

Calculating the liver lobe weight for transplantation

doi:10.1111/j.1432-2277.2008.00661.x

The major limitation for wider use of solid-organ transplantation continues to be shortage of donor organs. This has been a particular problem for children awaiting liver transplantation. Split-liver transplantation is a technique for dividing one liver into two portions for transplantation into two recipients. This technique was first reported by Pilchmayr *et al.* [1] and was subsequently performed by many surgeons [2,3].

Other modality of reduced-size liver transplantation is the living donor liver transplantation. It has been one of the most remarkable steps in the field of liver transplantation, capable of significantly expanding the scarce donor pool in countries in which the growing demands for organs are not met by the shortage of available cadaver grafts [4].

The aim of this study was to identify a relationship for predicting donor total liver weight as well as donor right and left hepatic lobe weight on the basis of only on donor body weight for transplantation.

Human cadaver livers ($n = 60$) were obtained from routine autopsies. The cadavers and the livers had to comply with the following requirements: (i) minimum age 18 years; (ii) no liver pathology to be expected from medical history; and (iii) no liver pathology noted at the autopsy. Resections were carried out *en bloc* with liver, celiac trunk, left gastric artery, lesser omentum, superior mesenteric artery and head of the pancreas. An eventual left or right hepatic artery was thus resected in continuity with the aorta. The liver was dissected free from its peritoneal attachments. The hepato-duodenal ligament was dissected as close to the duodenum as possible. The gallbladder, if present, was resected.

In the division of right and left lobes of the liver, it was necessary to excise the caudate lobe (segment I). The cutting plane of the liver consisted of a longitudinal section made immediately on the left of the suprarenal inferior vena cava through the gallbladder bed preserving the arterial, portal and biliary branches to obtain two viable grafts (right lobe – segments V, VI, VII, VIII and left lobe – segments II, III, IV) as defined by the main portal scissure. The age, gender, the body height, the body weight, the liver weight and the right and left lobe weight of the cadavers were recorded, Table 1.

We correlated cadaver body weight (mean \pm SD) (72.43 ± 9.54) kg with total liver weight (1.54 ± 0.36) kg. Also right (0.88 ± 0.23) kg and left (0.65 ± 0.17) kg lobe weight with total liver weight. Using regression analysis we obtained the following linear relationships:

$$\text{Total liver weight (g)} = [245.57 + 17.92(\text{body weight (kg)})], \\ r = 0.96;$$

$$\text{Right lobe weight (g)} = [67.58 + 0.52(\text{total liver weight (g)})], \\ r = 0.98;$$

$$\text{Left lobe weight (g)} = [-63.38 + 0.47(\text{total liver weight (g)})], \\ r = 0.98.$$

r – Pearson's correlation coefficient (set up the grade of correlation among the figures). r – the closer to 1 the better correlation.

The biggest challenge facing the fields of transplantation is the critical shortage of donor organs, which has led to a dramatic increase in the number of patients on the waiting list as well as in their waiting time. The gap between the number of transplantable organs from deceased donors and the number of patients awaiting transplantation continues to increase each year. The imbalance between supply of organs for transplantation and demand for them is widening all over the world.

In a previous work, we projected the size of the waiting-list and we made comparison with the number of transplantations carried out in the same period. We demonstrated that the list size grows at a rate much higher than the number of transplantations actually performed [5]. In addition to that, we projected the expected number of the deaths in our recipient waiting list considering that the number of cadaver donors would not change in the years to come [6].

Many liver transplantation techniques have been developed to decrease the shortage of donors such as reduced size-liver, split-liver and living donor liver transplantation. The volume and the weight of the reduced-size livers should be estimated before transplantation.

Total liver volume based on body surface area or body weight can be measured by using helical computed tomography scans [7]. Chan *et al.* [8] also working with computed tomography (CT) calculated the liver weight

Table 1. Distribution of the cadavers according to age, gender, height, body weight, liver weight and right and left lobe weight.

	Age (years)	Gender	BH (m)	BW (kg)	LW (g)	RLW (g)	LLW (g)
Case 1	65	M	1.80	80	1715	959.38	742.67
Case 2	61	F	1.70	70	1340	764.38	566.42
Case 3	52	M	1.80	85	2160	1190.78	951.82
Case 4	52	M	1.75	70	1940	1076.38	848.42
Case 5	45	M	1.73	75	1480	837.18	632.22
Case 6	74	F	1.70	70	1060	618.78	434.82
Case 7	76	M	1.75	70	1335	761.78	564.07
Case 8	52	M	1.70	70	1250	717.58	524.12
Case 9	61	M	1.80	70	1770	987.98	768.52
Case 10	45	M	1.70	60	1440	816.38	613.42
Case 11	67	M	1.60	60	851	510.10	336.59
Case 12	44	F	1.60	55	1430	811.18	608.72
Case 13	70	M	1.70	70	1610	904.78	693.32
Case 14	69	M	1.80	70	1480	837.18	632.22
Case 15	40	M	1.70	70	1467	830.42	626.11
Case 16	62	M	1.60	50	1030	603.18	420.72
Case 17	30	F	1.80	75	1660	930.78	716.82
Case 18	62	M	1.75	65	1696	949.50	733.74
Case 19	37	M	1.90	75	2120	1169.98	933.02
Case 20	75	F	1.70	75	1520	857.98	651.02
Case 21	70	M	1.70	80	1750	977.58	759.12
Case 22	46	M	1.80	75	2255	1240.18	996.47
Case 23	33	F	1.70	70	1465	829.38	625.17
Case 24	37	M	1.80	76	2240	1232.38	989.42
Case 25	34	M	1.80	78	1520	857.98	651.02
Case 26	24	F	1.70	75	983	578.74	398.63
Case 27	62	M	1.80	90	1840	1024.38	801.42
Case 28	76	F	1.70	70	1280	733.18	538.22
Case 29	57	M	1.70	60	1818	1012.94	791.08
Case 30	68	F	1.70	80	1300	743.58	547.62
Case 31	42	F	1.65	65	1200	691.58	500.62
Case 32	48	M	1.80	70	1600	899.58	688.62
Case 33	52	M	1.80	80	2000	1107.58	876.62
Case 34	69	M	1.70	75	1100	639.58	453.62
Case 35	55	M	1.80	70	1164	672.86	483.70
Case 36	23	F	1.80	95	1305	746.18	549.97
Case 37	71	F	1.50	60	1602	900.62	689.56
Case 38	51	M	1.70	80	1825	1016.58	794.37
Case 39	32	M	1.80	70	1077	627.62	442.81
Case 40	53	M	1.70	66	1603	901.14	690.03
Case 41	75	M	1.70	70	1046	611.50	428.24
Case 42	70	M	1.75	67	1227	705.62	513.31
Case 43	65	M	1.75	74	1166	673.90	484.64
Case 44	52	M	1.60	60	1190	686.38	495.92
Case 45	39	M	1.80	80	1506	850.70	644.44
Case 46	64	M	1.60	68	1220	701.98	510.02
Case 47	53	M	1.75	76	1690	946.38	730.92
Case 48	41	M	2.00	100	2695	1468.98	1203.27
Case 49	86	F	1.60	55	1227	705.62	513.31
Case 50	45	M	1.80	78	1689	945.86	730.45
Case 51	34	M	1.70	75	1655	928.18	714.47
Case 52	45	M	1.80	80	1745	974.98	756.77
Case 53	60	M	1.80	80	1955	1084.18	855.47
Case 54	48	M	1.80	78	1580	889.18	679.22

Table 1. continued

	Age (years)	Gender	BH (m)	BW (kg)	LW (g)	RLW (g)	LLW (g)
Case 55	57	M	1.80	75	1990	1102.38	871.92
Case 56	47	M	1.75	65	1470	831.98	627.52
Case 57	54	M	1.80	85	1400	795.58	594.62
Case 58	58	F	1.70	50	1120	649.98	463.02
Case 59	66	M	1.80	80	1785	995.78	775.57
Case 60	48	M	1.70	80	1550	873.58	665.12

M, male; F, female; BH, body height; BW, body weight; LW, liver weight; RLW, right lobe weight; LLW, left lobe weight; m, meter; kg, kilogram; g, gram.

from the right lobe graft weight obtained at the back table, divided by the proportion of the right lobe on the CT. Body height was found to be insignificant and a formula based on body weight and gender was set up.

Chouker *et al.* [9] found that the liver weight was best predicted in younger people (16–50 years) by body weight, age and gender. In contrast, in elderly people (51–70 years), the liver weight was best predicted by body weight and age only. Gender was found to be not a significant factor.

We built up the above model of splitting the cadaver liver into right and left lobe to identify a safer and cost-effective relationship among body weight, total liver, right and left lobe weight, as neither the body height nor gender has proved to be significant. Therefore, taking into account only the body weight and using a regression analysis we found out the total liver weight ($r = 0.96$). Subsequently, with the total liver weight, we found out a formula for the right and left lobe weight ($r = 0.98$). Our formula is more simple, straightforward, cost-effective and might be used in countries with both lack of financial resources and high technology computed tomography scans.

In conclusion, using only total donor body weight, it is possible to estimate donor right and left hepatic lobe weight for subsequent matching with the recipient body weight.

Eleazar Chaib and Eduardo Massad

Department of Gastroenterology and LIM 01,
University of São Paulo School of Medicine,
São Paulo, Brazil

References

- Pichlmayr R, Ringe B, Gubernatis G, Hauss J, Bunzendahl H. Transplantation einer Spenderleber auf bei zwei Empfänger(splitting-transplantation). Eine neue Method in der Weiter-wicklung der Lebersegmenttransplantation. *Langenbecks Arch Chir* 1988; 373: 127.

2. Emond JC, Whitington PF, Thistlethwaite JR. Transplantation of two patients with one liver. Analysis of a preliminary experience with split-liver grafting. *Ann Surg* 1990; **212**: 14.
3. Broelsch CE, Emond JC, Whitington PF, Thistlethwaite JR, Baker AL, Lichior JL. Application of reduced-sized liver transplant as split grafts, auxiliary orthotopic grafts, and living related segmental transplants. *Ann Surg* 1990; **212**: 368.
4. Nadalin S, Malago M, Radtke A, *et al*. Current trends in live liver donation. *Transpl Int* 2007; **20**: 312.
5. Chaib E, Massad E. Liver transplantation: waiting list dynamics in the State of São Paulo, Brazil. *Transplant Proc* 2005; **37**: 4329.
6. Chaib E, Massad E. Expected number of deaths in the liver transplantation waiting list in the state of São Paulo, Brazil. *Transpl Int* 2008; **21**: 290.
7. Vauthey JN, Abdalla EK, Doherty DA, *et al*. Body surface area and body weight predict total liver volume in Western adults. *Liver Transpl* 2002; **8**: 233.
8. Chan SC, Liu CL, Lo CM, *et al*. Estimating liver weight of adults by body weight and gender. *World J Gastroenterol* 2006; **12**: 2217.
9. Chouker A, Martignoni A, Dugas M, *et al*. Estimation of liver size for liver transplantation: the impact of age and gender. *Liver Transpl* 2004; **10**: 678.