

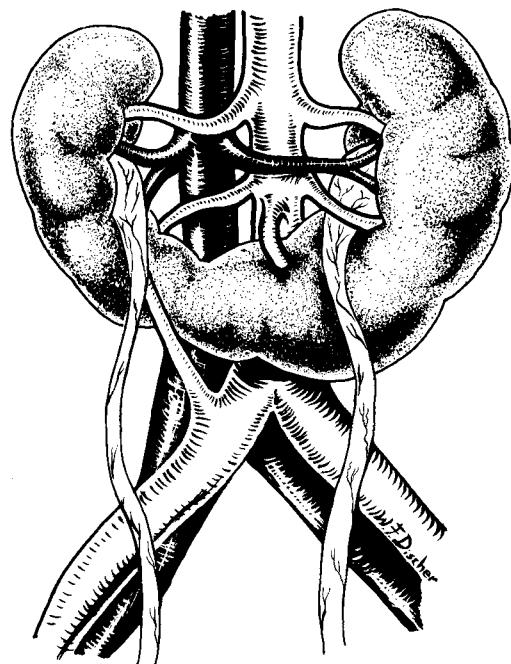
Simultaneous kidney-pancreas transplantation using a horseshoe kidney

Jon C. White¹, Timothy R. Shaver^{2,3}, Vladimir Kocandrl^{2,3}

¹ Veterans Administration Medical Center, Surgical Intensive Care Unit, Washington, DC 20422, USA

² Organ Transplant Service, Department of Surgery, Walter Reed Army Medical Center, Washington, DC 20307-5001, USA

³ Department of Surgery, Uniform Services University of the Health Sciences, Bethesda, MD 20814-4799, USA


Received: 3 November 1992/Received after revision: 18 January 1993/Accepted: 4 February 1993

Sir: The horseshoe kidney is the most common of all renal fusion anomalies. It occurs in approximately 1 in 400 individuals and is twice as common in males [11]. Transplantation of such kidneys has usually been avoided because of their anomalous vasculature [4, 6], association with other renal anomalies [11], and predisposition to renal disease [12]. However, in view of the scarcity of cadaver kidneys for transplantation, even these kidneys should, under certain circumstances, be used for grafting. A review of the literature reveals nine cases involving the use of horseshoe kidneys for transplantation. In six instances, the horseshoe kidney was divided and transplanted into two recipients [1, 2, 5, 8, 10, 12, 13], and three times the kidney was transplanted en bloc into a single recipient [3, 7, 9]. We report the first case of successful simultaneous kidney-pancreas transplantation using a horseshoe kidney.

A 22-year-old male became an organ donor following brain death resulting from a closed head injury. During the multiple organ procurement, it was noted that he had a normal, healthy-looking pancreas and a horseshoe kidney fused at the lower pole. In addition to multiple vessels in each hilum, the right lower pole received a small branch from the right iliac artery; therefore, the aortic flush was accomplished by cannulation of the left common iliac artery. The entire pancreas was removed with a 10-cm segment of duodenum and the kidneys were removed en bloc with 20-cm lengths of aorta and inferior vena cava.

The recipient was a 36-year-old male with a 22-year history of severe diabetes mellitus, which had resulted in retinopathy, neuropathy, and end-stage renal failure requiring hemodialysis.

During the bench dissection the horseshoe kidney was noted to have three arteries with a single vein and ureter on the left side (Fig. 1). On the right side, two arteries and a single vein and ureter entered the hilum and a small lower pole branch originated from the right common iliac artery. The kidney was divided to the right of the midline, preserving all three left-sided arteries on a common aortic patch. The much smaller right portion of the kidney was thought to have an inadequate blood supply and was discarded. The left kidney was then implanted into the recipient's left iliac fossa. After immediate function of the renal graft was documented, the pancreatic graft was implanted into the patient's right iliac fossa using the duodenal segment for a duodenovesicostomy. Both organs func-

Fig. 1. Donor kidney at time of organ recovery and prior to division and transplantation

* This is a United States government work. There are no restrictions in its use. The opinions and assertions contained herein are the private view of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

Correspondence to: T. Shaver, Organ Transplant Service, Department of Surgery, Walter Reed Army Medical Center, 6825 Georgia Avenue, NW, Washington, DC 20307-5001, USA

tioned well from the beginning, there was no postoperative surgical or other complication, and the patient was discharged from the hospital on the 13th postoperative day.

The recipient's kidney and pancreas have continued to function for more than 2 years, during which time he has not required dialysis or exogenous insulin administration. His random serum glucose levels are below 100 mg/dl and his serum creatinine is currently 1.7 mg/dl.

Horseshoe kidneys may be used for transplantation only if the donor's history is free of recurrent urinary tract infections and calculus formation. An en bloc technique should always be used for donor nephrectomy with removal of a large segment of the aorta and the vena cava with part of the common iliac vessels. In most cases, separation of the kidney is done via bench surgery and both parts of the kidney are transplanted into different patients. In our case, the vascular anatomy prompted us to divide the kidney well to the right of the midline. The much larger left part of the kidney was then successfully transplanted and the smaller right part of the kidney was discarded. Only after good blood supply and immediate function of the renal graft were documented was the pancreaticoduodenal graft implanted. Good function of both renal and pancreatic grafts more than 2 years after transplantation shows that horseshoe kidneys can be used safely, even in this more complex situation.

References

1. Barry MJ, Fincher RD (1984) Transplantation of a horseshoe kidney into 2 recipients. *J Urol* 131: 1162–1163
2. Brandina L, Mocelin AJ, Fraga AMA, Lacerda G (1978) Transplantation of a horseshoe kidney. *Br J Urol* 50: 284
3. Brenner DW, Schlossberg SM, Hurwitz RL (1990) Transplantation of horseshoe kidney into single recipient. *Urology* 35: 530–532
4. Cohn LH, Stoney RJ, Wylie EJ (1969) Abdominal aortic aneurysm and horseshoe kidney. *Ann Surg* 170: 870–874
5. Gorrea MA, Hinarejos CD, Rico EB, Navarro MG, Pallardo L, Jimenes-Crus JF (1989) Riñón en herradura: su utilidad en el transplante. *Arch Esp Urol* 42: 353–355
6. Graves FT (1969) The arterial anatomy of the congenitally abnormal kidney. *Br J Surg* 56: 533–541
7. Klän R, Hirner A, Fiedler U, Offermann G (1988) Transplantation of a horseshoe kidney en bloc: report of a case. *J Urol* 139: 571–572
8. Majeski JA, Alexander JW, First R, Munda R, Fidler JP (1979) Transplantation of a horseshoe kidney. *JAMA* 242: 1066
9. Menezes De Goes G, De Campos Freire G, Borrelli M, Lima Pompeo AC, Wroclawski ER (1981) Transplantation of a horseshoe kidney. *J Urol* 126: 537–538
10. Nelson RP, Palmer JM (1975) Use of horseshoe kidney in renal transplantation. Technical aspects. *Urology* 6: 357–359
11. Perlmutter AD, Retik AB, Bauer SB (eds) (1986) Anomalies of the upper urinary tract. *Cambells urology*, 5th edn. Saunders, Philadelphia, pp 1686–1692
12. Pitts WR, Muecke EC (1975) Horseshoe kidneys: a 40-year experience. *J Urol* 113: 743–746
13. Vromen MAM, Vliet JA van der, Ruers TJ, Müller JH, Kootstra G (1986) Use of horseshoe kidney for transplantation. *Neth J Surg* 38: 183–185