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Machine learning in liver transplantation: a tool for
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Machine learning has recently been proposed as a useful tool in many
fields of Medicine, with the aim of increasing diagnostic and prognostic
accuracy. Models based on machine learning have been introduced in the
setting of solid organ transplantation too, where prognosis depends on a
complex, multidimensional and nonlinear relationship between variables
pertaining to the donor, the recipient and the surgical procedure. In the
setting of liver transplantation, machine learning models have been devel-
oped to predict pretransplant survival in patients with cirrhosis, to assess
the best donor-to-recipient match during allocation processes, and to fore-
see postoperative complications and outcomes. This is a narrative review
on the role of machine learning in the field of liver transplantation, high-
lighting strengths and pitfalls, and future perspectives.
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here have been analyzed using ML models, this is the
reason why we prefer this term throughout the manu-
script.

The classical statistical approach is based on inferen-

Artificial Intelligence is an umbrella term usually indicat-
ing a field containing subsectors, such as natural lan-
guage processing, deep learning, and machine learning
(ML, Table 1). As most of the applications discussed
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tial analyses. Here, results are derived usually making
strong assumptions about the data distribution [1]. This
inferential model has been de facto the standard proce-
dure for analyzing scientific experiments since 1940.
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Table 1. Glossary.

Machine learning in liver transplantation

Artificial neural network

A network of artificial neurons. Artificial neurons are built to include the basic functioning of a

biological neuron. Interpretability: low

Bayesian network model
Interpretability: high
Classification tree
Interpretability: high
Cross-validation

A network based on specifying relationships of conditional dependence between variables.
Trees of decision rules with cutoffs that maximize predictive accuracy

Procedure that approximates the use of the predictive model on new data. The data are split

randomly into a number of equally sized subsets (for example 10). The model to be evaluated is
(developed and) estimated on all but one of the subsets and applied to the set that was left out.
This is repeated several times, every time leaving out a different set. The error made in the
prediction for the left out sets is used to evaluate the predictive ability of the model

Deep neural network
layers
Interpretability: low
Deep learning
Goodness of fit
Random forest
Interpretability: low
Support vector machine
according to patterns
Interpretability: low

A network made of multiple levels of nonlinear operations, such as neural nets with many hidden

Learning on data, using a deep neural network
Degree of overlap between actual data and predicted data, according to applied the model
A model with multiple, randomly selected, decision trees that are averaged to make the prediction

ML approach used to sort two data groups, drawing lines (hyperplanes) to separate the groups

Conversely, the ML model does not make assump-
tions about the data structure, or on the mechanisms
that generate data, making it more “agnostic” than sta-
tistical inference [2]. Further, it focuses mainly on pre-
dictive accuracy, which could be addressed also in
standard statistics, but with models that are usually con-
strained by strong assumptions (e.g., linear regression
and logistic regression). Finally, the ML approach is
characterized by the widespread use of cross-validation
(e.g., the procedure that approximates the use of the
predictive model on new data; Table 1). Although
widely used also in classical statistical models, cross-val-
idation is a compulsory step in ML, able to reduce the
risk of overfitting more than common hold-out meth-
ods (i.e., providing good results on the training set, and
bad results on the validation set).

In recent years, ML has been increasingly applied in
Medicine, with an exponential growth in the publica-
tions describing its use (Fig. 1). These models have con-
sequently been widely applied in many fields of
Gastroenterology and Hepatology to facilitate clinicians’
diagnostic or therapeutic algorithms, or predict patient
outcomes [3,4]. Examples of applications of ML in
Hepatology include: predicting fibrosis in patients with
viral hepatitis or nonalcoholic fatty liver disease; ascer-
taining the presence of esophageal varices in patients
with cirrhosis; establishing the prognosis for patients
with end-stage liver disease [3,5]. Certain aspects of
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solid organ transplantation, such as allocation, post-
transplant outcome, and the management of immuno-
suppression, have also been explored using ML-based
models [6-11].

In the last decade, there has also been interest in
applying ML to liver transplantation (LT). There are
two main reasons why this could theoretically be an
ideal setting for ML. First, it is hard to establish the
prognosis for the most common pre-LT condition, cir-
rhosis, because it can be influenced by several events as
bacterial infection, variceal bleeding, acute kidney injury
and/or hepatic encephalopathy. Second, the wide gap
between donor supply and recipient demand imposes
the need to optimize donor-to-recipient matching and
improve postoperative graft and patient survival.

Here we provide a narrative review on the application
of ML to the field of LT, highlighting strengths and pit-
falls, and future perspectives (Table 2).

Initially developed only to predict mortality in cirrhotic
patients undergoing trans-jugular intrahepatic portosys-
temic shunting, the Model for End-Stage Liver Disease
(MELD) score has become a reliable tool for estimating
3-month mortality for “standard” patients with end-
stage liver disease [12,13]. It has consequently been
introduced in many LT programs around the world as
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Figure 1 Trend of citations on PubMed regarding artificial intelligence and machine learning applied in medicine, gastroenterology and hepa-

tology between 2000 and 2020.

the main tool for organ allocation, leading to a signifi-
cant reduction in waiting list mortality [14]. The MELD
score is less accurate, however, in capturing the progno-
sis for particular conditions, like refractory ascites or
hepatocellular carcinoma—which commonly character-
ize cirrhotic patients in need of a transplant—, or for
sickest candidates [15].

ML has shown promise in making the short-term
prognosis for patients awaiting a transplant more reli-
able. Bertsimas et al. [16] developed a model using ML
with optimal classification trees (Table 1) to predict
mortality or waiting list removal in cirrhotic patients
listed for LT. Using data from waitlisted patients
between 2002 and 2016 in the USA, they developed an
optimized prediction of mortality score, which was sub-
sequently run in a liver simulated allocation model; it
was able to predict 3-month mortality better than
MELD-Na scores (AUC 0.859 vs. 0.841) or Match-
MELD scores (AUC 0.859 vs. 0.823). Importantly, pre-
diction accuracy differed between the new model and
MELD-Na especially among the sickest candidates and
was proven to save on average at least 418 more lives
per year when compared with the currently adopted,
MELD-based system.
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Cucchetti et al. [17] further examined this topic by
constructing an artificial neural network (ANN), a
brain-inspired model that resembles that of biological
neurons. During the learning phase, the network
adjusts the weights (e.g., strengths of the synapses of
the virtual neuron), increasing the predictive ability
(Table 1). The ANN model was designed to predict
3-month outcome in 251 Italian patients and 137
English patients waiting for a transplant between 1999
and 2003, and included ten biochemical parameters,
that are commonly recorded at time of waiting list
registration. Although the two cohorts (internal and
sets) differed slightly regarding
indications to LT or severity of underlying liver dis-
ease (their mean MELD scores were 16.7 for the Ital-
ian cohort and 14.7 for the English patients), the
ANN performed better than the MELD score in pre-
dicting 3-months mortality in both groups (internal
training cohort, ANN vs. MELD AUC [95% CI]: 0.98
[0.94-0.99] vs. 0.86 [0.80-0.91]; P = 0.002; internal
validation cohort, ANN vs. MELD AUC [95% CIJ:
0.95 [0.86-0.99] vs. 0.85 [0.74-0.96]; P = 0.032; exter-
nal cohort, ANN vs. MELD AUC [95% CI]: 0.96
[0.91-0.98] vs. 0.86 [0.79-0.91]; P = 0.04).

external validation
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ML-based models have been used to predict survival
in noncirrhotic patients awaiting a transplant as well. In
a proof-of-concept study, Speiser et al. [18] showed that
ML could adequately predict day-by-day outcome in
patients with acetaminophen-induced acute liver failure
(ALF). The Authors included 1042 patients with ALF
between 1998 and 2016, and divided them in a training
and an internal dataset. Identifying as the primary end-
point the occurrence of encephalopathy within the first
7 days of hospitalization, the study showed that exten-
sions or variants of random forest (Table 1) accurately
predicted patient outcomes. The best accuracy was pro-
vided by the binary mixed model tree in the training
dataset [AUC: 0.907 (95% CI 0.894-0.918)], and by
binary mixed model tree and support vector machine
(Table 1) in the validation dataset (AUCs equal to
0.907 and 0.927; respectively), even if an external valida-
tion was not provided.

An ANN-based model was applied to 54 pediatric
patients with ALF, too, showing a good prognostic
accuracy when compared with the commonly used
scores (ANN vs. MELD-PELD peak score >42 AUC:
0.96 vs. 0.86), but the small sample size and the wide
study period (over 10 years) prevented any robust con-
clusions from being drawn [19].

In summary, few studies are currently available on
the role of ML in predicting outcomes in candidates for
LT. Some interesting results have emerged for patients
with cirrhosis, with preliminary models showing a simi-
lar—or perhaps better—predictive accuracy than the
commonly used scores. This would theoretically be of
great interest for the purposes of organ allocation, but
deserve further exploration, especially among patients
with ALF and pediatric populations. Moreover, the
absence of external validation for many of available
studies may represent another pitfall in the interpreta-
tion of currently published results.

The rationale behind organ allocation systems is to
maximize the use of available organs and reduce the
mortality of patients on the waiting list [20,21]. Theo-
retically, organ allocation may be driven by three
important principles: urgency (allocation to the patient
estimated to have the shortest survival without a trans-
plant); utility (allocation to the patient estimated to
have the longest post-transplant survival); or transplant
benefit (allocation based on the difference between the
mean survival estimates with and without a transplant).

Transplant International 2021; 34: 398-411
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Despite several efforts, a unified and standardized inter-
national model has yet to be adopted. This is partly due
to significant ethical and socio-cultural differences
around the world [22,23], and also because only about
25% of patients undergo “benchmark” transplantations,
with a wide variability across centers [24,25]. Therefore,
a model that can perform well for one population may
be less appropriate for others.

Most LT programs adopting an urgency-based alloca-
tion algorithm rely on a purely biochemical system
based on the MELD score, or subsequent revisions
[14,26]. In utility-based organ allocation systems, the
MELD score is not a reliable tool because it is a weak
predictor of post-LT mortality. In this setting, where
appropriate donor-recipient pairing is important in
order to improve outcomes, several scores, which con-
sider the characteristics of donors [27], or both donors
and recipients [28,29] have been developed. Even if
such scores derive from objective factors that are readily
available at time of organ allocation, whether post-
transplant outcome can be predicted from just a hand-
ful of variables remains debatable.

Briceno et al. [30] applied ML to the complex sce-
nario of organ allocation, combining 57 donor-, recipi-
ent-, or surgery-related variables in an ANN model.
Using the outcomes of 1003 patients who received a
graft in Spain between 2007 and 2008, they showed that
the ANN model was more accurate than commonly
used logistic regression models in predicting 3-month
graft survival (ANN vs. MELD AUC: 0.80 vs. 0.50,
P =0.001) and graft loss (ANN vs. MELD AUC: 0.82
vs. 0.41; P =0.001) for each donor-to-recipient pair.
This better accuracy was confirmed also after comparing
the ML model with above-mentioned scores [28,29]
(graft survival: ANN vs. balance of risk AUC 0.80 vs.
0.67; P =0.001; graft loss: ANN vs. balance of risk
AUC: 0.82 vs. 61; P = 0.001).

This model was further validated in an English
cohort of 858 patients who underwent LT between 2002
and 2010 (patients with HCC were ruled out) [31]. Its
accuracy in predicting 3- and 12-month graft survival
(ANN AUC: 0.94 and 0.78, respectively) and graft loss
(ANN AUC: 0.94 and 0.82, respectively) was signifi-
cantly better than that of the commonly used scores,
being balance of risk the second-best score (3- and 12-
month graft survival AUC: 0.84 and 0.71, respectively).
The model also seemed to perform better than in the
training cohort, probably due to differences between the
two cohorts’ baseline characteristics.

Another experience in this field came from Australia,
where two ML-based models were developed to predict
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early graft survival, considering the characteristics of
180 deceased donor LT recipients transplanted between
2010 and 2015 [32]. The models included 15 of 276
baseline donor and recipient variables, and exhibited a
good accuracy in predicting graft failure at 1 month
(random forest AUC [95% CI] 0.818 [0.812—0.824];
ANN AUC [95% CI]: 0.835 [0.831-0.840], respectively),
in a better way than other scores obtained with logistic
regression analyses (Donor risk index [27] AUC [95%
CI] 0.680 [0.669—0.690]; SOFT score AUC [95% CI]:
0.638 [0.632—0.645], respectively).

Several studies attempted to apply ML to the predic-
tion of graft and/or patient survival at 3 months,
obtaining suboptimal results in terms of accuracy [33—
35]. This might be because donor variables could influ-
ence the early post-transplant phase more than in sub-
sequent months (when complications unrelated to the
liver might also occur). Although these studies demon-
strated that ML-based models were more accurate than
commonly adopted scores, the gain was often not clini-
cally relevant. In the study by Lau et al. [32], for
instance, the model previously applied for prediction of
30-day graft failure provided a less accurate prediction
when the endpoint was the 90-day outcome [random
forests and ANN AUCs (92% CI): 0.715 (0.705-0.724)
and 0.559 (0.548-0.569), respectively].

In summary, ML will presumably be a useful tool for
improving organ allocation and predicting short-term
graft and patient survival in the next future. Neverthe-
less, the available studies provided information on
patients transplanted over a broad period of time, with
different liver disease etiologies and involving different
donors from those being managed in the future. There-
fore, the applicability of ML-based prognostics to cur-
rent or future LT cohorts remains to be seen.

Long-term outcome after solid organ transplantation is
even more difficult to predict than in the early post-
transplant period because it may also be influenced by
conditions unrelated to the graft, such as infections,
malignancies and metabolic or cardiovascular diseases
[36,37]. Khosravi et al. [38] used an ANN-based model
to predict long-term outcome (beyond one year after
LT) in 1168 patients >2 years old who underwent LT
(10.7% were cases of living donor LT) between 2008
and 2013. The most accurate model included 16 of 37
baseline predictors (five recipient characteristics, 10
intra or postoperative variables, and chronic rejection),

408

and afforded an accurate prognosis on patient survival
between 1 and 5 years after LT [AUC (standard error):
0.864 (0.043)], similar to what was retrieved by the
“standard” Cox’s proportional hazards model [AUC
(standard error) 0.806 (0.067)].

More results are available on the use of ML to foresee
commonly encountered complications after LT. Hughes
et al. [39] applied an ANN model to predict acute rejec-
tion early after LT in 117 adult recipients, using bio-
chemical characteristics (ALT, bilirubin and their
dynamic course) and timing since LT. The model
showed a good accuracy [AUC (95% CI) 0.902 (0.861—
0.944)], even if results might be interpreted with cau-
tion, since seven episodes of acute rejection were not
biopsy-proven, the liver disease etiologies were hetero-
geneous, and there were some cases of re-LT. Neverthe-
less, this was an important proof-of-concept study for
larger future investigations.

Hepatocellular carcinoma (HCC) recurrence has been
demonstrated in 6-18% of patients after LT, with a sig-
nificant impact on patient survival [40]. Composite
models of HCC recurrence, considering morphological,
clinical and biochemical characteristics, have been pro-
posed with a view to optimizing post-LT surveillance,
stratifying patients’ risk and tailoring their immunosup-
pressant therapy [41]. Marsh et al. [42] developed an
ANN model for predicting HCC recurrence at 1, 2, and
3 years post-LT, based on five risk factors (sex, tumor
number, size and intrahepatic distribution, and grade of
vascular invasion) retrieved from 178 LT recipients. The
ML model allowed to stratify patients into three groups
with different risk of recurrence, in order to theoreti-
cally deserve a tailored postoperative surveillance. The
same group adopted the previously developed ANN
model in combination with tissue genotyping for
microsatellite mutations or deletions in 103 explanted
livers with HCC [43]. This combination increased by
15% the predictive accuracy of ANN regarding post-LT
HCC recurrence (88% vs. 71%). The results were exter-
nally validated by Rodriguez-Luna ef al. [44] in a small
cohort of patients transplanted between 1992 and 2002
in another American LT Center. The Author confirmed
that this composite model correctly predicted post-LT
HCC recurrence in 17/19 (89.5%) patients.

Some innovative results have come from the applica-
tion of ML regarding metabolic or renal complications
after LT. A study by Lee et al. [45] investigated the
probability of postoperative acute kidney injury (defined
as a maximal change in serum creatinine level during
the first two days after surgery). According to their
findings, ML-based model performed better than the

Transplant International 2021; 34: 398-411
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standard statistical logistic regression model [random
forest vs. logistic regression analysis: AUC (95% CI):
0.61 (0.56-0.66) vs. 0.85 (0.81-0.89); P < 0.001], and
showed that cold ischemia time and intraoperative
mixed venous oxygen saturation were the most impor-
tant variables associated with renal dysfunction. The
inclusion of both living and deceased donor transplants,
and the small number of cases considered should be
taken into account when interpreting their findings,
however.

A further study conducted at by Bhat et al. [46]
explored the probability of new-onset diabetes after LT
in a large cohort of patients coming from the US trans-
plant registry. The Authors demonstrated that a high-
performance random forest model was able to predict
diabetes in 88% patients within a year after their trans-
plant. The risk of new-onset diabetes rose by 33% when
sirolimus was used instead of tacrolimus. The model
also showed that diabetes carried a 55% higher risk of
death at 10 years.

In summary, ML is attracting attention as an innova-
tive tool for predicting long-term post-LT complica-
tions. ML models may pave the way to a personalized
post-transplant follow-up, taking individual pre- and
post-LT features into account. Many of the above-men-
tioned studies are proofs of concept, so their prelimi-
nary results need to be further explored and confirmed.
More research is needed in the prediction of long-term
follow-up after transplantation.

As in other fields of Medicine and Gastroenterology and
Hepatology, ML will probably influence the clinical set-
ting of LT in the near future. ML modeling of LT data-
improve prognostic accuracy, and the
applicability of the model’s predictions to new cases. It
could also facilitate the selection of the most influential
predictors from among the numerous variables com-
monly collected from donors and recipients. This would
aid clinicians in many settings, both before and after
surgery, improving patients’ outcomes and quality of
life, and fostering a personalized follow-up.

Several topics pertaining to the field of decompen-
sated cirrhosis will probably be further explored using
ML, such as the clinical course of acute-on-chronic liver
failure, or ALF, bacterial infections, recurrence of vari-
ceal bleeding or hepatic encephalopathy. This will be
helpful when it comes to considering a patient for a
transplant. We can also expect a further refinement of
prognostics at the time of surgery to be achieved by

sets could
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Table 3. Potential fields of interest for future
development of ML before and after liver transplantation.

Before LT
Course of acute-on-chronic liver failure
Resolution of bacterial infections
During or soon after surgery
Allocation of extended-criteria donors and donors after
circulatory death
After LT
Primary disease recurrence (e.g., cholestatic diseases)
Immunosuppression management
Adherence after LT in special populations
De novo tumors after liver transplantation

exploring the use of extended-criteria donors or grafts
retrieved from donors after circulatory death. Moreover,
it would be useful to be able to predict disease recur-
rence (in cases of cholestatic and autoimmune disease),
tumor recurrence, or de novo cancers, also to improve
the management of immunosuppression (as already
seen in kidney transplant recipients) and patient adher-
ence [47-51] (Table 3).

The data produced by ML models should nonetheless
be interpreted with caution. Some models are unable to
shed light on the real contribution of a given factor, or
reveal how changing a given variable will affect the model.
It is also still unclear whether the accuracy of some mod-
els is reproducible in cohorts with different characteris-
tics. It is worth noting that the number and type of donor
and/or recipient variables used across studies, as well as
the types of ML model, differ significantly, so the results
of these studies are not comparable with one another.
Finally, one caveat of ML modeling lies in the difficulty of
interpreting the output of some of the models used to
analyze transplantation datasets (such as ANNs and ran-
dom forests). Other already available models derived
from regression analyses, as MELD score formula in
organ allocation, may still offer more readily interpretable
decision-making rules that can be incorporated in the
clinical decision-making process.

Finally, although ML can make accurate predictions,
it is ultimately up to health care workers to make deci-
sions based on their patient’s characteristics, clinical
condition, and expectations [3,52]. This is particularly
important in the setting of organ transplantation, where
issues of ethics and justice are of the utmost importance
and cannot be categorized as mere computational vari-
ables. Transplantation is not just about installing spare
parts, like a puzzle, and the human mind will retain a
leading role in this process [53].
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