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SUMMARY

An increasing number of studies claim machine learning (ML) predicts
transplant outcomes more accurately. However, these claims were possibly
confounded by other factors, namely, supplying new variables to ML mod-
els. To better understand the prospects of ML in transplantation, we com-
pared ML to conventional regression in a “common” analytic task:
predicting kidney transplant outcomes using national registry data. We
studied 133 431 adult deceased-donor kidney transplant recipients between
2005 and 2017. Transplant centers were randomly divided into 70% train-
ing set (190 centers/97 787 recipients) and 30% validation set (82 centers/
35 644 recipients). Using the training set, we performed regression and
ML procedures [gradient boosting (GB) and random forests (RF)] to pre-
dict delayed graft function, one-year acute rejection, death-censored graft
failure C, all-cause graft failure, and death. Their performances were com-
pared on the validation set using -statistics. In predicting rejection, regres-
sion (C = 0.6010.6110.621) actually outperformed GB (C = 0.5810.5910.601)
and RF (C = 0.5690.5790.589). For all other outcomes, the C-statistics were
nearly identical across methods (delayed graft function, 0.717–0.723;
death-censored graft failure, 0.637–0.642; all-cause graft failure, 0.633–
0.635; and death, 0.705–0.708). Given its shortcomings in model inter-
pretability and hypothesis testing, ML is advantageous only when it clearly
outperforms conventional regression; in the case of transplant outcomes
prediction, ML seems more hype than helpful.
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Introduction

Machine learning (ML) algorithms have emerged as

alternatives to conventional regression modeling, largely

due to their ability to analyze nontabular (e.g., image or

natural language) and high-dimensional (typically

>10 000 variables) data (Table 1) [1]. It seems natural

that transplantation researchers are drawn to these

methods, especially considering the frequent use of large

registry data analyses in transplantation [2]. Indeed, this

is a growing area of investigation [3–16], with several

recent studies that reported superior predictive perfor-

mance of ML in predicting delayed graft function, graft

survival, and mortality after kidney or liver transplanta-

tion [3,4,6,16].

However, the reported improvements in predictive

performance may not be fully attributable to ML,

because those studies often supplied more clinical
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information to the ML models than to the conventional

regression-based models. In other words, had the ML

models been developed on the same set of variables as

the regression-based models, we might have observed

minimal or no gain in predictive performance. From a

theoretical standpoint, the predictive performance of a

regression model should at least match that of a ML

algorithm under ideal conditions [17], and even viola-

tions of these conditions can mostly be addressed using

statistical techniques. As such, a properly developed

regression model is expected to perform similarly to

ML.

Furthermore, a key limitation of most ML algo-

rithms is that they deliver “black-box” predictions,

whereas regression provides interpretable models,

allows face validity checking, and enables biological

hypothesis testing. These black-box predictions can

sometimes be driven by senseless associations. For

example, it was discovered that a ML algorithm,

trained to determine malignancy from images of skin

lesions, diagnosed lesions as malignant when a ruler

was pictured near the lesion, because, in the training

data, a ruler was drawn when the pathologist suspected

a malignancy; identifying this harmful quirk was diffi-

cult because the ML was a black box that did not

show how it was evaluating the images [18,19]. Since

ML is entirely data-driven and does not reveal its

mechanism so that face validity can be checked, these

approaches are not risk-free.

To better understand the possible role of ML in

transplantation, we aimed to evaluate the performance

of ML algorithms in a “common” study setup relevant

to a wide gamut of transplantation research. Thus, we

conducted a head-to-head comparison of ML algo-

rithms versus regression in predicting various kidney

transplant (KT) outcomes using the same populations

and the same set of variables abstracted from the U.S.

national registry data.

Materials and methods

Data source

This study used data from the Scientific Registry of

Transplant Recipients (SRTR). The SRTR data system

includes data on all donors, waitlisted candidates, and

transplant recipients in the US, submitted by the mem-

bers of the Organ Procurement and Transplantation

Network (OPTN). The Health Resources and Services

Administration (HRSA), US Department of Health and

Human Services, provides oversight to the activities of

the OPTN and SRTR contractors. A detailed description

of the data has been provided elsewhere [2]. This study

used de-identified registry data and was exempted by

the Johns Hopkins Medicine Institutional Review

Boards (NA_00042871).

Study population

Our study included 133 431 adult (18 or older)

deceased-donor KT recipients at 272 KT centers from

January 1, 2005, to December 31, 2017. The dataset was

randomly divided at center level into a 70% training set

(190 centers; 97 787 recipients) and a 30% validation

set (82 centers; 35 644 recipients).

Outcomes

We studied five outcomes: delayed graft function

(DGF), one-year acute rejection (AR), death-censored

graft failure (DCGF), death, and all-cause graft failure

(ACGF). DGF was defined as the need for dialysis

within the first week after transplant. AR included all

acute rejection episodes reported up to one-year follow-

up. Since the exact dates of the episodes are not avail-

able on OPTN/SRTR data, AR was treated as a binary

outcome, as opposed to a time-to-event outcome.

Table 1. A brief comparison of regression and machine learning.

Regression Machine learning

Mathematical assumptions Several Usually fewer
Analyzing high-dimensional data
(e.g., >10 000 variables)

Possible, but labor-intensive Capable

Analyzing nontabular data
(e.g., images, clinical notes)

Limited Capable, but often requires
extensive labor/resources

Model interpretability Fully transparent and human-readable Limited or absent
Ability to incorporate prior
clinical/biological knowledge

Capable (e.g., assisted variable selection) Limited or absent

Hypothesis testing Built-in Limited or absent
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DCGF was defined as the time from KT to graft failure

(re-initiation of dialysis or re-KT), censoring for death.

ACGF was defined as the time from KT to graft failure

or death. Graft failure and death were collected by

OPTN from multiple sources, including follow-up

reports from transplant centers, Centers for Medicare &

Medicaid Services ESRD Death Notification Form

(CMS 2746), and the Social Security Death Master File.

All recipients were censored at the end of study on

December 31, 2017.

Model development

We developed prediction models on the 70% training

set using generalized linear regression and two ML tech-

niques: gradient boosting (GB) and random forests

(RF).

For regression, we conducted logistic regressions on

DGF and AR, and Cox regressions on DCGF, death,

and ACGF. Missing values of the covariables were han-

dled using multiple imputation with 10 iterations. To

address any nonlinear associations of continuous vari-

ables and clinical outcomes, we included linear spline

terms into the models. Knots were determined based on

previous literature and exploratory data analyses, which

involved comparing the fit of univariable ACGF models

using different sets of knots. The regression models

were finalized using these knots (Table S1).

Gradient boosting was performed using the R pack-

age “XGBoost” [20]. We used the logistic objective

function for DGF and AR, and Cox proportional hazard

objective function for DCGF, death, and ACGF. Missing

values of the covariables were imputed during training

in a way that is analogous to multiple imputation [20].

The tuning parameters were chosen via cross-validation

on the 70% training dataset.

Random forests was performed using the R package

“rfsrc” [21]. We used the Gini splitting rule for DGF

and AR, and the log-rank splitting rule for DCGF,

death, and ACGF [21]. Similar to GB, missing values of

the covariables were imputed during training. The tun-

ing parameters were chosen via cross-validation on the

70% training dataset.

All prediction models included the same set of

covariables, including donor variables (age, race, sex,

ABO blood type, height, weight, stroke as the cause of

donor death, terminal serum creatinine, cytomegalo-

virus (CMV), hepatitis C, diabetes, hypertension, dona-

tion after and cardiac death), recipient variables (age,

sex, race, primary cause of end-stage renal disease, ABO

blood type, primary insurer, body mass index (BMI),

human immunodeficiency virus (HIV), CMV, hepatitis

B, hepatitis C, Epstein–Barr virus, previous transplant,

pre-emptive transplant, time on dialysis, panel reactive

antibody (PRA), diabetes, hypertension, previous malig-

nancy, symptomatic peripheral vascular disease, total

serum albumin, and education level), and transplant

variables (HLA-A/B/DR mismatches and cold ischemic

time).

Evaluation of predictive performance: C-statistic

We used the 30% validation set to evaluate the predic-

tive performance of the models. Our primary measure

of predictive performance was the C-statistic. The C-

statistic is a measure of discrimination, that is, whether

the model correctly assigns higher predicted risk to

those who actually develop the outcome versus those

who do not. Specifically, the C-statistic was derived

using the area under the receiver operating characteris-

tic curve (AUROC) for binary outcomes (DGF and

AR), and Harrell’s concordance for time-to-event out-

comes (DCGF, death, and ACGF) [22]. In addition, we

conducted a sensitivity analysis in which the C-statistics

for the time-to-event outcomes were estimated again

using a novel method proposed by Uno and colleagues

[23]. Unlike the conventional method, Uno’s C-statistic

is independent from the censoring distribution of the

study population.

We first estimated the C-statistic over the entire vali-

dation set, and then in 16 subgroups stratified by quar-

tiles of Kidney Donor Profile Index (KDPI) and

Estimated Post-Transplant Survival (EPTS) to identify

whether the predictive performance of the models vary

by donor and recipient risk level [24]. In 3965 (3.0%)

recipients, KDPI and EPTS values could not be calcu-

lated due to missing values. These recipients were

excluded from the stratified analysis.

Evaluation of predictive performance: brier score

Our secondary measure of predictive performance was

the Brier score [25]. The Brier score is a measure of cal-

ibration, that is, how close the predicted risk is to the

actual risk. A lower Brier score indicates a smaller dif-

ference between the predicted and actual risk, hence

superior calibration. It is important to assess both dis-

crimination and calibration as models with superior dis-

crimination may have inferior calibration, with over- or

under-predicted risk [26]. For time-to-event outcomes

(DCGF, death, and ACGF), we used the integrated Brier

score, an extension of the Brier score for time-to-event
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outcomes [27]. In addition, we created calibration plots

to visualize the calibration of the prediction methods

across the spectrum of predicted risk. We stratified the

validation set into 20 equally distanced bins by the pre-

dicted risk of the outcome and estimated the observed

risk within each bin. The observed risk was defined as

the incidence ratio for binary outcomes and as the

cumulative incidence at 5 years post-KT for time-to-

event outcomes.

Statistical analysis

All analyses were performed using R version 3.5.0. We

used subscripts to indicate 95% confidence intervals as

per the Louis and Zeger style [28].

Results

Study population

Overall, the training set and the validation set showed

similar characteristics. Median recipient age was

54 years in both sets. Median donor age was 41 years in

the training set and 39 in the validation set. The train-

ing set included 39.7% female recipients, 32.6% African

American recipients, 39.8% female donors, and 14.1%

African American donors. The validation set included

39.7% female recipients, 34.7% African American recipi-

ents, 39.6% female donors, and 14.3% African American

donors (Table 2).

In the training set, 27.4% of the recipients developed

DGF and 11.1% developed AR. The 5-year cumulative

incidences were 13.8% for DCGF, 15.4% for death, and

24.5% for ACGF. The median follow-up was 4.8 years

for death and 4.2 years for DCGF and ACGF.

Predictive performance: C-statistic

In our comparison of predictive performance in the

validation set, ML algorithms did not show superior

discrimination over regression in any of the five

outcomes we studied (Fig. 1). Of note, regression actu-

ally showed higher C-statistic (C = 0.6010.6110.621) than

both ML algorithms, GB (C = 0.5810.5910.601) and RF

(C = 0.5690.5790.589), in predicting one-year AR. For all

other outcomes, the three methods showed nearly iden-

tical performance. For DGF, the C-statistics were

0.7140.7210.727 for regression, 0.7170.7230.729 for GB, and

0.7110.7170.723 for RF. For DCGF, the C-statistics were

0.6290.6370.646 for regression, 0.6330.6420.650 for GB, and

0.6290.6380.646 for RF. For death, the C-statistics were

0.7010.7080.715 for regression, 0.6980.7050.712 for GB, and

0.6980.7050.713 for RF. For ACGF, the C-statistics were

0.6280.6340.640 for regression, 0.6290.6350.641 for GB, and

0.6270.6330.639 for RF. Across the 16 subgroups of the

30% validation set stratified by the quartiles of KDPI

and EPTS, regression, GB, and RF showed very similar

predictive performance in all five outcomes (Fig. S1).

We found similar trends in our sensitivity analysis

where the C-statistics were estimated using Uno’s

method for time-to-event outcomes. For DCGF, Uno’s

C-statistics were 0.623 for regression, 0.624 for GB, and

0.611 for RF. For death, Uno’s C-statistics were 0.707

for regression, and 0.703 for both GB and RF. For

ACGF, Uno’s C-statistics were 0.635 for both regression

and GB, and 0.632 for RF.

Predictive performance: brier score

All methods showed similar calibration in predicting

binary outcomes (DGF and AR), whereas ML algo-

rithms showed inferior calibration than regression in

predicting time-to-event outcomes (DCGF, death, and

ACGF). The Brier scores were very similar between the

methods for DGF (regression, 0.161; GB, 0.160; and RF,

0.161) and for AR (regression, 0.089; GB, 0.090; and

RF, 0.091). In contrast, regression showed lower Brier

scores (i.e., smaller prediction errors) than ML algo-

rithms for DCGF (regression, 0.179; GB, 0.187; RF,

0.185), death (regression, 0.183; GB, 0.206; and RF,

0.197), and ACGF (regression, 0.193; GB, 0.201; and

RF, 0.208; Table 3). In addition, our calibration plots

suggested that all three prediction methods had compa-

rable calibration across the spectrum of predicted risk

(Fig. 2).

Discussion

In this comparison of ML algorithms versus regres-

sion in predicting KT outcomes using large national

registry data, ML did not outperform regression-based

models. In terms of discrimination, we observed simi-

lar C-statistics across regression and ML algorithms in

all transplant outcomes, with the exception of one-

year AR where logistic regression actually showed a

higher C-statistic than ML algorithms. Furthermore,

in terms of calibration as measured in the Brier score,

regression outperformed ML algorithms in predicting

time-to-event outcomes (DCGF, death, and ACGF),

whereas regression and ML algorithms showed similar

performance in predicting binary outcomes (DGF and

AR).
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Predicting KT outcomes using the U.S. national reg-

istry data is perhaps one of the “generic” analytic tasks

that pertain to a wide gamut of transplantation

research, ranging from fine-tuning organ allocation pol-

icy [29,30] to informing clinical decision-making

[14,31] to identifying independent effects by correctly

adjusting for confounders [32,33]. The lack of ML’s

advantage in this setting implies that, despite the recent

successes, and recent claims of successes, surrounding

ML in many areas of medicine, regression is a valuable,

and sometimes a preferable, analytic method in trans-

plantation research.

Our findings are consistent with a study in heart

transplantation by Miller et al. [34] that found no

meaningful difference in predicting 1-year survival

between logistic regression and ML algorithms using the

same set of variables, with C-statistics around 0.65 in

most methods. We have extended this approach to kid-

ney transplantation, to outcomes beyond 1 year, to Cox

regression which is the typical method for evaluating

survival, and to nonsurvival outcomes such as DGF and

AR. Our findings are also consistent with studies [3–
5,35] that reported only minor performance differences

(e.g., C-statistic from 0.706 to 0.724); we extend these

studies in the context of a true head-to-head compar-

ison that shows no performance advantage of ML and,

actually, some performance advantage of regression with

some outcomes.

On the other hand, our findings are contrary to sev-

eral recent studies that reported high predictive perfor-

mance of ML algorithms. In some cases, the exact

reason for the discrepancy is unclear due to the absence

of a head-to-head, same-variable, same-population com-

parison against regression [7–10]. But, more impor-

tantly, many of these studies purposefully explored ML

as a tool to incorporate additional clinical information

into prediction [6,13,16], rather than testing if ML out-

performs regression on equal footing. For example, Lau

et al. [16] reported that RF and neural network outper-

formed traditional models such as Donor Risk Index

(DRI) in predicting graft survival after liver transplanta-

tion. However, the ML models included numerous key

variables that are not included in DRI, such as recipient

disease category, donor serum albumin level, and geo-

graphical location. Therefore, these studies have shown

that ML methods identified potentially more influential

clinical factors which led to better prediction. Purely in

terms of predictive performance, these studies do not

indicate that ML alone can achieve a new level of pre-

dictive performance that regression cannot reach,

because an equally comprehensive regression-based

model could have demonstrated similar performance. In

that sense, our current study is a necessary follow-up to

the previous ML prediction studies.

Although our findings do not support the application

of ML on simple prediction of KT outcomes using rou-

tinely collected tabular data, there are research questions

in organ transplantation that might be well suited for

ML. Theoretically, ML methods are capable of handling

Table 2. Population characteristics.

Clinical factor
Training set
(n = 97 787)

Validation set
(n = 35 644)

Recipient factors
Age (year),
median (IQR)

54 (44, 63) 54 (43, 63)

Female 39.7% 39.7%
Race
White 42.5% 42.1%
African American 32.6% 34.7%
Hispanic/Latino 16.2% 15.0%
Other/multi-racial 8.6% 8.3%

Preemptive transplant 9.9% 10.7%
Time on dialysis (year),
median (IQR)

3.5 (1.6, 5.7) 3.6 (1.6, 5.9)

Cause of ESRD
Glomerulonephritis 21.9% 22.3%
Diabetes 26.9% 27.6%
Hypertension 23.6% 24.3%
Others 27.7% 25.8%

Panel reactive antibody
0–9 54.1% 50.7%
10–79 23.3% 26.4%
80–100 16.8% 17.7%
Missing 5.7% 5.2%

BMI (kg/m2),
median (IQR)

27.6 (24.1, 31.7) 27.8 (24.2, 31.8)

Previous transplants 14.7% 14.6%
Cold ischemic time (h),
median (IQR)

17.0 (11.7, 23.0) 16.4 (11.0, 22.4)

Donor factors
Age (year),
median (IQR)

41 (25, 52) 39 (25, 51)

Female 39.8% 39.6%
Race
White 69.0% 68.1%
African American 14.1% 14.3%
Hispanic/Latino 13.6% 14.2%
Other/multi-racial 3.3% 3.4%

Terminal serum
creatinine (mg/dl),
median (IQR)

0.9 (0.7, 1.3) 0.9 (0.7, 1.3)

Donation after
cardiac death

16.4% 14.1%

BMI, body mass index; ESRD, end-stage renal disease; IQR,
interquartile range.
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interactions between predictors in a flexible manner

[14,36], integrating nontabular data such as clinical

notes or graft biopsy images with tabular clinical data

[13,37], and analyzing high-dimensional data such as

genes or biomarkers [38]. Our study was not focused

on evaluating these benefits, and our findings should

not discourage future applications of ML on such

research endeavors. However, in the context of straight-

forward outcome prediction, we emphasize that ML

does not seem to provide a predictive advantage, yet

suffers from a number of weaknesses that risk mislead-

ing modeling, limit our ability to assess face validity or

test biological hypotheses, and diminish the inter-

pretability of the models themselves.

Our study has several limitations. First, we cannot

rule out the possibility that there exists a ML algorithm

that outperforms the algorithms investigated in this

study. However, considering that we observed nearly

identical predictive performance from all three methods

including regression, it is not unreasonable to assume

that these performance measures are bound by the

inherent variability of the data, not by the competency

of the methods. Second, our findings are not generaliz-

able to any analyses that include new types of data not

present in the transplant national registry, especially

nontabular clinical information. As discussed above, ML

might be actually advantageous in these cases. Lastly,

there could be specific subgroups in which GB or RF

outperforms regression models because of their ability

to handle interactions without modeling assumptions.

However, such effects were not observed in our analy-

ses.

Our findings suggest that ML does not outperform

conventional regression-based approaches in predicting

various KT outcomes using routinely collected tabular

data. Given that regression modeling presents an inter-

pretable model and enables hypothesis testing, the

advantage of using ML over regression in simple pre-

dictions of KT outcomes is questionable. The lack of

ML’s advantage in our “generic,” controlled analytic

setting implies that, in this case, ML is more hype

than helpful.

Authorship

SB, ABM, BSC, KRJ and DLS: participated in the design

of the study and writing of the manuscript. SB: per-

formed the data analysis.

Funding

This work was supported by ASN Foundation for Kid-

ney Research (Bae) and the National Institute of Dia-

betes and Digestive and Kidney Diseases

(K01DK101677, Massie; F32DK113719, Jackson; and

K24DK101828, Segev).

Conflict of interest

The authors have declared no conflicts of interest.

Acknowledgements

The analyses described here are the responsibility of

the authors alone and do not necessarily reflect the

Figure 1 Predictive performance of regression (Reg), gradient boost-

ing (GB), and random forests (RF) in predicting kidney transplant out-

comes, as measured in the C-statistic. ACGF, all-cause graft failure;

AR, one-year acute rejection; DCGF, death-censored graft failure;

DGF, delayed graft function. Regression represents logistic regres-

sions for delayed graft function and acute rejection, and Cox regres-

sions for death-censored graft failure, death, and all-cause graft

failure. Y-axis indicates the area under the receiver operating charac-

teristic curve (AUROC) for delayed graft function and acute rejection,

and Harrell’s concordance statistic for death-censored graft failure,

death, and all-cause graft failure.

Table 3. Predictive performance of regression, gradient
boosting, and random forests in predicting kidney

transplant outcomes, as measured in the Brier score.

Outcome Regression
Gradient
boosting

Random
forests

Delayed graft function 0.161 0.160 0.161
Acute rejection, one year 0.089 0.090 0.091
Death-censored graft failure 0.179 0.187 0.185
Death 0.183 0.206 0.197
All-cause graft failure 0.193 0.201 0.208

Lower Brier score indicates superior calibration.

Transplant International 2020; 33: 1472–1480 1477

ª 2020 Steunstichting ESOT. Published by John Wiley & Sons Ltd

Outcomes prediction via machine learning



(a) Delayed graft function (b) Acute rejection, 1 year 

(c) Death-censored graft failure, 5 years (d) Death, 5 years 

(e) All-cause graft failure, 5 years 

Figure 2 Calibration plot of regression (Reg), gradient boosting (GB), and random forests (RF) in predicting kidney transplant outcomes.
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