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SUMMARY

Machine learning has recently been proposed as a useful tool in many
fields of Medicine, with the aim of increasing diagnostic and prognostic
accuracy. Models based on machine learning have been introduced in the
setting of solid organ transplantation too, where prognosis depends on a
complex, multidimensional and nonlinear relationship between variables
pertaining to the donor, the recipient and the surgical procedure. In the
setting of liver transplantation, machine learning models have been devel-
oped to predict pretransplant survival in patients with cirrhosis, to assess
the best donor-to-recipient match during allocation processes, and to fore-
see postoperative complications and outcomes. This is a narrative review
on the role of machine learning in the field of liver transplantation, high-
lighting strengths and pitfalls, and future perspectives.
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The difference between inferential statistics
and machine learning based models in medical
research

Artificial Intelligence is an umbrella term usually indicat-

ing a field containing subsectors, such as natural lan-

guage processing, deep learning, and machine learning

(ML, Table 1). As most of the applications discussed

here have been analyzed using ML models, this is the

reason why we prefer this term throughout the manu-

script.

The classical statistical approach is based on inferen-

tial analyses. Here, results are derived usually making

strong assumptions about the data distribution [1]. This

inferential model has been de facto the standard proce-

dure for analyzing scientific experiments since 1940.
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Conversely, the ML model does not make assump-

tions about the data structure, or on the mechanisms

that generate data, making it more “agnostic” than sta-

tistical inference [2]. Further, it focuses mainly on pre-

dictive accuracy, which could be addressed also in

standard statistics, but with models that are usually con-

strained by strong assumptions (e.g., linear regression

and logistic regression). Finally, the ML approach is

characterized by the widespread use of cross-validation

(e.g., the procedure that approximates the use of the

predictive model on new data; Table 1). Although

widely used also in classical statistical models, cross-val-

idation is a compulsory step in ML, able to reduce the

risk of overfitting more than common hold-out meth-

ods (i.e., providing good results on the training set, and

bad results on the validation set).

In recent years, ML has been increasingly applied in

Medicine, with an exponential growth in the publica-

tions describing its use (Fig. 1). These models have con-

sequently been widely applied in many fields of

Gastroenterology and Hepatology to facilitate clinicians’

diagnostic or therapeutic algorithms, or predict patient

outcomes [3,4]. Examples of applications of ML in

Hepatology include: predicting fibrosis in patients with

viral hepatitis or nonalcoholic fatty liver disease; ascer-

taining the presence of esophageal varices in patients

with cirrhosis; establishing the prognosis for patients

with end-stage liver disease [3,5]. Certain aspects of

solid organ transplantation, such as allocation, post-

transplant outcome, and the management of immuno-

suppression, have also been explored using ML-based

models [6–11].
In the last decade, there has also been interest in

applying ML to liver transplantation (LT). There are

two main reasons why this could theoretically be an

ideal setting for ML. First, it is hard to establish the

prognosis for the most common pre-LT condition, cir-

rhosis, because it can be influenced by several events as

bacterial infection, variceal bleeding, acute kidney injury

and/or hepatic encephalopathy. Second, the wide gap

between donor supply and recipient demand imposes

the need to optimize donor-to-recipient matching and

improve postoperative graft and patient survival.

Here we provide a narrative review on the application

of ML to the field of LT, highlighting strengths and pit-

falls, and future perspectives (Table 2).

Predicting mortality while awaiting LT

Initially developed only to predict mortality in cirrhotic

patients undergoing trans-jugular intrahepatic portosys-

temic shunting, the Model for End-Stage Liver Disease

(MELD) score has become a reliable tool for estimating

3-month mortality for “standard” patients with end-

stage liver disease [12,13]. It has consequently been

introduced in many LT programs around the world as

Table 1. Glossary.

Artificial neural network A network of artificial neurons. Artificial neurons are built to include the basic functioning of a
biological neuron. Interpretability: low

Bayesian network model A network based on specifying relationships of conditional dependence between variables.
Interpretability: high

Classification tree Trees of decision rules with cutoffs that maximize predictive accuracy
Interpretability: high

Cross-validation Procedure that approximates the use of the predictive model on new data. The data are split
randomly into a number of equally sized subsets (for example 10). The model to be evaluated is
(developed and) estimated on all but one of the subsets and applied to the set that was left out.
This is repeated several times, every time leaving out a different set. The error made in the
prediction for the left out sets is used to evaluate the predictive ability of the model

Deep neural network A network made of multiple levels of nonlinear operations, such as neural nets with many hidden
layers
Interpretability: low

Deep learning Learning on data, using a deep neural network
Goodness of fit Degree of overlap between actual data and predicted data, according to applied the model
Random forest A model with multiple, randomly selected, decision trees that are averaged to make the prediction

Interpretability: low
Support vector machine ML approach used to sort two data groups, drawing lines (hyperplanes) to separate the groups

according to patterns
Interpretability: low
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the main tool for organ allocation, leading to a signifi-

cant reduction in waiting list mortality [14]. The MELD

score is less accurate, however, in capturing the progno-

sis for particular conditions, like refractory ascites or

hepatocellular carcinoma—which commonly character-

ize cirrhotic patients in need of a transplant—, or for

sickest candidates [15].

ML has shown promise in making the short-term

prognosis for patients awaiting a transplant more reli-

able. Bertsimas et al. [16] developed a model using ML

with optimal classification trees (Table 1) to predict

mortality or waiting list removal in cirrhotic patients

listed for LT. Using data from waitlisted patients

between 2002 and 2016 in the USA, they developed an

optimized prediction of mortality score, which was sub-

sequently run in a liver simulated allocation model; it

was able to predict 3-month mortality better than

MELD-Na scores (AUC 0.859 vs. 0.841) or Match-

MELD scores (AUC 0.859 vs. 0.823). Importantly, pre-

diction accuracy differed between the new model and

MELD-Na especially among the sickest candidates and

was proven to save on average at least 418 more lives

per year when compared with the currently adopted,

MELD-based system.

Cucchetti et al. [17] further examined this topic by

constructing an artificial neural network (ANN), a

brain-inspired model that resembles that of biological

neurons. During the learning phase, the network

adjusts the weights (e.g., strengths of the synapses of

the virtual neuron), increasing the predictive ability

(Table 1). The ANN model was designed to predict

3-month outcome in 251 Italian patients and 137

English patients waiting for a transplant between 1999

and 2003, and included ten biochemical parameters,

that are commonly recorded at time of waiting list

registration. Although the two cohorts (internal and

external validation sets) differed slightly regarding

indications to LT or severity of underlying liver dis-

ease (their mean MELD scores were 16.7 for the Ital-

ian cohort and 14.7 for the English patients), the

ANN performed better than the MELD score in pre-

dicting 3-months mortality in both groups (internal

training cohort, ANN vs. MELD AUC [95% CI]: 0.98

[0.94–0.99] vs. 0.86 [0.80–0.91]; P = 0.002; internal

validation cohort, ANN vs. MELD AUC [95% CI]:

0.95 [0.86–0.99] vs. 0.85 [0.74–0.96]; P = 0.032; exter-

nal cohort, ANN vs. MELD AUC [95% CI]: 0.96

[0.91–0.98] vs. 0.86 [0.79–0.91]; P = 0.04).

Figure 1 Trend of citations on PubMed regarding artificial intelligence and machine learning applied in medicine, gastroenterology and hepa-

tology between 2000 and 2020.
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ML-based models have been used to predict survival

in noncirrhotic patients awaiting a transplant as well. In

a proof-of-concept study, Speiser et al. [18] showed that

ML could adequately predict day-by-day outcome in

patients with acetaminophen-induced acute liver failure

(ALF). The Authors included 1042 patients with ALF

between 1998 and 2016, and divided them in a training

and an internal dataset. Identifying as the primary end-

point the occurrence of encephalopathy within the first

7 days of hospitalization, the study showed that exten-

sions or variants of random forest (Table 1) accurately

predicted patient outcomes. The best accuracy was pro-

vided by the binary mixed model tree in the training

dataset [AUC: 0.907 (95% CI 0.894–0.918)], and by

binary mixed model tree and support vector machine

(Table 1) in the validation dataset (AUCs equal to

0.907 and 0.927; respectively), even if an external valida-

tion was not provided.

An ANN-based model was applied to 54 pediatric

patients with ALF, too, showing a good prognostic

accuracy when compared with the commonly used

scores (ANN vs. MELD-PELD peak score ≥42 AUC:

0.96 vs. 0.86), but the small sample size and the wide

study period (over 10 years) prevented any robust con-

clusions from being drawn [19].

In summary, few studies are currently available on

the role of ML in predicting outcomes in candidates for

LT. Some interesting results have emerged for patients

with cirrhosis, with preliminary models showing a simi-

lar—or perhaps better—predictive accuracy than the

commonly used scores. This would theoretically be of

great interest for the purposes of organ allocation, but

deserve further exploration, especially among patients

with ALF and pediatric populations. Moreover, the

absence of external validation for many of available

studies may represent another pitfall in the interpreta-

tion of currently published results.

Optimizing organ allocation and improving
post-LT short-term survival

The rationale behind organ allocation systems is to

maximize the use of available organs and reduce the

mortality of patients on the waiting list [20,21]. Theo-

retically, organ allocation may be driven by three

important principles: urgency (allocation to the patient

estimated to have the shortest survival without a trans-

plant); utility (allocation to the patient estimated to

have the longest post-transplant survival); or transplant

benefit (allocation based on the difference between the

mean survival estimates with and without a transplant).

Despite several efforts, a unified and standardized inter-

national model has yet to be adopted. This is partly due

to significant ethical and socio-cultural differences

around the world [22,23], and also because only about

25% of patients undergo “benchmark” transplantations,

with a wide variability across centers [24,25]. Therefore,

a model that can perform well for one population may

be less appropriate for others.

Most LT programs adopting an urgency-based alloca-

tion algorithm rely on a purely biochemical system

based on the MELD score, or subsequent revisions

[14,26]. In utility-based organ allocation systems, the

MELD score is not a reliable tool because it is a weak

predictor of post-LT mortality. In this setting, where

appropriate donor–recipient pairing is important in

order to improve outcomes, several scores, which con-

sider the characteristics of donors [27], or both donors

and recipients [28,29] have been developed. Even if

such scores derive from objective factors that are readily

available at time of organ allocation, whether post-

transplant outcome can be predicted from just a hand-

ful of variables remains debatable.

Brice~no et al. [30] applied ML to the complex sce-

nario of organ allocation, combining 57 donor-, recipi-

ent-, or surgery-related variables in an ANN model.

Using the outcomes of 1003 patients who received a

graft in Spain between 2007 and 2008, they showed that

the ANN model was more accurate than commonly

used logistic regression models in predicting 3-month

graft survival (ANN vs. MELD AUC: 0.80 vs. 0.50,

P = 0.001) and graft loss (ANN vs. MELD AUC: 0.82

vs. 0.41; P = 0.001) for each donor-to-recipient pair.

This better accuracy was confirmed also after comparing

the ML model with above-mentioned scores [28,29]

(graft survival: ANN vs. balance of risk AUC 0.80 vs.

0.67; P = 0.001; graft loss: ANN vs. balance of risk

AUC: 0.82 vs. 61; P = 0.001).

This model was further validated in an English

cohort of 858 patients who underwent LT between 2002

and 2010 (patients with HCC were ruled out) [31]. Its

accuracy in predicting 3- and 12-month graft survival

(ANN AUC: 0.94 and 0.78, respectively) and graft loss

(ANN AUC: 0.94 and 0.82, respectively) was signifi-

cantly better than that of the commonly used scores,

being balance of risk the second-best score (3- and 12-

month graft survival AUC: 0.84 and 0.71, respectively).

The model also seemed to perform better than in the

training cohort, probably due to differences between the

two cohorts’ baseline characteristics.

Another experience in this field came from Australia,

where two ML-based models were developed to predict
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early graft survival, considering the characteristics of

180 deceased donor LT recipients transplanted between

2010 and 2015 [32]. The models included 15 of 276

baseline donor and recipient variables, and exhibited a

good accuracy in predicting graft failure at 1 month

(random forest AUC [95% CI] 0.818 [0.812–0.824];
ANN AUC [95% CI]: 0.835 [0.831–0.840], respectively),
in a better way than other scores obtained with logistic

regression analyses (Donor risk index [27] AUC [95%

CI] 0.680 [0.669–0.690]; SOFT score AUC [95% CI]:

0.638 [0.632–0.645], respectively).
Several studies attempted to apply ML to the predic-

tion of graft and/or patient survival at 3 months,

obtaining suboptimal results in terms of accuracy [33–
35]. This might be because donor variables could influ-

ence the early post-transplant phase more than in sub-

sequent months (when complications unrelated to the

liver might also occur). Although these studies demon-

strated that ML-based models were more accurate than

commonly adopted scores, the gain was often not clini-

cally relevant. In the study by Lau et al. [32], for

instance, the model previously applied for prediction of

30-day graft failure provided a less accurate prediction

when the endpoint was the 90-day outcome [random

forests and ANN AUCs (92% CI): 0.715 (0.705–0.724)
and 0.559 (0.548–0.569), respectively].

In summary, ML will presumably be a useful tool for

improving organ allocation and predicting short-term

graft and patient survival in the next future. Neverthe-

less, the available studies provided information on

patients transplanted over a broad period of time, with

different liver disease etiologies and involving different

donors from those being managed in the future. There-

fore, the applicability of ML-based prognostics to cur-

rent or future LT cohorts remains to be seen.

Predicting post-LT long-term outcome and
post-LT complications

Long-term outcome after solid organ transplantation is

even more difficult to predict than in the early post-

transplant period because it may also be influenced by

conditions unrelated to the graft, such as infections,

malignancies and metabolic or cardiovascular diseases

[36,37]. Khosravi et al. [38] used an ANN-based model

to predict long-term outcome (beyond one year after

LT) in 1168 patients >2 years old who underwent LT

(10.7% were cases of living donor LT) between 2008

and 2013. The most accurate model included 16 of 37

baseline predictors (five recipient characteristics, 10

intra or postoperative variables, and chronic rejection),

and afforded an accurate prognosis on patient survival

between 1 and 5 years after LT [AUC (standard error):

0.864 (0.043)], similar to what was retrieved by the

“standard” Cox’s proportional hazards model [AUC

(standard error) 0.806 (0.067)].

More results are available on the use of ML to foresee

commonly encountered complications after LT. Hughes

et al. [39] applied an ANN model to predict acute rejec-

tion early after LT in 117 adult recipients, using bio-

chemical characteristics (ALT, bilirubin and their

dynamic course) and timing since LT. The model

showed a good accuracy [AUC (95% CI) 0.902 (0.861–
0.944)], even if results might be interpreted with cau-

tion, since seven episodes of acute rejection were not

biopsy-proven, the liver disease etiologies were hetero-

geneous, and there were some cases of re-LT. Neverthe-

less, this was an important proof-of-concept study for

larger future investigations.

Hepatocellular carcinoma (HCC) recurrence has been

demonstrated in 6–18% of patients after LT, with a sig-

nificant impact on patient survival [40]. Composite

models of HCC recurrence, considering morphological,

clinical and biochemical characteristics, have been pro-

posed with a view to optimizing post-LT surveillance,

stratifying patients’ risk and tailoring their immunosup-

pressant therapy [41]. Marsh et al. [42] developed an

ANN model for predicting HCC recurrence at 1, 2, and

3 years post-LT, based on five risk factors (sex, tumor

number, size and intrahepatic distribution, and grade of

vascular invasion) retrieved from 178 LT recipients. The

ML model allowed to stratify patients into three groups

with different risk of recurrence, in order to theoreti-

cally deserve a tailored postoperative surveillance. The

same group adopted the previously developed ANN

model in combination with tissue genotyping for

microsatellite mutations or deletions in 103 explanted

livers with HCC [43]. This combination increased by

15% the predictive accuracy of ANN regarding post-LT

HCC recurrence (88% vs. 71%). The results were exter-

nally validated by Rodriguez-Luna et al. [44] in a small

cohort of patients transplanted between 1992 and 2002

in another American LT Center. The Author confirmed

that this composite model correctly predicted post-LT

HCC recurrence in 17/19 (89.5%) patients.

Some innovative results have come from the applica-

tion of ML regarding metabolic or renal complications

after LT. A study by Lee et al. [45] investigated the

probability of postoperative acute kidney injury (defined

as a maximal change in serum creatinine level during

the first two days after surgery). According to their

findings, ML-based model performed better than the
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standard statistical logistic regression model [random

forest vs. logistic regression analysis: AUC (95% CI):

0.61 (0.56–0.66) vs. 0.85 (0.81–0.89); P < 0.001], and

showed that cold ischemia time and intraoperative

mixed venous oxygen saturation were the most impor-

tant variables associated with renal dysfunction. The

inclusion of both living and deceased donor transplants,

and the small number of cases considered should be

taken into account when interpreting their findings,

however.

A further study conducted at by Bhat et al. [46]

explored the probability of new-onset diabetes after LT

in a large cohort of patients coming from the US trans-

plant registry. The Authors demonstrated that a high-

performance random forest model was able to predict

diabetes in 88% patients within a year after their trans-

plant. The risk of new-onset diabetes rose by 33% when

sirolimus was used instead of tacrolimus. The model

also showed that diabetes carried a 55% higher risk of

death at 10 years.

In summary, ML is attracting attention as an innova-

tive tool for predicting long-term post-LT complica-

tions. ML models may pave the way to a personalized

post-transplant follow-up, taking individual pre- and

post-LT features into account. Many of the above-men-

tioned studies are proofs of concept, so their prelimi-

nary results need to be further explored and confirmed.

More research is needed in the prediction of long-term

follow-up after transplantation.

Conclusions and future perspectives

As in other fields of Medicine and Gastroenterology and

Hepatology, ML will probably influence the clinical set-

ting of LT in the near future. ML modeling of LT data-

sets could improve prognostic accuracy, and the

applicability of the model’s predictions to new cases. It

could also facilitate the selection of the most influential

predictors from among the numerous variables com-

monly collected from donors and recipients. This would

aid clinicians in many settings, both before and after

surgery, improving patients’ outcomes and quality of

life, and fostering a personalized follow-up.

Several topics pertaining to the field of decompen-

sated cirrhosis will probably be further explored using

ML, such as the clinical course of acute-on-chronic liver

failure, or ALF, bacterial infections, recurrence of vari-

ceal bleeding or hepatic encephalopathy. This will be

helpful when it comes to considering a patient for a

transplant. We can also expect a further refinement of

prognostics at the time of surgery to be achieved by

exploring the use of extended-criteria donors or grafts

retrieved from donors after circulatory death. Moreover,

it would be useful to be able to predict disease recur-

rence (in cases of cholestatic and autoimmune disease),

tumor recurrence, or de novo cancers, also to improve

the management of immunosuppression (as already

seen in kidney transplant recipients) and patient adher-

ence [47–51] (Table 3).

The data produced by ML models should nonetheless

be interpreted with caution. Some models are unable to

shed light on the real contribution of a given factor, or

reveal how changing a given variable will affect the model.

It is also still unclear whether the accuracy of some mod-

els is reproducible in cohorts with different characteris-

tics. It is worth noting that the number and type of donor

and/or recipient variables used across studies, as well as

the types of ML model, differ significantly, so the results

of these studies are not comparable with one another.

Finally, one caveat of ML modeling lies in the difficulty of

interpreting the output of some of the models used to

analyze transplantation datasets (such as ANNs and ran-

dom forests). Other already available models derived

from regression analyses, as MELD score formula in

organ allocation, may still offer more readily interpretable

decision-making rules that can be incorporated in the

clinical decision-making process.

Finally, although ML can make accurate predictions,

it is ultimately up to health care workers to make deci-

sions based on their patient’s characteristics, clinical

condition, and expectations [3,52]. This is particularly

important in the setting of organ transplantation, where

issues of ethics and justice are of the utmost importance

and cannot be categorized as mere computational vari-

ables. Transplantation is not just about installing spare

parts, like a puzzle, and the human mind will retain a

leading role in this process [53].

Table 3. Potential fields of interest for future
development of ML before and after liver transplantation.

Before LT
Course of acute-on-chronic liver failure
Resolution of bacterial infections

During or soon after surgery
Allocation of extended-criteria donors and donors after
circulatory death

After LT
Primary disease recurrence (e.g., cholestatic diseases)
Immunosuppression management
Adherence after LT in special populations
De novo tumors after liver transplantation
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