assessed utilization

by donor conversion rate (DCR; number of a donors

divided by number of potential donors) and organ uti-

lization rate (OUR; number of organs transplanted

divided by total number of available organs from actual

donors). A potential donor was a patient with a devas-

tating brain injury or lesion or circulatory failure and

otherwise medically suitable to donate; a utilized donor

was a deceased person from whom at least one donated

organ had been transplanted [27]. We assumed every

donor had two kidneys, and recognizing this might have

led to underestimation of the OUR.

Selection of primary study reports, data extraction,
management, and quality assessment

Data set redundancy was assessed and a primary study

report was assigned for each study (Appendix S3). Presen-

tation and analysis of primary outcome data only included

primary study reports, unless secondary study reports

contained different outcomes or comparator groups.
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Data variables of interest were pre-defined; for each

study group, donor and recipient demographics, post-

transplant outcome data, and data needed to calculate

DCR and OUR were extracted by four independent

reviewers, while a fifth reviewer checked ˜10% of data

for accuracy. Methodological quality was assessed by

two independent reviewers using the National Institutes

of Health (NIH) scoring tools for retrospective observa-

tional studies [28]. Case reports were not scored for

methodological quality.

Data synthesis

Despite the likelihood that clinical data were heterogeneous,

meta-analyses were considered valuable in the absence of

Level 1 evidence (Appendix S4). Temperatures ≤20 °C have

important implications for rheology and blood viscosity

[29,30]. Therefore, RP was categorized as hypothermic

(HRP; 0–20 °C) or normothermic RP (NRP, 21–37.5 °C).
When RP temperature was not mentioned, authors were

contacted or temperature was deduced (Appendix S5).

Outcomes were grouped by donor type [uncontrolled

(uDCD) and controlled DCD (cDCD) [31]], as causes and

mechanism of death vary, as do lengths and dynamics of

hypoperfusion and hypoxic periods.

Meta-analyses were conducted if at least three studies

were available (Cochrane RevMan v.5.4.1). Studies with

DCD-ISP would be the relevant comparator group for

meta-analyses. However, as these were not always available,

studies with a DBD comparator group were also considered.

Random-effect models were used to calculate pooled esti-

mates and 95% confidence intervals (95% CI) and I2-tests

assessed statistical heterogeneity. Percentages were recalcu-

lated to absolute numbers, and sample means and standard

deviations (SD) are presented. The latter were estimated

from the sample size, median, range, and/or interquartile

range (IQR), when necessary [32]. For time-to-event data,

point estimates were determined from Kaplan-Meier graphs,

using WebPlotDigitizer v.4.3 (Ankit Rohatgi, CA, USA),

unless the necessary data points were reported [33]. We

report risk ratios (RR) for categorical data, standardized

mean differences (SMD) for continuous data, and hazard

ratios (HR) for time-to-event data. All effect estimates were

obtained by random-effects analysis and Mantel-Haenzel

methods except for continuous and time-to-event data

where inverse variance methods were used. Anticipated

absolute effects were obtained using GRADEpro (McMaster

University and Evidence Prime Inc, Ontario, CA, USA) [34].

GraphPad Prism 9 (San Diego, CA, USA) was used to create

summary forest plots.

Results

Study description and quality assessment

Among 14,309 records, 88 met inclusion criteria (Fig. 1,

Table S1) [35–122]. These studies are summarized in

Appendix S6. Articles were case reports (13/88, 13%) or

series (44/88, 44%), retrospective cohort studies (35/88,

35%), retrospective matched cohort studies (5/88, 6%),

and case-control studies (2/88, 2%). Quality was

assessed as good (16%), fair (68%), or poor (11%)

(Tables S2–S4). Articles reported on uDCD (39/88,

44%), cDCD (43/88, 49%), or u/cDCD (6/88, 7%). In

the latter, both uDCDs and cDCDs were included and

reported as one group. Primary study reports were

assigned for papers reporting on primary outcome mea-

sures (Tables S5–S9). Most studies on A-NRP reported

outcomes of a single organ, with only three providing

outcomes on all abdominal organs [83,93,94]. There

were no publications on HRP after 2005 suggesting that

this technique might no longer be clinically relevant.

Box 1. European Society for Organ Transplantation (ESOT) and the Transplantation Learning Journey (TLJ) project
Work streams within the TLJ project help to achieve the primary aim of ESOT – to improve patient access to (and outcomes
in) transplantation. TLJ Work streams facilitate objective discussion of scientific and clinical research, and expert opinion to
ensure that all perspectives on a topic are considered, with clinically relevant end goals in mind.

ESOT seeks to progress transplantation research, practice and education, and to collaborate with other international bod-
ies, to ensure that policies and regulations are globally consistent and relevant, and based on strong scientific, ethical, and
clinical foundations.

www.esot.org
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Regional perfusion in uDCD

Hypothermic regional perfusion in uDCD

Liver: One cohort study described 14 RP uDCD livers,

subsequently cold stored [96]. Results are difficult to

interpret as seven livers were perfused at 15–20 °C and

7 at 37 °C (Tables S10 and S11).

Kidney: Four retrospective cohort studies were identi-

fied [36,74,111,117] (Tables S12 and S13). All kidneys

were cold stored. Compared with ISP, lower PNF rates

after HRP with high DGF rates in both were reported

[117]. Compared with DBD, lower PNF rates but higher

DGF rates after HRP have been described [36,74]. One-

year graft survival of HRP was lower versus DBD [111].

Lungs: One study compared lung recovery after ISP

with simultaneous A-HRP to DBD [116] (Tables S16

and S17). Lungs were cold stored. Use of perioperative

mechanical support and ventilation days were

comparable, though primary graft dysfunction (PGD)

grades 2 and 3 and bronchial anastomotic complications

were more frequent in uDCD. One-year graft and

patient survival were comparable.

Normothermic regional perfusion in uDCD

Liver: Seven primary studies were identified

[48,56,63,66,92,96,112] (Tables S10 and S11; Fig. 2).

Two studies were not considered further as they

reported on NRP in u/cDCD liver transplantation,

where outcomes could not be separated [48,92]. All liv-

ers were cold stored. No comparisons of NRP to ISP in

uDCD were identified, restricting meta-analyses to com-

paring uDCD-NRP with DBD.

Graft function: High PNF (8–29%) and EAD rates

(31%, Olthoff criteria [123]) with NRP were reported.

PNF was higher after NRP compared with DBD (8% vs.

1.5%).

Figure 1 Study flow diagram.
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Biliary complications: Variable rates of ischaemic

cholangiopathy (IC) (8–20%) and anastomotic strictures

(3–15%) were described. More IC and anastomotic bil-

iary strictures were noted after NRP compared with

DBD (16% vs. 3%; 6.7% vs. 1.9%, respectively).

Graft and patient survival: High retransplantation

rates (12–23%), with 1-year graft survival rates between

69% and 73% (different definitions used) were

reported. Compared with DBD, NRP uDCD liver trans-

plantation had higher retransplantation rates (4.5% vs.

12%) and lower 1-year graft survival (87% vs. 73%)

[66]. Meta-analysis showed an increased risk of graft

failure after NRP in uDCD compared with DBD (HR

2.64, 95% CI 1.28–5.48; Figs 2 and S3). One-year

patient survival rates appeared lower after NRP com-

pared with DBD (83% versus 89%, respectively) [66].

Meta-analysis confirmed this finding (HR 2.67, 95% CI

1.03–6.94; Figs 2 and S3).

Kidney: Ten primary studies were identified [39,50,

60,73,75,98,100,106,109,117] (Tables S12 and S13;

Fig. 2). Kidneys were mostly cold stored, though

hypothermic machine perfusion (HMP) was described.

Graft function: PNF of 0–11% was reported. In a

French registry analysis, NRP was not independently

associated with PNF compared with ISP in uDCD (odds

ratio (OR) 1.83, 95% CI 0.78–4.25) [39]. Spanish

national data showed that ISP in uDCD (OR 5.7; 95%

CI 2.4–13.3) and HRP (OR 4.0; 95% CI 1.7–9.2) were

independently associated with increased PNF risk com-

pared with NRP [50]. However, meta-analysis of avail-

able studies did not show a difference in PNF risk

between NRP and ISP (RR 0.61, 95% CI 0.14–2.69;
Figs 2 and S4). DGF rates varied widely and were as

high as 100%. Compared with NRP, both ISP (OR 2.7;

95% CI 1.0–7.2) and HRP (OR 1.6; 95% CI 0.9–2.8)
were independently associated with increased risk of

DGF [50]. Meta-analysis of available studies did not

show a difference in DGF risk between NRP and ISP

(RR 0.72, 95% CI 0.48–1.09; Figs 2 and S3). Compared

with DBD, meta-analysis showed 1.6 times higher risk

of DGF after NRP (RR 1.59, 95% CI 1.38–1.83; Figs 2
and S5). Meta-analysis did not show a difference in

acute rejection after NRP versus DBD (RR 0.66, 95% CI

0.35–1.26; Figs 2 and S5). One-year mean creatinine of

1.3 and 1.5 mg/dl and mean glomerular filtration rate

(GFR) between 73 and 76 ml/min/1.73 m² were

reported. Compared with DBD, meta-analysis did not

show a difference in 1-year GFR after NRP (SMD 0.29,

95% CI �0.36 to 0.93; Figs 2 and S5), though there was

high degree of heterogeneity. Whether HMP influences

outcomes has not been studied.

Graft and patient survival: Different graft survival def-

initions were used, making interpretation difficult. One-

year graft survival rates varied between 40% and 90%.

Figure 2 Summary forest plots of meta-analyses of outcome data with NRP in uDCD. aThe forest plot for individual studies can be found in

Fig. S3 [66,112]. bThe forest plot for individual studies can be found in Fig. S4 [51,52,117]. cThe forest plot for individual studies can be found

in Figs S5 and S6 [81,87,106].
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Compared with DBD, no difference in graft failure after

NRP was observed (HR 0.65, 95% CI 0.35–1.19; Figs 2
and S6).

Heart: One report described heterotopic heart trans-

plantation after TA-NRP in a DBD donor experiencing

a sudden cardiac arrest (Maastricht category IV)

[31,46]. The transplanted heart was able to take over

circulation after 5 days (Tables S14–S16).

Regional perfusion in cDCD

Hypothermic regional perfusion in cDCD

Liver: One case report was identified describing a cDCD

liver transplanted after 4 h of HRP followed by cold

storage, with favourable follow-up at 2 years [119]

(Tables S19 and S20).

Kidney: One case series [71] and one cohort study were

identified [111] (Tables S21 and S22) Kidneys were cold

stored. High PNF and DGF rates were described with vari-

able graft survival rates, as low as 40%.

Normothermic regional perfusion in cDCD

Liver: Eight primary studies were identified [38,53,62–
64,91,93,108] (Tables S19 and S20; Fig. 3). NRP livers

were cold stored.

Graft function: Variable PNF (0–9%) and EAD (0–
36%) rates were reported. Meta-analysis showed non-

significant reduction in PNF after NRP compared with

ISP in cDCD (RR 0.67, 95% CI 0.24–1.87; Figs 3 and

S7), but event rate was low. Sensitivity analysis exclud-

ing livers undergoing subsequent ex situ hypothermic

oxygenated perfusion (HOPE) did not change results

(RR 0.43, 95% CI 0.10–1.81). NRP lowered risk of EAD

by 56% compared with ISP in DCD (RR 0.44, 95% CI

0.26–0.76), but there was considerable heterogeneity

(Figs 3 and S7). Results without HOPE cases were simi-

lar (RR 0.55, 95% CI 0.33–0.92). There was no evidence

that NRP influenced the risk of hepatic artery thrombo-

sis compared with ISP in cDCD (RR 1.15, 95% CI

0.45–2.96; Figs 3 and S7); excluding HOPE cases did

not change results (RR 1.05, 95% CI 0.34–3.92).
Biliary complications: Consistently low IC rates (0–

2%) were reported. Hessheimer et al. showed that NRP

was independently associated with lower overall biliary

complications (OR 0.14; 95% CI 0.06–0.35) and lower

IC (OR 0.11; 95% CI 0.02–0.57) compared with ISP in

cDCD [64]. Meta-analysis showed that NRP lowered

the risk of any type of biliary strictures by 79% com-

pared with ISP cDCD (RR 0.21, 95% CI 0.10–0.36;

Figs 3 and S8). When analysing IC and anastomotic

strictures separately, NRP lowered risks by 75% (RR

0.25, 95% CI 0.10–0.67; Figs 3 and S8) and 65% (RR

0.35, 95% CI 0.22–0.55; Figs 3 and S8), respectively.

Results were similar when HOPE cases were excluded

(RR 0.15, 95% CI 0.05–0.45 and RR 0.29, 95% CI 0.15–
0.57, respectively). For IC, the anticipated absolute risk

difference is 13 fewer (95% CI 6–16 fewer) cases per

100 NRP cases compared with ISP cDCD liver trans-

plants. For anastomotic biliary strictures, this is 15

fewer (95% CI 10–18 fewer) cases per 100 NRP cases

compared with ISP cDCD liver transplants.

Graft and patient survival: Graft survival was defined

variably. Hessheimer et al. showed decreased risk of

graft failure (including death with a functioning graft)

with NRP (HR 0.39; 95% CI 0.20–0.78) compared with

ISP. Reported 1-year patient survival rates with NRP

were 93%–94%. Meta-analysis found no significant dif-

ference in mortality risk between NRP or ISP (HR 0.61,

95% CI 0.33–1.12), though caution is needed when

interpreting these data, as estimation methods had to be

used (Figs 3 and S9) [33].

Kidney: Eleven primary studies were identified

[54,58,59,76,83,89,93,94,98,101,108] (Tables S21 and

S22; Fig. 3). Most kidneys were cold stored with HMP

in one study [89].

Graft function: Variable PNF (0–5.4%) and DGF rates

(0–40%) were described. Compared with DBD, DGF

rates after NRP were not different than in DBD (RR

0.83, 95% CI 0.44–1.55; Figs 3 and S10). One-year

mean creatinine levels of 0.86–1.58 mg/dl and mean

GFR of 52–73 ml/min/1.73 m2 were reported.

Graft and patient survival: Graft survival was variably

defined with reported 1-year graft and patient survival

rates of ≥84% and ≥93%, respectively.

Pancreas: Three primary studies reporting on seven

pancreas transplants after NRP were identified with few

outcome data presented [55,83,93]. All cases experi-

enced immediate graft function. Reported 6-month and

1-year graft survival of 100% has been described

[55,83].

Heart: Five primary studies reporting on 18 heart trans-

plants after TA-NRP were identified [67,78,79,114,115],

one with a comparator group in which hearts under-

went ISP followed by ex situ perfusion [78]

(Tables S23–S25). One case report mentions direct pro-

curement of a heart with simultaneous A-NRP, fol-

lowed by ex situ perfusion [86]. Although most hearts

underwent ex situ normothermic perfusion, cases with

static cold storage (15–117 min) after TA-NRP have

been described [79,114,115]. Reports on initial graft

Transplant International 2021; 34: 2046–2060 2051
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function described mean cardiac indices of 2.0–2.53 l/

min/m2, cardiac output of 3.95–4.8 l/min, and ejection

fraction of 50–74%. Need for mechanical support var-

ied (0–17%). Table 25 summarizes dose and duration

of pharmacological support. When compared with ISP

followed by ex situ perfusion in cDCD, Messer et al.

[78] reported a lower incidence of mechanical support

after NRP, with slightly higher cardiac index and out-

put, similar ejection fraction, and better patient sur-

vival at 3 months (100% vs. 86%), although recipients

may not have been comparable. One-year graft survival

and 3-month patient survival were 100%.

Lung: Five primary studies [42,43,94,97], one with a

DBD comparator group [82], were identified, reporting

on 24 lung transplants, all ISP of lungs with simultane-

ous A-NRP (Tables S26 and S27). Though strictly these

lungs were not transplanted after NRP, we include the

results as they are relevant to NRP practice. Most lungs

were cold stored, except for one case series with ex situ

lung perfusion to assess viability [97]. We found no

reports of lung transplants after TA-NRP. Limited

information on post-transplant outcomes was reported.

Compared with DBD, cDCD lungs retrieved during

A-NRP seem to experience less PGD-1 (4.8% vs. 7.4%)

and PGD-2 (4.8% vs. 9.6%) but more PGD-3 (19% vs.

7.4%) [82]. One-year graft survival rates were 84–100%,

with 2-year patient survival rates of 90%.

Donor conversion and organ utilization rates

No study was designed to investigate DCR after RP,

and no direct comparisons with ISP were available. The

definition of ‘potential donor’ differed amongst reports,

making comparison difficult and the value of any calcu-

lated DCR questionable (Table S28). Kidney OURs for

HRP of 43–88% were found. OURs calculated for NRP

in uDCDs were 25–100% for kidney and 9–38% for

liver (Table S28); for NRP in cDCDs OURs were 60–
100% for kidney, 25–100% for liver, 0–26% for pan-

creas, 0–60% for lung, and 78–100% for heart

(Table S28). No direct comparison with ISP-DCD or

DBD was possible.

Discussion

In DCD donation, RP has been advocated to tackle

higher post-transplant complications and lower utiliza-

tion rates. This systematic review shows that current

Figure 3 Summary forest plots of meta-analyses of outcome data with NRP in cDCD. aThe forest plot for individual studies can be found in

Fig. S7 [53,64,90,120]. bThe forest plot for individual studies can be found in Fig. S7 [64,90,91,120]. cThe forest plot for individual studies can

be found in Fig. S8 [53,64,81,87,106,120]. dThe forest plot for individual studies can be found in Fig. S8 [38,62,63,93]. eThe forest plot for

individual studies can be found in Fig. S8 [53,64,90,91,120]. fThe forest plot for individual studies can be found in Fig. S7 [64,90,120]. gThe

forest plot for individual studies can be found in Fig. S9 [64,91,120]. hThe forest plot for individual studies can be found in Fig. S10

[58,83,89].
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evidence suggests that RP reduces certain post-

transplant complications, though this finding is not uni-

versal. This is especially true for NRP and in particular

for NRP in cDCD where there is evidence that NRP

reduces the risk of both IC and anastomotic biliary

strictures. Whether RP increases DCR and OUR com-

pared with ISP in DCD or DBD requires further study,

with standardized reporting of information related to

potential, eligible, actual, and utilized donors [27].

In settings where uDCD has been successfully imple-

mented, most organ preservation manoeuvres have been

initiated before next-of-kin have arrived at the hospital

and specific consent for donation has been given.

Preservation manoeuvres applied in uDCD need to be

maintainable for some hours and should leave the body

as intact as possible. This is achievable by RP with

placement of catheters in the groin but not by

(thoraco-) laparotomy. Limited available evidence, dat-

ing from 2005 or earlier, suggests some benefit of HRP.

The lack of reports on HRP after 2005 suggests that the

technique is now clinically less relevant and seems to

have been replaced by NRP. Transplantation of uDCD

livers and kidneys after NRP is associated with inferior

graft and patient survival relative to DBD. Some kidney

registry analyses suggest that NRP decreases PNF and

DGF risks compared with ISP in uDCD. No studies

comparing NRP with ISP in uDCD for liver are

reported, reflecting hesitancy to transplant uDCD livers

without some form of perfusion (in situ or ex situ).

Therefore, relevant comparisons of uDCD-NRP with

uDCD-ISP outcomes could not be performed. Experi-

ence with uDCD lung transplantation in RP-settings is

limited with early and late outcomes that appear infe-

rior to those of cDCD lungs. As uDCD often implies a

cardiac cause of death, it is unsurprising that uDCD

heart transplantation, and the use of RP, is non-

existent. While transplantation of uDCD liver, kidneys,

and lungs after NRP should not necessarily be avoided

altogether, these organs should be used with caution,

weighing risks of continued waiting against risks of uti-

lizing uDCD grafts, even with RP techniques.

In cDCD, NRP has taken over from HRP techniques

and current evidence suggests improved outcomes for

liver and kidney compared with ISP in cDCD. As NRP

requires the placement of cannulae, the donor warm

ischaemia time might be longer compared with ISP,

though this appears limited to about 10 min or less

(Table S29). Limited evidence on HRP, dating from

2005 or earlier, reports high kidney PNF and DGF rates,

with no comparison to ISP or DBD available and only

one liver transplant has been described. For NRP, more

evidence is available and comparison with ISP in cDCD

is possible. We found no evidence that NRP reduces

risks of PNF or mortality after liver transplantation

compared with ISP in cDCD. However, our

meta-analyses suggest that NRP leads to a significant

reduction in overall biliary complications (IC by 75%,

anastomotic strictures by 65%) compared with ISP in

cDCD. IC is the most feared long-term complication in

DCD livers, with some series reporting up to 100%

five-year graft loss among grafts experiencing IC [124].

In kidney transplantation, variable PNF and DGF rates

are described. A direct comparison with ISP in DCD,

published very recently, suggests reduced DGF risk with

NRP [125]. We found no evidence that risk of DGF

after NRP is different compared with DBD, while it is

well-known that ISP leads to higher DGF rates com-

pared with DBD [17]. Kidney graft survival rates with

NRP appear good, but variable definitions are used.

Pancreas transplantation after NRP is feasible and safe,

but large series have not been reported. Though limited

in numbers, outcomes for cDCD heart transplantation

are comparable to DBD. One series compares recovery

after TA-NRP and use of ISP in cDCD followed by

ex situ perfusion, with an apparent advantage for the

former. Early graft survival, PGD rates, and late chronic

lung allograft dysfunction of cDCD lung transplantation

when there has been A-NRP are similar to ISP in cDCD

and DBD series. Technical issues involving thoracic

haemostasis after lung removal when NRP continues

below the diaphragm exist. One case of lung transplan-

tation after TA-NRP has been recently reported, show-

ing feasibility [126]. With wider use of TA-NRP, and

the known negative effects of cardiopulmonary bypass

on the lung, one might imagine a small disadvantage

for the lung with wider use of TA-NRP. Especially since

the ischaemic tolerance of the lung, reflected by similar

outcome after cDCD and DBD lung transplantation

[21,22], appears to make RP unnecessary for DCD

lungs. In addition, concerns of brain reperfusion during

TA-NRP exist. One case of TA-NRP with subsequent

haemodynamic instability due to presumed cytokine

washout has been described, though the authors recog-

nize a Cushingoid response due to an inadvertent cere-

bral perfusion could not be excluded [114]. Solutions to

this problem have been provided in a recent UK/Cana-

dian consensus [127].

An unresolved question is whether reversibility of

ischaemia and restoration of function after (T)A-NRP

reduce the detrimental impact of subsequent cold

ischaemia. With increasing evidence that ex situ perfu-

sion improves outcomes in DCD organs retrieved after
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ISP and allows for additional viability testing [128–131],
this is an important issue that requires further research.

As PNF rates in uDCD remain high, ex situ liver perfu-

sion might allow better graft selection and kidneys

might benefit from improved preservation with ex situ

perfusion. For the heart, static cold storage has only

been used when cold ischaemia was very short, with the

donor at or close to the recipient centre. If TA-NRP fol-

lowed by cold storage were found to be safe and effec-

tive, its use would help avoid the cost and complexity

of routine ex situ heart perfusion. Furthermore, com-

parisons of NRP with ex situ preservation techniques

are needed. We found only one direct comparison of

NRP with ISP followed by HOPE in cDCD livers show-

ing similar post-transplant outcomes, though cautions

are warranted as NRP and ISP-HOPE cases were per-

formed in different countries which might have led to

bias [90].

As with all systematic reviews, it is possible that not all

relevant articles were found or that relevant studies were

published after the search. In the absence of RCTs, the qual-

ity of the published evidence is limited and risk of publica-

tion bias is high. The conclusions of this review should,

therefore, be interpreted with caution, and, ideally, RCTs

would contribute to the evidence. Reticence to performing

expensive and logistically challenging RCTs [132,133] com-

paring ISP and NRP in cDCD has been observed as the cur-

rent body of evidence on NRP suggests loss of equipoise for

the liver, with data pointing towards reduced post-

transplant biliary complications, and no evidence of detri-

mental effects for other abdominal organs. Furthermore,

NRP offers the opportunity to slow down, observe, and

evaluate organs more extensively via evolution of perfusate

lactate, transaminases, and amylase, as well bile production,

diuresis, and cardiac ultrasound and pressure measurements

and possibly reduces injury during recovery. Indeed, the

ISP-DCD process is a stressful rush to get organs cooled,

perfused and retrieved as quickly as possible, leading to

increased rates of organ injury [134,135].

Well-designed and maintained (inter)national reg-

istries might provide the basis for observational studies,

with the application of appropriate statistical methods

that allow causal inference [136]. These registries would

benefit from standardized data collection for all organs

recovered from the donor and standardized outcome

definitions to allow more straightforward data compar-

isons and meta-analyses.

In conclusion, this systematic review and meta-

analyses show RP is a feasible and safe alternative to

ISP in uDCDs and cDCDs (Box 2). Reports on HRP

date from 2005 or earlier and this technique seems to

have been replaced by NRP. NRP appears to reduce

some post-transplant complications, especially in the

setting of cDCD liver transplantation where evidence

suggests the risk of IC and anastomotic biliary strictures

is reduced by NRP. Comparisons for kidney and pan-

creas, especially with ISP in DCD, are needed, but there

is no evidence to suggest NRP is detrimental. Outcomes

of thoracic organs after TA-NRP require additional data

to assess safety and efficacy. Whether NRP increases

donor and organ utilization needs further research.
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Box 2. Summary of findings

1. Available evidence is associated with a significant

potential for bias.

2. Hypothermic and normothermic regional perfu-

sion are feasible and safe in uncontrolled and con-

trolled DCD donation.

3. Normothermic regional perfusion appears to have

replaced hypothermic regional perfusion in clinical

practice.

4. Normothermic regional perfusion reduces some

post-transplant complications, especially biliary stric-

tures in controlled DCD liver transplantation.

5. It is unknown whether the use of ex situ organ

perfusion after normothermic regional perfusion

provides additional benefit.

6. Effect of normothermic regional perfusion on

donor and organ utilization compared to in-situ

cold preservation in DCD and DBD needs further

investigation.

7. There is a need for high quality evidence via tri-

als and well-designed (inter)national registries.
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