

REVIEW ARTICLE

EBV-specific cytotoxic T lymphocytes for refractory EBV-associated post-transplant lymphoproliferative disorder in solid organ transplant recipients: a systematic review

Jing-Yi Liu^{1,2,3}*, Jin-Ming Zhang^{1,2,3}*, Hao-Su Zhan^{1,2,3}, Li-Ying Sun^{1,2,3,4} & Lin Wei^{1,2,3}

 Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
 Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
 National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
 Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China

Correspondence

Li-Ying Sun and Lin Wei, Liver transplantation center & Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University. No.101 Luyuandong Road, Tongzhou District, Beijing 101100. Tel.: +86 18612596060 (L.-Y. S.); +86 18610932626 (L. W.); fax: +86-10-80838168; e-mails: sunxlx@outlook.com (L.-Y. S.); weilin@ccmu.edu.cn (L. W.)

*These authors contributed equally to this work.

SUMMARY

The use of Epstein-Barr virus-specific cytotoxic T lymphocytes (EBV-CTLs) in adoptive immunotherapy in hematopoietic stem cell transplantation (HSCT) patients with post-transplantation lymphoproliferative disorder (PTLD) has demonstrated safety and effectiveness. EBV-CTLs might also be the effective treatment of refractory PTLD of solid organ transplantation (SOT) recipients. Two independent assessors searched Pubmed, Embase, Cochrane Library, and Web of Science from their inception to November 2020. Eleven studies with 76 patients (42, 55% male) were included. We extracted the data and completed the quality assessments. Most of the studies were from Europe and the USA. Liver and kidney transplantation accounted for most of the transplant types. Thirty-five (46.1%) patients were diagnosed with monomorphic PTLD, and B lymphocyte type was the most common. All the patients received primary treatment for PTLD while it was ineffective. CTLs included autologous EBV-CTLs (15/76, 22%) and HLA-matched third-party EBV-CTLs (61/76, 78%). The response rate for EBV-CTL treatment of refractory PTLD was 66%. Of 50 patients, 36 achieved complete remission and 14 achieved partial remission. EBV-DNA level decreased in 39 patients. Adverse reactions were rare and mild. We conclude that adoptive therapy with EBV-specific CTLs is safe, well-tolerated, and effective in PTLD.

Transplant International 2021; 34: 2483-2493

Key words

adoptive immunotherapy, EBV-specific cytotoxic T lymphocytes, post-transplantation lymphoproliferative disorder, review, solid organ transplantation

Received: 1 July 2021; Revision requested: 30 August 2021; Accepted: 3 September 2021; Published online: 28 October 2021

Introduction

Transplant recipients are susceptible to infections in the post-transplant period due to immunosuppressive therapy, which causes variable complications. Posttransplantation lymphoproliferative disorder (PTLD) is a potentially serious and sometimes lethal disease,

© 2021 Steunstichting ESOT. Published by John Wiley & Sons Ltd doi:10.1111/tri.14107

including a broad spectrum of disorders ranging from benign polyclonal to malignant monoclonal lymphoid proliferations. Epstein–Barr virus (EBV) infection is widely assumed to be one of the key etiologies of PTLD. This disorder can occur in solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) recipients [1]. The incidence of PTLD in adults is reported to range from 0.8% to 2.5% in kidney transplant recipients, 0.5% to 5.0% in pancreatic transplant recipients, 1.0% to 5.5% in liver transplant recipients, 2.0% to 8.0% in heart transplant recipients, 3.0% to 10.0% in lung transplant recipients, and \leq 20% in multiorgan and intestinal transplant recipients [2]. The gradual increase in the incidence of PTLD after SOT has resulted in increased awareness and research.

Diagnosis and therapy have seen notable progress in PTLD in recent years. Therapeutic approaches including reduction of immunosuppression, rituximab, chemotherapy, antivirals, adoptive therapy, surgery, and cytotoxic T lymphocytes (CTLs) have had variable success. EBVspecific CTLs are always used after illness exacerbation in recipients due to limits of costs and technical difficulties. Infusion of CTLs from HLA-matched donors or autologous lymphocytes to recipients can restore cellular immunity after EBV infection and eradicate EBVinfected cells with mild adverse effects or complications such as graft-versus-host disease (GVHD).

There have been many studies demonstrating the safety and effectiveness of treatment of PTLD after HSCT with EBV-CTLs; nevertheless, studies of EBV-CTLs for treatment of PTLD in SOT are rare. In this systematic review, we discuss the use of EBV-CTLs for treatment of refractory PTLD in SOT recipients.

Materials and methods

Search strategy

Our systematic review followed PRISMA guidelines [3]. Two of our authors (JY Liu and JM Zhang) searched Pubmed, Embase, Web of Science, and Cochrane Library for articles published from inception to November 15, 2020, with a restriction to English language. The search strategy included the following keywords: "solid organ transplant," "solid organ transplantation," "SOT," "posttransplant lymphoproliferative disease," "posttransplant lymphoproliferative disorder," "PTLD," "therapy," and "treatment." We also reviewed citations in all included articles, clinical practice guidelines, and review articles.

Study selection criteria

Two authors (JY Liu and JM Zhang) assessed whether studies met the criteria for inclusion. The same authors scanned titles and abstracts to determine possible relevance, and the final selection was based on the full text of all potentially applicable articles. They also independently extracted the data. Ambiguous articles were examined by a third reviewer (LY Sun). Disagreements were resolved by discussion.

Inclusion and exclusion criteria

The inclusion criteria were as follows: participants of any age who underwent SOT (lung, heart, kidney, liver, pancreas, or small bowel) with PTLD; and all available randomized and nonrandomized studies, including case reports and case series, using EBV-CTLs infusion for treating EBV-positive PTLD. The exclusion criteria were as follows: patients undergone HSCT only; patients with AIDS; non-English language; studies that included EBVrelated disease other than PTLD; new updates presented in international congress poster sessions; studies of symptoms or clinical findings only; and studies examining only molecular or biochemical markers as outcomes. If multiple studies reported the same data, we selected the one with the largest sample size or most detailed information.

Assessment of study quality

Potentially eligible studies were subjected to full-text review for methodological quality assessment using the Newcastle-Ottawa Scale (NOS) [4] and Institute of Health Economics-18 checklist (IHE) [5]. The IHE checklist was used for case series and case reports, and the NOS was used for cohort study. The NOS consisted of eight items, appraising three categories including the research selection, comparability, and outcome. A study could be awarded a maximum of one star for each item within the selection and outcome categories. A maximum of two stars could be given for comparability, with a full score of nine stars. The IHE checklist consisted of 18 items, appraising seven categories including the research objectives, population, intervention, outcome measurements, statistical analysis, results and conclusions, and competing interest and source of support. For each item, a score of 1 was given for "yes" and 0 for "no" or "uncertain," with a full score of 18, we measured the score in percentage term. Two authors scored independently and cross-checked the results.

Data extraction

The aim of this study was to review the results of clinical studies carried out with EBV-CTLs for treatment of EBV-positive PTLD. We used a standard data extraction form to collect information from the studies included. Any discrepancies in data extraction were resolved by discussion. The following data was extracted: basic information (first author, publication year, and study area); study design; baseline characteristics (number, age, sex, donor type, PTLD pathological classification, previous treatments for PTLD, and EBV-DNA before adoptive therapy); treatment (type and dose of EBV-CTLs); follow-up (adverse events and follow-up duration); and primary and secondary outcomes (complete or partial response and EBV-DNA after adoptive therapy). When included studies reported an outcome of interest without sufficient details, we contacted the authors for the data. The measurement data are presented as median (interquartile range). Numerical data are expressed as the number of cases (percentage).

Results

Description of studies

This systematic review included 1250 potential study citations, and 39 additional citations were from other sources. After removing duplicate articles, there were 730 left, and 692 studies were excluded after screening titles and abstracts for EBV-CTL therapy of refractory PTLD. Thirty-eight papers were retrieved in full text and 27 were excluded: eight reviews; five nonhuman studies; five trials evaluated the recipients of HSCT; four studies focused on prophylaxis of PTLD rather than therapy; four trials used different generation and characterization of cell lines; and two trials had duplicate data (details outlined in Fig. 1). Overall, 11 studies were identified and included in the quantitative synthesis (n = 76), consisting of one cohort study, three case reports, and seven case series.

Relevant studies are scarce, especially primarily about SOT recipients. Although the heterogeneity of different studies precludes their collection for a meta-analysis, the studies identified in this review were mostly highquality case reports or case series, appraised by IHE scale. The NOS scale was adopted to assess the quality of the sole observational studies included in our review. Tables 1–3 show the details of the quality assessment.

Table 4 shows a summary of the included articles, which included 76 patients (42 male, 55%, and 34 female, 45%) diagnosed with PTLD after SOT. One of the studies was from Asia, and the rest were from Europe and the USA. Patients in the studies included children and adults, and the age ranged from 2.5 to 75.2 years. Most of the patients received liver transplantation (n = 22) and kidney transplantation (n = 27), followed by heart (n = 8), lung (n = 6), small bowel (n = 1), heart + liver (n = 1), small bowel + liver (n = 8), liver + kidney (n = 1), and heart + lung (n = 2).

Histopathological characteristics of PTLD

Histopathological characteristics of PTLD are described in Table 4. Based on WHO histological classification, 35 patients had monomorphic PTLD, 19 had polymorphic PTLD, and 8 had Hodgkin's lymphoma, while 6 had PTLD of EBV-positive unspecified type [6–8], 7 had hyperplastic PTLD [9], and 1 had plasmacytic hyperplasia PTLD [10]. PTLD with B cell type was the most commonly reported (25/76, 32.9%).

Treatment for PTLD

Before EBV-CTL therapy, all patients were treated with several conventional therapies, including reduction of immunosuppression (RIS), rituximab, chemotherapy, antivirals, surgery, radiotherapy, and even antiinterleukin-6 agents and showed poor efficacy.

The types of CTLs included autologous EBV-specific CTLs (15/76, 22%) and HLA-matched third-party EBVspecific CTLs (61/76, 78%). In all studies, EBV-CTLs were generated in vitro and infused into recipients after a series of treatments. The peripheral blood mononuclear cells (PBMCs) obtained from EBV-seropositive third-party blood donors or recipients were infected with purified EBV to establish EBV-immortalized B lymphoblastoid cell lines (BLCLs). The irradiated BLCLs served as antigen-presenting cells to stimulate PBMCs to initiate CTL lines. CTLs were further expanded and augmented. The CTLs were then screened for infection and tested to ensure adequate cytotoxic function and antiviral specificity. In studies using third-party CTLs, patients' (recipients) HLA types and antibodies were checked, and CTLs with best HLA match were picked for use in vivo [11]. Unlike others, Kim et al. used the EBV latent membrane protein (LMP)-1 and LMP-2aspecific autologous CTLs (LMP1/2a CTLs), stimulated with LMP1/2a RNA-transfected dendritic cells [12].

In all studies, EBV-CTL infusion doses were under different criteria. In some trials, the dose based on recipients' weight ranged from 1×10^7 to 5×10^7 /kg [6,9,13–16]. Others were made according to the body surface area and ranged from 2×10^7 to 5×10^7 /m² BSA [7,10,12]. Sherritt *et al.* infused 20×10^6 cells/dose to the recipients,⁸ while Khanna *et al.* infused 35×10^6 cells/dose and 60×10^6 cells/dose to their patients [17]. The frequency of doses fluctuated between 1 and 8.

Outcome and follow-up

Thirty-six participants achieved complete remission (CR), 14 partial remission (PR), 19 stable disease (SD),

Figure 1 Flow diagram of the study selection process. PTLD, post-transplantation lymphproliferative disease; SCT, stem-cell transplantation.

Author (Year)	Country	Research type	Number of Cases	IHE/NOS Sc
Prockop, S. (2020)	USA	Cohort study	13	7
Kim, N. (2018)	South Korea	Case series study	2	61%
Chiou, F.K. (2018)	UK	Case series study	11	78%
Haque, T. (2007)	UK	Case series study	31	89%
Gandhi. M.K. (2007)	Australia	Case series study	3	61%
Savoldo, B. (2006)	USA	Case series study	6	83%
Comoli, P. (2005)	USA	Case series study	5	67%
Sherritt, M.A. (2003)	USA	Case report	1	61%
Sun, Q (2002)	USA	Case series study	2	72%
Khanna, R. (1999)	Australia	Case report	1	61%
Emanuel, D.J. (1997)	USA	Case report	1	56%

Table 1. 🤇	Characteristics	and	quality	evaluation	of	included	studies.
------------	-----------------	-----	---------	------------	----	----------	----------

ore

	THE Score	0.61	0.78	0.89	0.61	0.83	0.67	0.61	0.72	0.61	0.56
Competing interest and source of	Are both competing interest and source aupport for the study reported?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Are the conclusions of the study supported by results?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Are adverse events reported?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Does the study provide estimates of the random variability in the data analysis of relevant outcomes?	No	Yes	Yes	No	Yes	0N N	Q	No	No	oN
7.5	Was the loss to follow-up reported?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Results and conclusion	Was the length of follow-up reported?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Statistical	anaysis Were the statistical tests used to asses the relevant outcomes appropriate?	No	Yes	Yes	No	Yes	No	No	No	No	No
	Were outcomes measured before and after intervention?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
sures	Were relevant outcomes appropriately measured with objective and/or methods?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Outcome mea	Are the outcome measures deaity defined in the introduction or methods section?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	8
q	Were additional interventions (co-interventions) in the study?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Intervention an co-intervention	Was the intervention described in the study?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Did participants enter the study at a similar point in the disease?	No	No	No	No	No	No	No	Yes	No	No
	Were participants certuited consectively?	No	No	No	Q	No	No	No	No	0N N	0 N
	Are the eligibility criteria criteria and exclusion exclusion errity the study explicit and	No	N	Yes	No	Yes	No	No	No	No	No
u	Were the cases collected in more than one center?	No	No	Yes	Na	Yes	No	No	No	Q	0N N
Study populatio	Are the characteristics of the participants included in the study described?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Study	ouperune is the hypothesis/ aim/ objective of the stated in the abstract, introduction, or methods section?	No	Yes	Yes	No	No	Yes	No	Yes	No	No
	urthor year)	im, N.	(2016) Chiou, F.K. (2018)	laque, T. (2007)	iandhi, M.K. (2007)	avoldo, B (2006)	omoli, P. (2005)	herritt, MA (2003)	un, Q	(hanna, R. (1999)	manuel, D. J. (1997)

			Comparability	Outcomes			
Selection		Demonstration that outcome	Comparability of cohorts		Follow-up		
reness of the		of interest was	on the basis		long enough	Adequacy	
ed nonexposed	Ascertainment	not present at	of the design	Assessment of	for outcomes	of follow-up	
cohort	of exposure	start of study	or analysis	outcome	to occur	of cohorts	Score
À	*	*	**	*	*	*	7
2 (1)	Selection eness of the nonexposed cohort	Selection eness of the Ascertainment cohort of exposure * *	Selection Demonstration eness of the of the of interest was nonexposed Ascertainment cohort of exposure x x	Selection Comparability aness of the of contration of the of interest was of contration nonexposed Ascertainment not present at of the basis cohort of exposure start of study or analysis	Selection Demonstration Comparability Outcomes aness of the of interest was of cohorts of the basis anonexposed Ascertainment not present at of the design Assessment of x x x x x x	Answer Answer Comparability Outcome aness of the comparability Comparability Comparability aness of the of cohorts of cohorts of cohorts anesyoed Ascertainment not present at of the design Assessment of cohort of exposure start of study or analysis outcome * * * * *	and a constration of the constration of

and 7 had progression of disease (POD) (Table 4). Overall, the response rate was 66% (50/76). Ten patients died in the included studies: 2 presented with POD, 7 had SD after EBV-CTLS therapy, and 1 collapsed at home after achieving CR. EBV-DNA level decreased in 39 cases.

The most common adverse effects were digestive system symptoms including nausea and vomiting. Other symptoms reported were fever, tachycardia, fatigue, and arthralgia. One lung transplant recipient had organ rejection and moderate dyspnea. Prockop *et al.* reported one case with grade I acute CTL-related GVHD of the skin, which was resolved with topical therapy. All adverse effects were rare and mild, illustrating the safety and viability of EBV-CTL therapy. Follow-up periods ranged from 11 days to 14 years, and most were long enough for observation.

Discussion

PTLD has long been one of the leading causes of morbidity and mortality among SOT recipients. The diagnostic rate of PTLD is extremely low. Lymphadenopathy is often absent, and symptoms are usually due to interference with the function of involved organs.

Clinical features of PTLD are often nonspecific, while extranodal involvement is common including gastrointestinal tract, lungs, skin, bone marrow, and central nervous system. Due to the above reasons, PTLD has a high misdiagnosis rate, which can delay clinical intervention [18]. Currently, effective and pertinent treatment is still lacking, although several options like RIS, rituximab, chemotherapy, antivirals, surgery, and radiotherapy are used clinically, although they have not been shown to be particularly effective.

EBV-CTL therapy is not available for clinical applications yet; apart from that, there are few qualified institutes that could perform the adoptive therapy. Our study is the first systematic review to focus on adoptive therapy for PTLD in SOT patients. Though relevant studies were scarce, we found that EBV-CTL therapy was reliable and effective. The response rate among all cases included was 66% (36 achieved CR and 14 achieved PR), which demonstrated the efficacy of EBV-CTLs. More than the half cases showed decreasing EBV-DNA level. Adverse effects were rare. GVHD is reported to be one of the major risks of this therapeutic modality [19,20]. However, we found only one case of GVHD among all the cases included, proving that the therapy was viable and safe in SOT recipients.

EBV-CTLs are always used after SOT recipient illness exacerbation due to limits of costs and technical difficulties. CTLs originated from HLA-matched donors or

n the study.
. =
included
the studies
Ę
Characteristics (
4
Table

EBV DNA after therapy (range)	EBV DNA was not detectable in 7 patients' blood	≤500 copies/ml	0 (0–11 145) copies/ml	10 decreased and 7 no response (EBV-DNA positive before infusion); 9 increased (EBV-DNA negative before infusion)	0 copies/ml 0 copies/ml 1 142 185 copies/ml	5450 (400–25 000) copies/ml, 4 decreased and 2 increased	0-300 copies/ml	The level of EBV DNA decreased 0.conjec/ml		A
Response rate (%)	54.8	00	72.7	48.4	66.7	100	100	, 00 ,	2	~
Clinical outcome	CR: 2, PR: 5, SD: 1, POD: 5	CR: 2	CR: 7, PR: 1, SD: 2, POD: 1 (DEAD)	CR: 12, PR: 3, SD: 16 (DEAD: 7)	CR CR DEAD (respiratory/	CR: 1, PR: 5	CR: 5	S. CR	х 2	PTLD : CR, patients dead due to other reason
Follow-up period	Up to 115 months	126 weeks More than 65 months	14y (1–17)	Up to 7.5 years	249 days 106 days 11 days	More than 1 year	31m (16–68)	140 weeks More than	More than 21 months 21 months	123 days
Adverse events	1–3 Grade I acute GvHD of the skin	8	 Fever: 1, vomiting: 1, tachycardia: 1 	1-8 NONE	4 NONE 8	1-4 AST rising: 1	2–5 None	6 Nausea, arthralgia, and fatigue 3 NONF	NON N	4 NONE
CTL (dose)	1 × 10 ⁶ per kg	2×10^7 per m ² BSA	2 × 10 ⁶ per kg	2 × 10 ⁶ per kg	2 × 10 ⁶ per kg	5×10^7 per m ² BSA	2×10^7 per m ² BSA	20 × 10 ⁶ cells/dose 5 × 10 ⁶	per kg	$\begin{array}{l} 35 \times 10^{6} \\ \text{cells} \times 2 \\ \text{doses} + 60 \times \\ 10^{6} \\ \text{cells} \times \end{array}$
	EBV-BLCL- sensitized EBV-CTLs	EBV LMP-1- and Za-specific	CILS EBV-BLCL- sensitized EBV-CTLS	EBV-BLCL- sensitized EBV-CTLs	EBV-BLCL- sensitized EBV-CTLs	EBV-BLCL- sensitized EBV-CTLs	EBV-BLCL- sensitized EBV-CTLs	EBV-BLCL- sensitized EBV-CTLs FRV-BLCL-	EBV-CTLS EBV-CTLS	EBV-BLCL- sensitized EBV-CTLs
CTL (type)	HLA-matched third party	Autologous EBV-specific CTL	HLA-matched third party	HLA-matched third party	HLA-matched third party	Autologous EBV-specific CTL	Autologous EBV-specific CTL	Autologous EBV-specific CTL HI A-matched	function third party (father) HLA-matched third party (schlino)	Autologous EBV-specific CTL
EBV DNA before therapy (range)	¢ N	3 000 copies/ml 150 000 copies/ml	64 397 (1 617– 1 000 000) copies/ml	339- 12 200 000 (17 positive) copies/ml	0 121 copies/ml 191 703 copies/ml	5 821 (2 500– 20 900) copies/ml	0-10000 copies/ml	EBV-DNA positive 20 coniec/10 ⁵	PBMC	EBV-DNA positive
Prior therapy failed	RIS, rituximab, chemotherapy, radiotherapy	RIS, rituximab, chemotherapy, radiotherapy	RIS, rituximab, chemotherapy, immunoglobulins, antiviral drugs	RIS, rituximab, chemotherapy, radiotherapy, antiviral drugs, surgery, anti-ILG	RIS, rituximab, chemotherapy, antiviral drugs	RIS, rituximab, chemotherapy, radiotherapy, antiviral drugs,	surgery RIS, rituximab, chemotherapy, surgery, antiviral drugs	RIS, antiviral drugs RIS rituximab	nus, muximus, chemotherapy, radiotherapy	RIS, chemotherapy, antiviral drugs, surgery
PTLD type	Polymorphic PTLD (plasmacytoid): 1, polymorphic PTLD (DLBCL): 3, monomorphic PTLD (DLBCL): 8, (DLBCL): 8, Hodgkin-like PTLD: 1	Monomorphic PTLD (DLBCL) EBV+ Hodgkin-like PTLD	Polymorphic PTLD: 2, monomorphic PTLD: 7, Hodgkin-like PTLD: 1, EBV + PTLD (unspecified	Hyperbiatic PTLD: 7, Polymorphic PTLD: 7, Polymorphic PTLD: 7, Monomorphic PTLD PTLD(Burkit), 1, PTLD(Burkit), 1, PTLD: 5 PTLD: 5	Polymorphic B-cell PTLD:1 Monomorphic B-cell PTLD(DLBCL):2	Polymorphic PTLD: 2, PTLD (unspecified type): 4	plasmacytic hyperplasia PTLD: 1, plasmacytoma PTLD: 1, polymorphic B-cell PTLD: 1, monoclonal	EBV+PTLD (unspecified type) B-cell lymnhoma	e-centymphonia monoclonal B-cell lymphoma	Polymorphic B-œll PTLD
Type of transplant	Heart: 3, liver: 2, lung: 1, kidney: 5, small bowel: 1, heart +	Kidney: 2	Liver: 5, small bowel + liver:5, liver +	heart:2, liver:10, lung:2, kidney:13, liver + small bowel:3, heart +	Kidney: 1 Heart + Iung: 1 Lung: 1	Heart: 2, liver: 4	Kidney: 5	Heart Kidnev: 1	Liver:1	Lung
Sex (M/F)	0 6/7	Female Male	47	18/13	Female: 3	5/1	4/1	Female Male ⁻ 2	Marc	Male
Age (median; s range)	10.7y (0.7–75.2	52y 65y	40m (12–144)	41y (1–76)	18y 52y 58y	2.5y (0-3.5	11y (2–14)	57y NA	ž	40y
Patient	£	2	=	٣	m	Q	μ	- ~	N	-
Area	USA	South Korea	¥.	ž	Australia	USA	USA	USA	t no	Australia
Study design	Cohort	Case series	Case series	Case series	Case series	Case series	series	Case report	series	Case report
tudy (year)	rockop, S. (2020)	im, N. (2018)	hiou, F.K. (2018)	laque, T. (2007)	andhi, M.K. (2007)	avoldo, B (2006)	omoli, P. (2005)	herritt, M.A. (2003)	(2002)	hanna, R. (1999)

Transplant International 2021; 34: 2483–2493

© 2021 Steunstichting ESOT. Published by John Wiley & Sons Ltd

EBV-CTLs for refractory EBV-PTLD in SOT recipients

Study (year)	Study design	Area	Patients	Age (median; range)	Sex (M/F)	Type of transplant	PTLD type	Prior therapy failed	EBV DNA before therapy (range)	CTL (type)		CTL (dose)	Adverse events	Follow-up period	Clinical outcome	Response rate (%)	EBV DNA after therapy (range)
Emanuel, D.J. (1997)	Case report	USA	-	11y	Male	Lung	Polymorphic B-cell PTLD	RIS, chemotherapy, radiotherapy	EBV-DNA positive	HLA-matched third party (sibling)	MA	1 × 10 ⁶ per kg 3	Moderate dyspnea, acute pulmonary rejection	9 months	CR	~	NA
CR: Cor Graft-ve	nplete rsus-h	remiss ost dise	sion; l ease;	PR: Part PTLD: F	tial rem ost-tra	ission; ;	SD: Stable dise lymphoprolife	ase; POD: Pro rative disease;	ogression o BSA: body	f disease; B surface are	tLCL: B ea; NA:	Lymphoblasto No available.	id cell line	s; CTL: 0	Cytotoxic	: T lymp	hocytes; GvHD:

Liu et al.

recipients. CTL lines were generated *ex vivo* and acquired cytotoxic and antiviral specificity. CTLs infused into recipients can robustly restore cellular immune responses after EBV infection [19] and eradicate EBV-infected cells with mild adverse effects or complications like GVHD. Some studies have reported the safety, efficacy, and viability of EBV-CTL treatment for PTLD in HSCT patients [21–23].

Although the safety of EBV-CTLs in the treatment of EBV-associated PTLD has been demonstrated, there are still some adverse effects, including mild systemic nonspecific symptoms and a case of Grade I cutaneous GVHD presenting with transient skin rash. It could have been related to the HLA match. In previous adoptive cell immunotherapy for HSCT patients, higher response rates have been seen in patients treated with more closely HLA-matched EBV-CTLs, with fewer adverse effects [9]. However, EBV-CTL reinfusion in 33 HSCT and 13 SOT patients by Prockop et al. in 2020 indicated that there was no significant association between degree of HLA matching and subsequent responses [13]. For SOT patients, self-derived EBV-CTLs may be the safest treatment option. Our study showed 100% remission in patients using autologous EBV-CTLs, but the remission rate of patients using EBV-CTLs from HLA-matched third-party healthy donors fluctuated between 48.4% and 100%. Autologous EBV-CTLs have been shown equally effective in treating EBV-associated lymphoma, but EBV viremia is difficult to clear [7,8,10,17]. Moreover, due to treatment with rituximab and other chemotherapeutic drugs, autologous EBV-CTLs were difficult to generate, and the cell function was impaired. The number of available cells was small, and it was difficult to use them timely in treatment. To provide rapid and reliable access, partially HLA-matched EBV-CTLs derived from healthy donors were explored.

For EBV-positive transplant recipients, the oncogenic impact of EBV is the key pathognomonic driver of PTLD evolution, while pathogenesis of PTLD in EBVnegative patients is unclear. Adoptive immunotherapy can stimulate the immune system and induce a robust immune response [18]. Infusion of autologous or HLAmatched third-party EBV-CTLs into transplant recipients with PTLD could induce a vigorous EBV-specific cellular immune response [19,24]. Apart from EBV-CTLs, researchers have tried to infuse other classes of immune cells into transplant recipients to treat PTLD.

Xiang *et al.* [25] applied aminobisphosphonate pamidronate-expanded $V\gamma 9V\delta 2$ T cells to kill EBVtransformed autologous lymphoblastoid cells through $\gamma\delta$ -T-cell receptor and NKG2D receptor triggering and Fas and tumor necrosis factor-related apoptosis

Fable 4. Continued.

inducing ligand (TRAIL) engagement. Nalesnik *et al.* [26] used lymphokine-activated killer cells to treat patients with PTLD and some achieved clinical remission. Chimeric antigen receptor T cells have been used in laboratory studies or clinically [27], and notable efficacy has been obtained. One emerging approach could be found by using different types of immune cells for adoptive therapy. It has been revealed that natural killer (NK) cells might have a notable role in PTLD [28]. It is plausible to infuse autologous or donor NK cells for immunotherapy. In general, adoptive immunotherapy has potential in PTLD, with various types of immune cells used for infusion. Further research is needed.

Researchers have observed that EBV-DNA levels in peripheral blood of transplant recipients with earlystage PTLD are higher than in recipients without PTLD. This higher viral load antedates clinical symptoms and indicates more risk for PTLD evolution [29,30].

EBV nuclear antigen IgG positivity and low/absent EBV viral load are recommended before retransplantation [31]. Patients with high level of EBV-DNA should be intensively monitored. Although long-term prophylactic antiviral therapy with serial estimation of EBV viral load has been advised by some investigators [32,33], a meta-analysis has provided evidence that data are inadequate to support the routine use of antivirals in high-risk EBV-naïve SOT recipients to reduce the incidence of PTLD [34]. In our findings, EBV-DNA levels decreased in several studies after treatment. Corresponding cases experienced CR or PR, indicating that EBV-DNA levels have potential to guide treatment and predict survival [6,8,12]. We suppose that EBV-DNA levels could serve as a good marker to judge the effectiveness of treatment of PTLD.

Currently, the standardization and optimal matrix for EBV viral load measurement (whole blood versus plasma) remain uncertain [35,36]. It is crucial to formulate an array of rational criteria for EBV viral load measurement.

In the studies included in our review, EBV-CTL infusion doses differed. The dose in every clinical trial was determined by the clinician according to the patient's condition. It was obvious that there were no unified criteria for the number of cells in adoptive therapy. This may be due to the lack of reports on the use of this therapy. Additional studies are required to explore the standard treatment protocol.

Our review had several important strengths and limitations. To our knowledge, it is the first review of adoptive therapy in SOT patients compared with other studies that mostly focused on patients after HSCT. When we started collecting material for this review, we aimed at performing a meta-analysis to gain important statistical validation of the success of anti-EBV adoptive immunotherapy. We tried to increase the number of studies retrieved through a combination of a variety of databases and manual searches. Most of the reported studies were case reports or case series, and only a minority of them enrolled enough patients to generate statistical conclusions. Because of the relatively low frequency of PTLD, it was understandable that randomized controlled trials or cohort studies were difficult to find. In addition, the significant discrepancies among schedules of administration, number of transferred cells, and confounding factors, such as the inclusion of patients undergoing radiotherapy and chemotherapy, precluded the possibility of combining patients into homogeneous groups for statistical analysis. Furthermore, the study did not address the impact of EBV-CTLs on reducing EBV-DNA to prevent PTLD. As such, although the evidence of this study is not strong enough to prove the use of adoptive immunotherapy to treat refractory PTLD after SOT, based on our findings, EBV-CTLs are a useful salvage treatment strategy and perhaps the last choice in patients with large tumor burdens.

Authorship

LY Sun, L Wei, JY Liu, and JM Zhang participated in research design. JY Liu and JM Zhang participated in data collection, data analysis, and manuscript writing. HS Zhan participated in data analysis. JY Liu and JM Zhang contributed equally to this work.

Funding

This study was funded by Capital's Funds for Health Improvement and Research (No. 2020-1-2024).

Conflict of interest

The authors have declared no conflicts of interest.

Acknowledgements

The authors thank Professors Li-Ying Sun and Lin Wei for enlightening tutorials. We acknowledge the support of Capital's Funds for Health Improvement and Research (No. 2020-1-2024).

REFERENCES

- 1. Penn I, Hammond W, Brettschneider L, Starzl TE. Malignant lymphomas in transplantation patients. *Transpl Proc* 1969; 1: 106.
- Dierickx D, Habermann TM. Posttransplantation lymphoproliferative disorders in adults. *N Engl J Med* 2018; 378: 549.
- Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and metaanalyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ (Clinical research ed.) 2009; 339: b2700.
- Wells GA, Shea B, O'Connelloga J. The Newcastle-Ottawa Scale (NOS) for Assessing The Quality of Nonrandomised Studies in Meta-analyses. 2014. The Ottawa Hospital Research Institute. http://www.ohri.ca/programs/ clinical_epidemiology/oxford.asp
- Moga C, Bing G, Harstall C. Development of a quality appraisal tool for case series studies using a modified Delphi technique. 2012. Retrieved from http://www.ihe.ca/publications/ development-of-a-quality-appraisal-toolfor-case-series-studies-using-a-modifieddelphi-technique
- Chiou FK, Beath SV, Wilkie GM, Vickers MA, Morland B, Gupte GL. Cytotoxic T-lymphocyte therapy for post-transplant lymphoproliferative disorder after solid organ transplantation in children. *Pediatr Transplant* 2018; 22: e13133.
- Savoldo B. Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs). *Blood* 2006; 108: 2942.
- Sherritt M, Bharadwaj M, Burrows J, et al. Reconstitution of the latent Tlymphocyte response to Epstein-Barr virus is coincident with long-term recovery from posttransplant lymphoma after adoptive immunotherapy. *Transplantation* 2003; **75**: 1556.
- 9. Haque T, Wilkie G, Jones M, *et al.* Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. *Blood* 2007; **110**: 1123.
- Comoli P, Maccario R, Locatelli F, et al. Treatment of EBV-related postrenal transplant lymphoproliferative disease with a tailored regimen including EBV-specific T cells. Am J Transplant 2005; 5: 1415.
- 11. Wilkie GM, Taylor C, Jones MM, et al. Establishment and characterization of a bank of cytotoxic T

lymphocytes for immunotherapy of epstein-barr virus-associated diseases. *J Immunother* 2004; **27**: 309.

- 12. Kim N, Sohn HJ, Oh JH, et al. Infusions of Epstein-Barr virus-specific cytotoxic T lymphocytes as post-remission therapy in high-risk post-transplant lymphoproliferative disorder patients: report of two cases. Int J Hematol 2018; 107: 596.
- Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximabrefractory EBV-associated lymphoma following transplantation. J Clin Investig 2020; 130: 733.
- Gandhi MK, Wilkie GM, Dua U, et al. Immunity, homing and efficacy of allogeneic adoptive immunotherapy for posttransplant lymphoproliferative disorders. Am J Transplant 2007; 7: 1293.
- Sun Q, Burton R, Reddy V, Lucas K. Safety of allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for patients with refractory EBVrelated lymphoma. *Br J Haematol* 2002; **118**: 799.
- Emanuel DJ, Lucas KG, Mallory GB, et al. Treatment of posttransplant lymphoproliferative disease in the central nervous system of a lung transplant recipient using allogeneic leukocytes. *Transplantation* 1997; 63: 1691.
- Khanna R, Bell S, Sherritt M, et al. Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci USA 1999; 96: 10391.
- Abbas F, El Kossi M, Shaheen IS, Sharma A, Halawa A. Posttransplantation lymphoproliferative disorders: Current concepts and future therapeutic approaches. World J Transplant 2020; 10: 29.
- Perica K, Varela J, Oelke M, Schneck J. Adoptive T cell immunotherapy for cancer. *Rambam Maimonides Med J* 2015; 6: e0004.
- Papadopoulos E, Ladanyi M, Emanuel D, *et al.* Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. *N Engl J Med* 1994; **330**: 1185.
- 21. Uhlin M, Okas M, Gertow J, Uzunel M, Brismar TB, Mattsson J. A novel haploidentical adoptive CTL therapy as a treatment for EBV-associated lymphoma after stem cell transplantation. *Cancer Immunol Immunotherap* 2010; **59**: 473.
- 22. Prockop S, Suser S, Doubrovina E, et al. Adoptive therapy with EBV-

specific T cells for treatment of CNS EBV post-transplant lymphoproliferative disease arising after hematopoietic stem cell transplant or solid organ transplant. *Blood Conference*, 60th Annual Meeting of the American Society of Hematology, ASH 2018. United States. 132 (Suppl. 1) (no pagination).

- 23. Malhotra B, Rahal AK, Farhoud H, Moore DF, Kallail KJ. Treatment of recurrent posttransplant lymphoproliferative disorder with autologous blood stem cell transplant. *Case Rep Transplant* 2015; **2015**: 801082.
- 24. Thorley-Lawson D, Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. *N Engl J Med* 2004; **350**: 1328.
- Xiang Z, Liu Y, Zheng J, et al. Targeted activation of human Vγ9Vδ2-T cells controls epstein-barr virusinduced B cell lymphoproliferative disease. Cancer Cell 2014; 26: 565.
- Nalesnik MA, Rao AS, Furukawa H, et al. Autologous lymphokine-activated killer cell therapy of epstein-barr viruspositive and -negative lymphoproliferative disorders arising in organ transplant recipients1. *Transplantation* 1997; 63: 1200.
- Krishnamoorthy S, Ghobadi A, Santos RD, et al. CAR-T therapy in solid organ transplant recipients with treatment refractory posttransplant lymphoproliferative disorder. Am J Transplant 2021; 21, 809.
- Horowitz A, Strauss-Albee D, Leipold M, et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med 2013; 5, 208ra145.
- Gulley M, Tang WJCMR. Using Epstein-Barr viral load assays to diagnose, monitor, and prevent posttransplant lymphoproliferative disorder. *Clin Microbiol Rev* 2010; 23: 350.
- Dharnidharka VR, Webster AC, Martinez OM, Preiksaitis JK, Leblond V, Choquet S. Post-transplant lymphoproliferative disorders. *Nat Rev Dis Primers* 2016; 2: 15088.
- 31. Hanto DW. Retransplantation after post-transplant lymphoproliferative diseases (PTLD): when is it safe? *Am J Transplant* 2004; **4**, 1733.
- Opelz G, Daniel V, Naujokat C, Fickenscher H, Döhler B. Effect of cytomegalovirus prophylaxis with immunoglobulin or with antiviral drugs on post-transplant non-Hodgkin lymphoma: a multicentre retrospective analysis. *Lancet Oncol* 2007; 8: 212.
- 33. Höcker B, Böhm S, Fickenscher H, *et al.* (Val-)Ganciclovir prophylaxis

reduces Epstein-Barr virus primary infection in pediatric renal transplantation. *Transpl Int* 2012; **25**: 723.

34. AlDabbagh MA, Gitman MR, Kumar D, Humar A, Rotstein C, Husain S. The role of antiviral prophylaxis for the prevention of epstein-barr virus-associated posttransplant lymphoproliferative disease in solid organ transplant recipients: A systematic review. *Am J Transplant* 2017; **17**: 770.

- 35. Greijer A, Stevens S, Verkuijlen S, *et al.* Variable EBV DNA load distributions and heterogeneous EBV mRNA expression patterns in the circulation of solid organ versus stem cell transplant recipients. *Clin Dev Immunol* 2012; **2012**: 543085.
- 36. Ruf S, Behnke-Hall K, Gruhn B, et al. Comparison of six different specimen types for Epstein-Barr viral load quantification in peripheral blood of pediatric patients after heart transplantation or after allogeneic hematopoietic stem cell transplantation. J Clin Virol 2012; 53: 186.