

Selection criteria for liver donation: a review

Jan Pruijm¹, Ids J. Klompmaker³, Elizabeth B. Haagsma³, Charles M. A. Bijleveld², Maarten J. H. Slooff¹

¹ Department of Surgery, University Hospital Groningen, P.O. Box 30001, NL-9700 RB Groningen, The Netherlands

² Department of Pediatrics, University Hospital Groningen, P.O. Box 30001, NL-9700 RB Groningen, The Netherlands

³ Department of Internal Medicine, University Hospital Groningen, P.O. Box 30001, NL-9700 RB Groningen, The Netherlands

Received: 9 July 1992/Received after revision: 16 November 1992/Accepted: 23 November 1992

Abstract. An overview of the criteria that are currently being used for the selection of liver donors is presented. The validity of the different criteria is discussed. The potential benefits of introducing other modalities is dealt with.

Key words: Liver transplantation, donor criteria – Selection, livers for transplantation – Viability, donor liver – Magnetic resonance spectroscopy, liver donor selection

Introduction

Ideally, parameters reflecting the condition of a donor liver should show a correlation with final transplant outcome. However, such a correlation has not yet been established. The ability of the currently used selection criteria for liver donation to predict transplant outcome is the subject of great controversy at different experienced transplant centers. This controversy is not merely academic. There is a rapid increase in the number of patients on waiting lists for different organs, while the supply of available organs is increasing only slowly [88]. For liver transplant candidates this means a high mortality rate: one in four to five patients will die while awaiting a transplant [5, 17, 109]. Pediatric donors are especially hard to find, and the mortality for candidates in this age group is even higher: one in three [17].

The discrepancy between the number of candidates awaiting transplants and the number of available organs is largely attributed to the fact that a considerable number of potentially suitable organs are not harvested. In a substantial number of cases potential donors are not used because they do not fulfill predefined selection criteria [35, 36]. In the years 1988–1990, about 40% of the donor organs offered to the Eurotransplant Foundation were turned away

by transplant centers on medical grounds [88, 93]. Centers tend to adhere strictly to their selection criteria because they fear accepting and transplanting livers of poor quality may result in severe complications and primary nonfunction (PNF) [73]. In the latter case, patients will either die or have to be retransplanted, resulting in a decreased patient survival [17, 56, 110] and an increase in the costs of the procedure [56]. Moreover, the need for an additional liver for the same patient places added pressure on those already on the waiting list, i.e., more patients remain on the waiting list for a longer period of time. The increased waiting time is likely to result in an aggravation of the candidates' condition and, consequently, their chances for success will be reduced.

A primary question in liver transplantation is whether rejecting donor organs on the basis of often nonvalidated criteria is justified. It is not difficult to imagine that because of the absence of reliable selection criteria, good livers are presently being turned away while bad livers are being accepted for transplantation. Both scenarios are undesirable. Therefore, an assessment of the validity of different criteria for liver donation is urgently needed.

Suitability for liver transplantation is determined on the basis of two kinds of criteria: those used to evaluate the condition of the donor in general and those used to evaluate the condition of the liver itself. In this paper, we will focus on both of these. Other obvious criteria, such as the presence of transferable diseases (e.g., cancer) or primary organ diseases (e.g., cirrhosis) in the donor will not be discussed.

The liver donor

Infections in the donor, viral

Livers of anti-HIV and HbAg-positive donors should not be used because they imply the transfer of the virus to the recipient [113] or transplantation of a diseased organ with the potential for malignant degeneration [8].

The hepatitis C virus (HCV) has caused a lot of controversy lately with regard to transplantation. HCV is as-

All authors are part of the Liver Transplant Group of the University Hospital Groningen

Correspondence to: M. J. H. Slooff

sociated with various conditions including chronic active hepatitis, liver cirrhosis, and hepatocellular carcinoma [61]. HCV infection is thought to be responsible for 60% of transfusion-associated non-A non-B hepatitis in 5%–12% of all recipients of donor blood transfusions in the United States [1]. Reports on virus transmission through kidney transplantation [83], bone marrow transplantation [64], and after infusion of contaminated immunoglobulin [27] have been published. In a retrospective study, Pereira et al., from the New England Organ Bank, questioned the use of donors testing positive for HCV [87]. Organs from 12 anti-HCV-positive donors were transplanted, a total of 29 organs in 29 recipients. Seven of the recipients were already anti-HCV-positive before the transplantation. Hepatitis C developed in 14 recipients receiving organs from 9 of the 12 HCV-positive donors; the mean time was 3.8 ± 1.5 months between transplantation and development of hepatitis. During the follow-up of these recipients, eight showed chronic active hepatitis or cirrhosis in their liver biopsies. Based on these findings, the New England Organ Bank has adopted a policy of limited use of anti-HCV-positive donors in the case of life-saving transplants (liver, heart, lungs) and exclusion of anti-HCV-positive donors in the case of transplantation of other organs (kidney, pancreas). Members of the Southeastern Organ Procurement Foundation and the United Network for Organ Sharing (UNOS) adopted a similar policy [71]. However, these policies are heavily debated [26, 90]. Arguments used in the discussion are the organ shortage, the uncertainty as to whether the virus came from the donor or from the blood transfusions given to the recipient, and the limited sensitivity and specificity of the available tests for anti-HCV. In addition, antibodies to HCV appear in the circulation between 1 and 3 months (and in rare cases, not until a year) after the onset of acute illness, often resulting in false-negative serology [6, 111].

Based on these considerations, a first step towards reducing HCV infection after transplantation should be the introduction of obligatory testing for anti-HCV in each organ donor. Because of the implications of HCV infection in the recipient, anti-HCV-positive donors should not be used in kidney and pancreas transplantation. The observed low frequency of the virus in the population allows for such a policy. The use of anti-HCV-positive donors in heart, liver, and lung transplantation should be based on the urgency of the need for a graft.

Members of the herpes virus family, e.g., cytomegalovirus (CMV), Epstein-Barr viruses (EBV), and varicella zoster virus (VZV) are ubiquitous agents that infect almost all human beings at some point during their lives (prevalence of anti-CMV antibodies in adults 35%–80% [99]). Consequently, a considerable number of organ donors will be positive for one or more of these viruses.

Infection with CMV from the transplanted organs has been proven both in kidney transplantation [21] and in liver transplantation [37, 41, 66]. Although CMV infection ultimately did not change survival or liver function, morbidity was high. Complications may include graft dysfunction due to viral hepatitis [19], pulmonary dysfunction [115], and gastrointestinal disorders [105, 116]. CMV hepatitis may also mimic allograft rejection and lead to inap-

propriate immunosuppressive therapy [104]. Finally, it has been hypothesized that the virus may cause an upregulation of MHC antigens, inducing rejection [104, 133]. Donor-recipient matching for CMV has proven to be worthwhile in elective patients, reducing the incidence and complications of post-transplant CMV infections [69, 86]. Even CMV-positive patients can profit from a CMV-negative donor liver because the liver is the main source of transmission of the virus. Such donor-recipient combinations have a lower incidence of CMV infection than CMV-positive donor/CMV-positive recipient combinations [33, 41, 97]. Disadvantages of this policy include the need to use CMV-negative blood products in cases of negative donor/negative recipient combinations. However, since blood donors outweigh liver donors, the logistics do not cause major problems [76, 114]. Furthermore, the waiting time increases, so the decision to adopt the policy for a particular recipient should be balanced against the need for a new liver.

Another virus from the herpes group that may cause concern is the Epstein-Barr virus (EBV). Recently, Telenti et al. described two cases in which recipients received livers from donors that were serologically positive for EBV. Both recipients experienced a primary infection 1.5 years after transplantation, with asymptomatic worsening of the liver tests as the major manifestation. Tapering of the immunosuppression and administration of acyclovir proved to be an effective treatment [122]. It was suggested that EBV can be transferred via the transplant organ. Due to the long interval between transplantation and the occurrence of the symptoms, however, this cannot be confirmed. Langnas et al. recently described their experience with viral hepatitis due to EBV. Although the incidence of EBV infection was low in their series (10 of 668 patients), complications were grave as two subjects progressed to systemic disease and subsequently died [59]. In our own experience with pediatric transplantation, 12 out of 32 transplanted patients seroconverted, with some patients showing extremely high viral capsid antigen titers. Only one of the patients showed clinical symptoms of EBV infection. A major concern is that in a small percentage of cases, an EBV infection will progress to the occurrence of malignant lymphomas in these immunosuppressed patients [9, 43, 140]. On the other hand, a reduction, or even disappearance, of the tumors has been noted after tapering of the immunosuppressive therapy [117]. Consequently, because of the low incidence of major sequelae, the EBV status of a donor is not a major consideration when deciding whether to accept or discard a donor liver, except in the case of an active EBV infection (infectious mononucleosis) in the donor at the time of death.

Infections with varicella zoster virus (VZV) – chickenpox – are usually benign and occur in childhood. They can, however, cause serious infections in immunocompromised patients. As reported by Wreggitt et al., four out of five Cambridge kidney transplant recipients who acquired a primary infection died as a result of it, even though three were treated with acyclovir [136]. Primary VZV infection can produce a disseminated infection characterized by hemorrhagic pneumonia and skin lesions, encephalitis, disseminated intravascular coagulation, and

hepatitis [104]. Therefore, in the case of an active and systemic VZV infection, organ donation should not be considered. In other cases, transfer of the virus will be unlikely.

Infections in the donor, bacterial

Symptoms suggestive of septicemia in a potential organ donor are an absolute contraindication for donation. However, there are some possible exceptions to this rule. In children, meningitis caused by *Hemophilus influenzae* or *Neisseria meningitidis* and leading to brain death often coincides with septicemia. Provided the pathogen has been identified, its resistance pattern to antibiotics identified, and an adequate response to antibiotics seen for at least 24 h before organ retrieval, these children can be considered as organ donors. Inclusion of the right antibiotics in the therapeutic regimen of the recipient will provide additional protection from infection in the recipient.

Localized bacterial infections that do not involve the organs to be harvested are not an absolute contraindication for organ donation, provided contamination of the explanted organs is avoided. Often organ donors stay in the intensive care unit for several days, and during this period they are colonized with often highly pathogenic bacteria [7, 118]. Donor teams should be aware of this phenomenon since transfer of the bacteria may cause serious infections in the immunocompromised host. A preventive measure would be to take cultures from skin, oropharynx, and anus in order to identify these pathogens and, if necessary, to incorporate the right antibiotics into the antibiotic regimen of the recipient.

Age of the donor

In an extensive review, Popper has dealt with the influence of aging on the structure of the liver, hepatic function, and hepatic macromolecules [92]. It is clear from the review that the aging of the liver as such does not lead to an overall decreased functional capability, and Popper gives three explanations: the liver's great functional reserve, its regenerative capacity, and the ample blood supply to the liver, which far exceeds its needs. Therefore, strict adherence to an upper age limit for liver donation is debatable.

Wall et al. compared the function and outcome of liver grafts from "older" donors (>50 years) with grafts from younger donors [127]. In their experience, graft function – as determined by peak aminotransferase levels, duration of prolonged prothrombin time, retransplantation rate within 30 days, and incidence of primary nonfunction – was not significantly different in older and younger grafts. Actuarial 1-year graft and patient survival rates were 65% and 71%, respectively, in recipients of older grafts and 69% and 76%, respectively, in recipients of younger grafts. Differences were not statistically significant. Mor et al., in a series of 365 donor-recipient combinations, also were unable to identify age over 50 years as being a risk factor for poor graft function [72]. Others have confirmed

these findings for livers up to 65 years of age [2, 23, 123]. In contrast, Greig et al. reported a negative influence of donor age on final transplant outcome [38]. Similar trends were seen in the European CLTS Registry. Transplantations performed with livers from donors over 60 years of age showed a poorer graft survival than those performed with livers from younger donors (Opelz, personal communication). The UNOS experience with 2913 liver grafts showed that recipients of donor livers aged 16–45 years had an 11% better 1-year graft survival than recipients of donor livers over 45 years of age. However, the differences disappeared when corrected for the age of the recipients. Consequently, the effect can probably be attributed to a greater percentage of high-risk and older recipients being transplanted with livers from older donors [5]. Ploeg et al., in an analysis of their donor population ($n = 330$), also reported donor age over 50 years (among other factors) as being a risk factor for poor liver function after transplantation [91].

The problem with the studies cited is that all were of a retrospective nature and/or nonrandomized: the livers from elderly donors were not randomly allocated. Moreover, graft quality was determined by many factors. As a result, the debate about the upper age limit continues. Empirically, however, donors up to the age of 50, and perhaps even above, seem to be able to provide well-functioning liver grafts in selected donors and recipients.

At the other end of the age spectrum, there is a reluctance to use neonatal donors, based on the immaturity of their liver. The capacity for bile-salt synthesis increases with gestational age, and both the infant cholate pool and the synthetic rate are significantly lower than in adults [40, 129, 130]. Adult levels of cholic acid and chenodeoxycholic acid are found at 3–6 months of age [47]. Greig et al. showed an increased risk of poor post-transplant liver function in younger child donors [38]. Recently, the Pittsburgh group also published their experience with the use of neonatal (< 28 days) donor livers as compared to older infant donors. Although differences did not reach statistical significance, graft survival at 1, 2, and 3 years was considerably less (56%, 56%, and 38%, respectively) than in the older group (76%, 76%, and 74%, respectively). In addition, it was found that bilirubin clearance was significantly less in the neonatal donor group [139]. These observations would lead one to the conclusion that infants below 3 months of age should not be used as liver donors. When doubt exists, bile acid levels should be measured in very young donors to estimate the maturity of the enterohepatic circulation of bile acids.

Length of hospital stay of the donor

The length of the hospital stay of the donor is a factor that shows a negative correlation with the final success of the procedure. A retrospective study by the European Liver Registry demonstrated that livers from donors hospitalized for over 5 days showed a higher risk of primary nonfunction (PNF) than livers from donors hospitalized for a shorter period [95]. Similar observations were made by other groups [38, 91, 138]. This observation may well be an

indication of an underlying phenomenon, and the nutritional status of the donor has been suggested as being one such phenomenon. Donors are often malnourished. On the one hand, this is due to a policy fluid restriction to combat brain edema while, on the other hand, these patients may often not be fed properly because of their poor prognosis. Boudjema et al. were able to show in the pig model that liver viability after preservation was reduced in livers coming from animals that had fasted [13]. This loss of viability is attributed to glycogen depletion in order to maintain normoglycemia. In humans, too, fasting leads to glycogen depletion [77, 119]. When glycogen-depleted livers are being harvested and high-energy phosphates (ATP) are being used during warm and cold ischemia, the substrate for recuperating these high-energy phosphates, i.e., the glycogen, is exhausted. Different authors have shown that the ability of a donor liver to function properly after preservation and transplantation depends on its ability to regenerate ATP [44, 53]. In the current situation, hospitalization of a donor for over 5 days coincides with an increased risk of PNF. Awareness of this phenomenon is important in the process of donor selection.

Hypotension and cardiac arrest

A great number of donors experience periods of hypotension or even temporary cardiac arrest. This may be caused by the trauma inflicted or may be due to the hemodynamic instability that is observed after the occurrence of brain death. Moreover, it may be enhanced by fluid restriction for the treatment of cerebral edema. The insufficient circulation causes a sequence of events at the cellular level that eventually cause cell death, among them: deterioration of membrane function, stimulation of Na/K ATPase with ATP depletion, decline of cyclic AMP levels and alteration of the responsiveness of the adenyl cyclase system, uncoupling of the cytochrome electron system and, eventually, the release of lysosomal enzymes [20]. Moreover, hypovolemic shock may lead to fatty degeneration of the liver, as was shown in the pig model [58], and to central lobular necrosis, as was shown in patients with severe shock of different origin [62].

Unfortunately, data indicating the acceptable duration and extent of insufficient circulation are not readily available. In rats, the former was found to be 60–120 min [45, 51], although ATP levels do not return to preshock values [11]. In humans, findings from other fields of liver surgery have shown that the liver is relatively resistant to warm ischemia: a complete vascular occlusion of the liver in normothermia can be extended up to 50–60 min without functional consequences after the operation [10]. Whether these data also apply to the liver transplant situation is doubtful because of the additive effects of ischemia/hypovolemia, malnutrition, and cold ischemia. Empirically, donors who have experienced prolonged and/or severe hypotension or repeated cardiac arrests can be accepted for liver donation provided a sufficient recuperation period (12–24 h) has followed the event(s). Circulation should be stable and, as a reflection, adequate diuresis should be restored. Future research in this field is urgently needed.

The donor liver

Liver biopsies

Using liver biopsies to assess the quality of the donor liver is a very old practice within the field of liver transplantation. In 1984 Rolles and Calne reported a case with severe fatty degeneration of the hepatocytes in the biopsy and a fatal outcome after the transplantation [102]. Recent studies from the Philadelphia and Wisconsin groups confirm the importance of fatty degeneration. They were able to show the detrimental effects of steatosis in the biopsy on final transplant outcome [24, 75]. In a more empirical way these observations are confirmed by others [2, 81]. As a result of these findings, livers with severe fatty infiltration should not be used for transplantation. Whether minor fatty infiltration also has a negative effect on transplant outcome needs to be explored further.

Laboratory data

The serum enzyme levels often used to accept or to discard a donor liver are lactic dehydrogenase (LDH), Aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Strictly speaking, the activity of these enzymes reflects cell damage – not synthetic capacity – and is not specific for the liver. In the donor situation these enzyme levels may reflect trauma to other organs and tissues as well. In a nontransplant situation these enzyme determinations, when used alone, have limited discriminative capacity as to different types of liver diseases [134].

Both Makowka et al. and Burdelski et al. questioned liver enzyme determinations and other routine laboratory data as selection criteria for liver donation in retrospective studies [16, 65]. The first group was unable to find any differences in the results of a group of recipients receiving "good" livers and those receiving "bad" livers, good and bad being defined on the basis of liver enzyme determinations and hypotension. Burdelski et al. found no correlation between donor AST serum levels and the performance of the graft. In a retrospective study we were able to confirm these observations, with the possible exception of the gamma glutamyltranspeptidase (GGT). In this study the GGT of the donor showed a correlation with graft survival up to 1 year after transplantation [94]. This latter finding may be relevant since a raised GGT is, among other things, an indication of fatty degeneration of the liver [55]. D'Allesandro and Moritz, in separate studies, both indicated the detrimental effect of steatosis of the donor liver on outcome of the transplant (see above) [24, 75].

Serum bilirubin determinations are affected by factors such as hemolysis and nutritional state [57]. Consequently, normal values are reassuring, but increased values can make interpretation difficult. They may reflect primary liver disease (hereditary disorders, cirrhosis, liver ischemia) or hemolysis [46]. The differentiation between conjugated and unconjugated bilirubin may be of some help; however, it does not necessarily distinguish hemolysis (e.g., based on trauma) from hereditary disorders like Gilbert's syndrome and Crigler-Najjar syndrome.

In the process of donor selection, it would seem logical to look for indicators of synthetic capacity of the liver. However, the serum levels of albumin, cholinesterase, and antithrombin III are strongly influenced by the transfusion policy used to stabilize the donor. Fresh-frozen plasma, single donor plasma, and transfused blood all contain these proteins or enzymes and, consequently, will result in false normal or near-normal values. Large volumes of crystalloid infusions in the case of diabetes insipidus will lower the values by dilution and, again, may yield false results. Consequently, routine determinations of the above-mentioned parameters in the donor have limited value. Because of the many factors involved, interpretation of the results requires clinical experience and thorough knowledge of possible differential diagnoses. This makes the interpretation of the tests highly subjective and, perhaps, inappropriate in the donor selection process. Based on all of these uncertainties, other tests that may reflect liver viability have been suggested.

Endogenic metabolites reflecting liver function

The ratio between the so-called branched-chain amino acids (valine, leucine, isoleucine) metabolized in muscle tissue and the aromatic amino acids (tyrosine, phenylalanine) metabolized in the liver has been shown to be valid as a indicator of liver function in the dog [68] and in humans [22, 74], including the assessment of the immediate postoperative function of liver grafts [30, 96]. Persson et al., however, reported that the ratio could not discriminate two patients with PNF from ten patients showing an uneventful recovery after liver transplantation [89]. Thus far, no studies have appeared correlating this ratio in the donor with final transplant outcome. Moreover, the practicability of this test is hampered by the time-consuming high-performance liquid chromatography (HPLC) detection technique that is needed. Finally, transfusion of diverse liquids to the donor, such as blood and amino acids containing fluids, will distort the true plasma concentrations of the enzyme levels needed for the ratio determinations, limiting the value of the ratio. These considerations make the amino acids less feasible as a selection parameter.

Bile acid metabolism is an early and sensitive indicator of cholestasis. The commonly used determination technique (enzyme spectrofluorometry) is able to provide data within 2 h. It has been claimed that bile acid clearance may be used as an indicator of allograft function during and after liver transplantation [48, 96, 126]. However, the differential diagnostic potential is limited: serum bile acids have equal or less sensitivity and specificity than routine liver tests [32, 63]. Other disadvantages are that bile acid levels depend on the age of the donor [47, 129] and on nutritional status [31]. Moreover, the clearance of bile acids from the systemic blood is determined principally by liver blood flow, thereby limiting its value as an indicator of parenchymal function [126]. Based on these considerations, introducing it as a selection criterion in the donor situation does not appear feasible, except, perhaps, in the case of neonatal donors.

Another index of liver function that has been studied is the ketone body ratio (KBR), i.e., the ratio between the

arterial acetoacetate and β -OH-butyrate levels. This ratio reflects the mitochondrial NAD^+/NADH ratio in the liver and, thus, the energy-producing capacity since the liver is the only organ that makes a net contribution of ketone bodies to the bloodstream [121]. Consequently, this energy-producing capacity of the mitochondria basically determines liver cell viability. It is claimed that the results of KBR analyses can be readily available [125]. The application of KBR in the liver transplant situation has been studied. Osaki et al. found that in a group of 43 patients with 47 transplants, KBR failed to return to normal levels in 3 patients with PNF [82]. In addition, KBR measured in samples taken from the donor immediately before removal of the liver showed a correlation with 1-week graft survival but not with 2-week graft survival, thus indicating that the donor KBR has a correlation with early graft function [84]. It was also shown that high catecholamine administration to the donor reduced the KBR considerably, reflecting a detrimental effect on liver metabolism. However, the KBR did not correlate with blood pressure [137]. Finally, it was shown that KBR measured on the 1st and/or 2nd postoperative day is superior to standard liver function tests in predicting graft prognosis after transplantation [120]. This ratio therefore appears to be promising and clinically usable for prediction of graft outcome.

The lidocaine-MEGX test

The cytochrome P450 enzyme system appears to play a central role in the determination of liver cell viability. In a group of mixed liver diseases, cytochrome P450 activities are significantly impaired compared to normal controls [29, 50]. Also, in humans, the pretransplant hepatic P450 IIIA4 level may have predictive value for short-term liver graft survival [25]. As an additional advantage, P450 IIIA does not seem to be influenced by the age of the subject [98], which should make a test for cytochrome P450 applicable in all age groups.

Formation of the monoethylglycinexylidide (MEGX) metabolite is the first step in the metabolic breakdown of lidocaine via N-deethylation, a reaction that is catalyzed by the cytochrome P450 enzyme system, probably by the P450 IIIA4 subsystem [80, 85]. A great advantage of this MEGX test is that it can easily be performed in the donor situation as fluorescence polarizing immunoassay is available in most hospitals. Results can be obtained within 30–60 min after taking a venous blood sample [78]. In situations of impaired liver function, e.g., cirrhosis, the MEGX formation is reduced and, as a result, MEGX levels are low [80]. The test has been claimed to be a sensitive indicator of transplant outcome, both in adults [79, 108, 109] and in children [39]. In a study of predictive values of donor parameters using a Cox proportional hazards model, Oellerich et al. reported the serum MEGX levels and liver histology to be the only parameters to show a correlation with 120-day graft survival [81]. Adam et al. found significantly lower levels of serum MEGX in discarded livers than in accepted ones [3]. Because the discarded livers were not transplanted, absolute proof of the discriminative value of this test cannot be obtained.

In contrast, several groups have reported on the failure of the MEGX test to predict graft outcome. Livers from donors with a low (< 80 ng/l) MEGX level did as well as livers from donors with levels over 80 ng/l after transplantation [101, 103]. Consequently, doubt still exists about the usefulness of this test. Validation is urgently needed in prospective, randomized, and preferably multicenter trials.

ATP content of the liver: spectroscopy

High-energy phosphates (e.g., ATP) play a central role as a determinant of liver viability [44, 53, 54, 67]. Depletion of ATP stores occurs as a consequence of hypotension, starvation, warm ischemia, and preservation [44, 100]. It is the ATP regeneration capacity of hepatocytes in particular that is considered to play a crucial role in the recuperation of graft function after harvesting and preservation [14, 60]. Thus, theoretically, a technique that would allow assessment of the phosphate composition of the donor liver could play a major role in the selection process. Such a technique could well be magnetic resonance spectroscopy (MRS), which allows assessment of the presence of phosphate compounds in the living cell. Moreover, ^{31}P -MRS also allows one to study tissue pH [18] and the amount of damage to the plasma membrane that defines irreversibly injured ischemic cells [20, 28, 42, 49, 128]. Other features of the technique are ^1H -MRS and ^{13}C -MRS, which can, for example, be used to study lactic acid levels [131] and liver glycogen status [112], respectively. An additional advantage is that MRS poses no risk of sterility or temperature changes of a cold-stored organ and is, therefore, a safe, noninvasive technique [132].

With respect to transplantation, MRS has been widely studied in animals, e.g., monitoring of graft function after transplantation [12]. Another animal study showed a strong influence of nutritional status on the ^{31}P -MR liver spectrum [106]. Similar results were seen in the human body too, especially in human hearts [4, 70] and kidneys [15]. In a recent publication, Wolf et al. reported their own experience with MRS on human livers during cold storage. In a series of 25 livers they were able to demonstrate a correlation between relatively high phosphodiester levels (a marker for membrane damage) and insufficient graft function in the immediate postoperative period. A correlation between ATP levels and post-transplant graft function could not be established [135].

Preferably, MRS of the donor liver should be performed before transplantation [124]. There are two possibilities: either to study the liver *in situ* or to study it *ex corpore*. There are two main arguments against *in situ* testing. First, an *in situ* study of the liver is difficult to perform since the circulating blood and the respiratory movements of the diaphragm cause blurring of the spectra. Second, one must realize that NMR scanners are not widely available yet. Therefore, ideally, the organ should be tested *ex corpore* in the transplant center after explantation and still be discarded if shown to be nonviable. The prolonged preservation times that have been made possible using the University of Wisconsin preservation solution allow one

to follow such a procedure [52]. Indeed, Wolf et al. [135] have shown this method to be quite feasible. Moreover, the method also allows one to monitor viability improvement via so-called metabolic resuscitation [18, 34, 107].

Conclusions

The selection of liver donors will always involve a process of interpretation of available data in less than optimal circumstances. Data will most often be incomplete and additional data difficult to obtain. The selection of liver donors is a process in which several parameters have to be weighed in order to assure a maximum of success. The situation is complicated by the fact, discussed above, that currently used selection parameters, especially those for liver function, have a limited role in the process. We still do not know which donor parameters from the donor history and from the laboratory are essential and which are not. Nor do we know how much each individual parameter contributes within the context of all available parameters. Despite the fact that advances in liver transplantation have increased our knowledge with regard to liver donation, we are still not able to prevent such devastating events as PNF and we probably still discard too many viable donor livers.

Further research is the only means of solving this dilemma. First, research should be aimed at collecting more data on donor condition and at studying the correlation with transplant outcome. Ideally, prospective trials should be undertaken in a multicenter fashion to enable the creation of sufficiently large study groups within a reasonable amount of time. However, a major obstacle is that acceptance of donor livers that are deemed unsuitable for grafting by current criteria is ethically unjustifiable. Thus, allocation bias is created. In addition, one has to realize that transplant outcome is dependent upon recipient condition too. Consequently, studies should correct for this problem, for example, by introducing a system of stratification for recipient condition.

Future research should also be directed towards other parameters, as we may, in fact, presently be looking at the wrong ones. Identification of the determinants of the functional capacity of the donor liver and its tolerance limits to the events occurring in the donor is pivotal. Modern tools, such as MRS and perhaps even positron emission tomography, which enable us to study liver metabolism *in vivo*, may be helpful instruments in this research. Hopefully, it will lead to the definition of valid selection criteria, criteria that should then be validated in prospective, clinical trials.

In the absence of truly validated selection criteria, the transplant physician should look at the donor as a true clinician would and take the combination of available parameters as they are. They should be weighed against the condition and urgency of the recipient-to-be, and it is the combination of the two that should be considered when deciding whether to accept or to discard a donor liver.

Acknowledgement. Dr. L. A. Stowe is gratefully acknowledged for her review of the manuscript and for revising the English.

References

- Aach RD, Stevens CE, Hollinger FB, Mosley JW, Peterson DA, Taylor PE, Johnson RG, Barbosa LH, Nemo GJ (1991) Hepatitis C virus infection in post-transfusion hepatitis. *N Engl J Med* 325: 1325–1329
- Adam R, Astarcoglu I, Azoulay D, Morino M, Bao YM, Castaing D, Bismuth H (1991) Age greater than 50 years is not a contraindication for liver donation. *Transplant Proc* 23: 2602–2603
- Adam R, Azoulay D, Astarcoglu I, Bao YM, Bonhomme L, Fredj G, Bismuth H (1991) Reliability of the MEGX test in the selection of liver grafts. *Transplant Proc* 23: 2470–2471
- Aisen AM, Chevenert TL (1989) MR spectroscopy: clinical perspective. *Radiology* 173: 593–599
- Alexander JW, Vaughn WK (1991) The use of “marginal” donors for organ transplantation. *Transplantation* 51: 135–141
- Alter HJ, Purcell RH, Shih JW, Melpolder JC, Houghton M, Choo Q-L, Kuo G (1989) Detection of antibody to hepatitis C virus in prospectively followed transfusion recipients with acute and chronic non-A non-B hepatitis. *N Engl J Med* 321: 1494–1500
- Baker CC, Oppenheimer L, Stephans B, Lewis FR, Trunkey DD (1980) Epidemiology of trauma deaths. *Am J Surg* 140: 144–150
- Beasley RP, Hwang LY (1984) Hepatocellular carcinoma and hepatitis B virus. *Semin Liver Dis* 4: 113–121
- Bieber CP, Heberling RL, Jamieson SW, Oyer PE, Cleary M, Warnke R, Saemundsen A, Klein G, Henle W, Stinson EB (1982) Lymphoma in cardiac transplant recipients associated with cyclosporin. In: Purtill DT (ed) *Immune deficiency and cancer*. Plenum Medical, New York, pp 309–320
- Bismuth H, Houssin D, Mazmanian G (1983) Postoperative liver insufficiency: prevention and management. *World J Surg* 7: 505–510
- Blum H (1989) Rat liver metabolism in hemorrhagic traumatic shock. *Circ Shock* 29: 291–300
- Bottomley PA (1989) Human in vivo NMR spectroscopy in diagnostic medicine: clinical tool or research probe? *Radiology* 170: 1–15
- Boudjema K, Lindell SL, Southard JH, Belzer FO (1990) The effects of fasting on the quality of liver preservation by simple cold storage. *Transplantation* 50: 943–948
- Bowers JL, Teramoto K, Clouse ME (1991) ^{31}P NMR assessment of orthotopic liver transplant viability: the effect of warm ischaemia (abstract). 10th Annual Meeting of the Society of Magnetic Resonance in Medicine. San Francisco, p 663
- Bretan PN, Baldwin N, Novick AC, Majors A, Easley K, Ng T, Stowe N, Rehm P, Streem SB, Steinmuller DR (1989) Pretransplant assessment of renal viability by phosphorus-31 magnetic resonance spectroscopy. *Transplantation* 48: 48–53
- Burdelski M, Oellerich M, Lamesch P, Raude E, Ringe B, Neuhau P, Bortfeld S, Kämmerling C, Raith H, Scheruhn M, Westphal C, Worm M, Pichlmayr R (1987) Evaluation of quantitative liver function tests in liver donors. *Transplant Proc* 19: 3838–3839
- Busuttil RW, Colonna JO II, Hiatt JR, Brems JJ, El Khoury G, Goldstein LI, Quinones-Baldrich WJ, Abdul-Rasool IH, Ramming KP (1987) The first 100 liver transplants at UCLA. *Ann Surg* 206: 387–402
- Busza AL, Proctor E, Fuller BJ (1989) Biochemical consequences of refilling hypothermically stored livers with fresh cold perfusate. *NMR Biomed* 2: 115–119
- Carithers RL, Fairman RP, Mendez-Picon G, Posner MP, Mills AS, Friedenberg KT (1988) Postoperative care. In: Maddrey WC (ed) *Transplantation of the liver*. Elsevier, New York, pp 111–141
- Chaudry IH (1983) Cellular mechanisms in shock and ischemia and their correction. *Am J Physiol* 245: R117–R134
- Chou S (1986) Acquisition of donor strain of cytomegalovirus by renal transplant recipients. *N Engl J Med* 314: 1418–1423
- Clowes GHA Jr, McDermott WV, Williams LF, Loda M, Menzoian JO, Pearl R (1984) Amino acid clearance and prognosis in surgical patients with cirrhosis. *Surgery* 96: 675–685
- Conn M, Schwartz M, Miller C, Manzarbeitia C, Nishizaki T, Zifroni A, Thung S (1990) Donor age does not effect outcome after liver transplantation. *Hepatology* 12: 1015
- D'Alessandro AM, Kalayoglu M, Sollinger HW, Hoffmann RM, Reed A, Knechtel SJ, Pirsch JD, Hafez GR, Lorentzen D, Belzer FO (1991) The predictive value of donor liver biopsies for the development of primary nonfunction after orthotopic liver transplantation. *Transplantation* 51: 157–163
- Diaz D, Pageaux GP, Fabre JM, Pichard L, Maurel P, Baumel H, Michel H (1990) The risk of short-term liver graft dysfunction may be correlated with a low pre-transplant hepatic cytochrome P450IIIA level. *J Hepatol* 11 [Suppl 2]: S19
- Diethelm AG, Roth D, Ferguson RM, Schiff ER, Hardy MA, Starzl TE, Miller J, Thiel D van, Najarian JS (1992) Transmission of HCV by organ transplantation (letter). *N Engl J Med* 326: 410–411
- Dittmann S, Roggendorf M, Durkop J, Wiese M, Lorbeer B, Deinhardt F (1991) Long-term persistence of hepatitis C virus in a single source outbreak. *J Hepatol* 13: 323–327
- Farber JL, Chien KR, Mittnacht S (1981) The pathogenesis of irreversible cell injury in ischemia. *Am J Pathol* 102: 271–281
- Farrell GC, Cooksley WGE, Powel LW (1979) Drug metabolism in liver disease: activity of hepatic microsomal metabolizing enzymes. *Clin Pharmacol Ther* 26: 483–492
- Fath JJ, Ascher NL, Konstamides FN, Bloomer J, Sharp H, Najarian JS, Cerra FB (1984) Metabolism during hepatic transplantation: indicators of allograft function. *Surgery* 96: 664–673
- Fausa O, Gjone E (1976) Serum bile acid concentrations in patients with liver disease. *Scand J Gastroenterol* 11: 537–543
- Ferraris R, Colombatti G, Fiorentini MT, Carosso R, Arossa W, Pierre M de la (1983) Diagnostic value of serum bile acids and routine liver function tests in hepatobiliary diseases. *Dig Dis Sci* 28: 129–136
- Fox AS, Tolpin MD, Baker AL, Broelsch CE, Whittington PF, Jackson T, Thistlethwaite JR, Stuart FP (1988) Seropositivity in liver transplant recipients as a predictor of cytomegalovirus disease. *J Infect Dis* 157: 383–385
- Fuller BJ, Busza AL, Proctor E (1990) Possible resuscitation of liver function by hypothermic reperfusion in vitro after prolonged (24-hour) cold preservation – a ^{31}P NMR study. *Transplantation* 50: 511–513
- Goor H van, Slooff MJH, Persijn GG (1986) Factors involved in the wastage of multiple organ donors (MOD). *Transplant Proc* 18: 1415–1416
- Goor H van, Bleichrodt RP, Scholte AL, Slooff MJH, Persijn GG (1991) Loss of donor livers and donor hearts: a retrospective study of organ donation in the Netherlands. *Transplant Proc* 23: 2555–2557
- Gorensek MJ, Carey WD, Vogt D, Goormastic M (1990) A multivariate analysis of risk factors for cytomegalovirus infection in liver-transplant recipients. *Gastroenterology* 98: 1326–1332
- Greig PD, Forster J, Superina RA, Strasberg SM, Mohamed M, Blendis LM, Taylor BR, Levy GA, Langer B (1990) Donor-specific factors predict graft function following liver transplantation. *Transplant Proc* 22: 2072–2073
- Gremse DA, Al-Kader HH, Schroeder TJ, Balistreri WF (1990) Assessment of lidocaine metabolite formation as a quantitative liver function test in children. *Hepatology* 12: 565–569
- Gustafsson J (1985) Bile acid synthesis during development. Mitochondrial 12 α -hydroxylation in human fetal liver. *J Clin Invest* 75: 604–607
- Haagsma EB, Klompmaker IJ, Grond J (1987) Herpes virus infection after orthotopic liver transplantation. *Transplant Proc* 19: 4054–4056
- Hachisuka T, Nakayama S, Tomita T, Takagi H (1990) ^{31}P nuclear magnetic resonance study of phospholipid metabolites in hypothermic-preserved liver. *Transplant Proc* 22: 485–487

43. Hanto DW, Gajl-Peczalska KJ, Frizzera G, Arthur DC, Balfour HH, McClain K, Simmons RL, Najarian JS (1983) Epstein-Barr virus (EBV) induced polyclonal and monoclonal lympho-proliferative diseases occurring after renal transplantation. *Ann Surg* 198: 356-369

44. Harvey PRC, Iu S, McKeown CMB, Petrunka CN, Ilson RG, Strasberg SM (1988) Adenine nucleotide tissue concentrations and liver allograft viability after cold preservation and warm ischemia. *Transplantation* 45: 1016-1020

45. Hasselgren P-O (1987) Prevention and treatment of ischemia of the liver. *Surg Gynecol Obstet* 164: 187-196

46. Hawker F (1991) Liver dysfunction in critical illness. *Anaesth Intensive Care* 19: 165-181

47. Heikura S, Similä S, Finni K, Mäentausta O, Jänne O (1980) Cholic acid and chenodeoxycholic acid concentrations in serum during infancy and childhood. *Acta Paediatr Scand* 69: 659-662

48. Herrera FJ, Codoceo R, Cienfuegos J, Pardo F, Mora NP, Pereira F, Castillo-Olivares JL (1990) Bile acid profile as an early indicator of allograft function during orthotopic liver transplantation. *Eur Surg Res* 22: 19-26

49. Iles RA, Cox IJ, Bell JD, Dubowitz LMS, Cowan F, Bryant DJ (1990) 31P magnetic resonance spectroscopy of the human paediatric liver. *NMR Biomed* 3: 90-94

50. Iqbal S, Vickers CK, Elias E (1990) Drug metabolism in end-stage liver disease. In vitro activities of some phase I and phase II enzymes. *J Hepatol* 11: 37-42

51. Johannigman JA, Johnson DJ, Roettger R (1992) The effect of hypothermia on liver adenosine triphosphate (ATP) recovery following combined shock and ischemia. *J Trauma* 32: 190-195

52. Kalayoglu M, Sollinger HW, Stratta RJ, D'Alessandro AM, Hoffmann RM, Pirsch JD, Belzer FO (1988) Extended preservation of the liver for clinical transplantation. *Lancet* I: 617-619

53. Kamiike W, Burdelski M, Steinhoff G, Ringe B, Lauchart W, Pichlmayr R (1988) Adenine nucleotide metabolism and its relation to organ viability in human liver transplantation. *Transplantation* 45: 138-143

54. Kanetsuna Y, Fujita S, Tojimbara T, Fuchinoue S, Teraoka S, Ota K (1992) Usefulness of 31P-MRS as a method of evaluating the viability of preserved and transplanted rat liver. *Transpl Int* 5 [Suppl 1]: S379-S381

55. Kreutzer HH (1982) Enzymen. In: Kreutzer HH, Raymakers JA (eds) *Interpretatie van uitkomsten van laboratoriumonderzoek in de geneeskunde*. Bohn, Scheltema en Holkema, Utrecht, pp 40-55

56. Krom RAF, Wiesner RH, Rettke SR, Ludwig J, Southorn PA, Hermans PE, Taswell HF (1989) The first 100 liver transplantation at the Mayo Clinic. *Mayo Clin Proc* 64: 84-94

57. Laker MF (1990) Liver function tests. With all their imperfections the standard tests are still widely used. *BMJ* 301: 250-251

58. Lamesch P, Ringe B, Neuhaus P, Burdelski M, Oellerich M, Pichlmayr R (1988) Qualitative assessment of liver function after hypovolemic, hypoxicemic, and ischemic shock in a transplantation model. *Transplant Proc* 20: 994-995

59. Langnas AN, Markin RS, Inagaki M, Stratta RJ, Sorrell MF, Donovan JP, Shaw BW Jr (1992) Epstein-Barr virus hepatitis following liver transplantation: incidence, outcome and influence of anti-lymphocyte therapy (abstract). American Society of Transplant Surgeons, 18th Annual Scientific Meeting, Chicago

60. Lanir A, Clouse ME, Lee RGL (1987) Liver preservation for transplant, evaluation of hepatic energy metabolism by 31P NMR. *Transplantation* 43: 786-790

61. Lau JYN, Alexander GJM, Alberti A (1991) Viral hepatitis. *Gut* 32 [Suppl]: S47-S62

62. Lenz K, Kleinberger G, Druml W, Laggner A (1982) Die Schockleber. *Leber Magen Darm* 12: 198-202

63. Linnet K, Andersen JR (1983) Differential diagnostic value in hepatobiliary disease of serum conjugated bile acid concentrations and some routine liver tests assessed by discriminant analysis. *Clin Chim Acta* 127: 217-228

64. Ljungman P, Duraj V, Magnus L, Aschan J, Lönnqvist B, Ringdén O, Gahrton G (1991) Hepatitis C infection in allogeneic bone marrow transplant recipients. *Clin Transplant* 5: 283-286

65. Makowka L, Gordon RD, Todo S, Ohkohchi N, Marsh JW, Tzakis AG, Yokoi H, Liguish J, Esquivel CO, Satake M, Iwatsuki S, Starzl TE (1987) Analysis of donor criteria for the prediction of outcome in clinical liver transplantation. *Transplant Proc* 19: 2378-2382

66. Marin E, Wiesner R, Porayko M, Keating M, Krom R, Wahlstrom E, Paya C (1991) Cytomegalovirus infection after liver transplantation: incidence, timing, and predictors of disease. *J Hepatol* 13 [Suppl 2]: S50

67. Marubayashi S, Tekenaka M, Dohi K, Ezaki H, Kawasaki T (1980) Adenine nucleotide metabolism during hepatic ischemia and subsequent blood reflow periods and its relation to organ viability. *Transplantation* 30: 294-296

68. McMenahy RH, Vang J, Drapanas T (1965) Amino acid and α -keto acid concentrations in plasma and blood of the liverless dog. *Am J Physiol* 209: 1046-1052

69. Milbradt H, Flik J, Stangel W, Heigel R (1990) Bedeutung der Untersuchung auf Antikörper gegen Cytomegalievirus bei Organtransplantationen. *Beitr Infusionsther* 26: 33-36

70. Minten J, Hecke P van, Vanstapel F, Falmeng W (1991) 31P-NMR study of cardiac preservation. St. Thomas Hospital cardioplegic solution versus UW preservation solution. *Transpl Int* 4: 82-87

71. Mizrahi S, Hussey JL, Hayes DH, Boudreaux JP (1991) Organ transplantation and hepatitis C infection. *Lancet* 337: 1100

72. Mor E, Klintmalm GB, Gonwa TA, Solomon H, Holman MJ, Gibbs JF, Watemberg I, Goldstein RM, Husberg BS (1992) The use of marginal donors for liver transplantation. *Transplantation* 53: 383-386

73. Mora NP, Turrión VS, Pardo F, Pereira F, Herrera J, Ardaiz J, Olivarez P, Murcia J, Vázquez J, Cienfuegos JA (1988) Relevance of donor liver selection and graft viability in a liver transplantation program. *Transplant Proc* 20: 978-979

74. Morgan MY, Milsom JP, Sherlock S (1978) Plasma ratio of valine, leucine and isoleucine to phenylalanine and tyrosine in liver disease. *Gut* 19: 1068-1073

75. Moritz MJ, Rubin R, Munoz S, Jarrell B, Maddrey W (1990) Assessment of ischemic damage to the graft in liver transplantation with intraoperative biopsies. *J Hepatol* 12: 1019

76. Motschman TL, Taswell HF, Brecher ME, Rettke SR, Wiesner RH, Krom RAF (1989) Blood bank support of a liver transplantation program. *Mayo Clin Proc* 64: 103-111

77. Nilsson LH, Hultman E (1973) Liver glycogen in man - the effect of total starvation or a carbohydrate-poor diet followed by carbohydrate refeeding. *Scand J Clin Lab Invest* 32: 325-330

78. Oellerich M, Raude E, Burdelski M, Schulz M, Schmidt FW, Ringe B, Lamesch P, Pichlmayr R, Raith H, Scheruhn M, Wrenner M, Wittekind C (1987) Monoethylglycinexylidide formation kinetics: a novel approach to assessment of liver function. *J Clin Chem Clin Biochem* 25: 845-853

79. Oellerich M, Burdelski M, Ringe B, Lamesch P, Gubernatis G, Bunzendahl H, Pichlmayr R, Herrmann H (1989) Lignocaine metabolite formation as a measure of pre-transplant liver function. *Lancet* I: 640-642

80. Oellerich M, Burdelski M, Lautz HU, Schulz M, Schmidt FW, Herrmann H (1990) Lidocaine metabolite formation as a measure of liver function in patients with cirrhosis. *Ther Drug Monit* 12: 219-226

81. Oellerich M, Burdelski M, Ringe B, Wittekind C, Lamesch P, Lautz HU, Gubernatis G, Beyrau R, Pichlmayr R (1991) Functional state of the donor liver and early outcome of transplantation. *Transplant Proc* 23: 1575-1578

82. Osaki N, Ringe B, Bunzendahl H, Taki Y, Gubernatis G, Oellerich M, Kuse E-R, Burdelski M, Uemoto S, Kimoto M, Yamaoka Y, Ozawa K, Pichlmayr R (1990) Postoperative recovery of mitochondrial function of the human liver graft procured and preserved with University of Wisconsin (UW) solution. *Transpl Int* 3: 128-132

83. Otero J, Rodriguez M, Escudero D, Gomez E, Aguado S, De Ona M (1990) Kidney transplants with positive anti-hepatitis C virus donors. *Transplantation* 50: 1086–1087

84. Ozaki N, Gubernatis G, Ringe B, Oellerich M, Washida M, Yamaoka Y, Ozawa K, Pichlmayr R (1991) Arterial blood ketone body ratio as an indicator for viability of donor livers. *Transplant Proc* 23: 2487–2489

85. Pang KS, Terrell JA, Nelson SD, Feuer KF, Clements MJ, Endrenyi L (1986) An enzyme-distributed system for lidocaine metabolism in the perfused rat liver preparation. *J Pharmacokinet Biopharm* 14: 107–130

86. Paya CV, Hermans PE, Wiesner RH, Ludwig J, Smith TF, Rakela J, Krom RA (1989) Cytomegalovirus hepatitis in liver transplantation: prospective analysis of 93 consecutive orthotopic liver transplants. *J Infect Dis* 160: 752–758

87. Pereira BJJ, Milford EL, Kirkman RL, Levey AS (1991) Transmission of hepatitis C virus by organ transplantation. *N Engl J Med* 325: 454–460

88. Persijn GC, Cohen B (eds) (1991) Eurotransplant annual report 1990. Leiden

89. Persson H, Karlberg I, Svensson K, Stenqvist O, Lundholm K, Andersson C, Frisk B, Hedman L, Brynger H, Schersten T (1987) Rapid indication of allograft function in liver transplantation. *Transplant Proc* 19: 3545–3548

90. Pirsch JD, Belzer FO (1992) Transmission of HCV by organ transplantation (letter). *N Engl J Med* 326: 412

91. Ploeg RJ, D'Alessandro AM, Knechtle SJ, Stegall MD, Pirsch JD, Hoffmann RM, Sasaki T, Sollinger HW, Belzer FO, Kallayoglu M (1992) Risk factors for primary dysfunction (PDF) after liver transplantation: a multivariate analysis (abstract). American Society of Transplant Surgeons 18th Annual Scientific Meeting, Chicago

92. Popper H (1985) Aging and the liver. In: Popper H, Levy GL (eds) *Progress in liver diseases*, vol VIII. Grune & Stratton, New York, pp 659–683

93. Pruim J (1989) Minutes of the multi-organ donor meeting organized under the auspices of the Eurotransplant Foundation at Schiphol Airport, Amsterdam, 1 June 1989. Eurotransplant Newsletter no. 66

94. Pruim J, Bonsel GJ, Veer F van't, Klompmaker IJ, Vos R de, Slooff MJH (1989) Donor parameters and survival of recipients after liver grafting. A statistical analysis (abstract). 4th International Symposium on Organ Procurement and Preservation, Minneapolis

95. Pruim J, Woerden WF van, Knol E, Klompmaker IJ, Bruijn KM de, Persijn GG, Slooff MJH (1989) Donor data of liver grafts with primary non-function. A preliminary analysis by the European Liver Registry. *Transplant Proc* 21: 2383–2384

96. Pruim J, Vergert EM ten, Klompmaker IJ, Verwer R, Slooff MJH (1991) Cellular damage and early metabolic function of transplanted livers stored in Eurocollins or University of Wisconsin solution. *Eur Surg Res* 23: 285–291

97. Rakela J, Wiesner RH, Taswell HF, Hermans PE, Smith TF, Perkins JD, Krom RAF (1987) Incidence of cytomegalovirus infection and its relationship to donor-recipient serologic status in liver transplantation. *Transplant Proc* 19: 2399–2402

98. Ratanasavanh D, Beaune P, Morel F, Flinois J-P, Guengerich FP, Guillou A (1991) Intralobular distribution and quantitation of cytochrome P-450 enzymes in human liver as a function of age. *Hepatology* 13: 1142–1151

99. Ray CG (1981) Cytomegalic inclusion disease (salivary gland virus disease). In: Isselbacher KJ, Adams RD, Braunwald E, Petersdorf RG, Wilson JD (eds) *Harrison's principles of internal medicine*. McGraw-Hill, Auckland, pp 852–854

100. Reckendorfer H, Burgmann H, Speckermann PG (1991) Hepatic energy metabolism during hypothermic storage and after reperfusion. Evaluation of the University of Wisconsin and the Bretschneider solutions. *Transplant Proc* 23: 1974–1975

101. Reding R, Feyaerts A, Wallemacq P, Lambotte L, Otte JB (1992) Liver graft assessment in organ donors by the lidocaine monoethylglycinexylidide test is unreliable. *Br J Surg* 79 [Suppl]: S142

102. Rolles K, Calne RY (1984) Liver transplantation. In: Calne RY (ed) *Transplantation immunology, clinical and experimental*. Oxford University Press, Oxford, pp 436–451

103. Rosenlof L, Sawyer RG, Broccoli T, Dodd W, Ishitani M, Stevenson W, Pruitt T (1992) Monoethylglycinexylidide (MEGX) and the utilization of hepatic donors for transplantation (abstract). American Society of Transplant Surgeons 18th Annual Scientific Meeting, Chicago

104. Rubin RH (1988) Infectious disease problems. In: Maddrey WC (ed) *Transplantation of the liver*. Elsevier, New York, pp 279–308

105. Sackier JM, Kelly SB, Clarke D, Rees AJ, Wood CB (1991) Small bowel haemorrhage due to cytomegalovirus vasculitis. *Gut* 32: 1419–1420

106. Schilling A, Gewiese B, Stiller D, Römer T, Wolf K-J (1990) Einfluss der Ernährungslage auf das ³¹P-MR Spektrum der gesunden Leber. *Fortschr Röntgenstr* 153: 369–372

107. Schon MR, Pegg DE (1991) The possibility of resuscitating livers after warm ischemia injury. *Transplant Proc* 23: 2456–2458

108. Schroeder TJ, Gremse DA, Mansour ME, Theuerling AW, Brunson ME, Ryckman FC, Suchy FJ, Penn I, Alexander JW, Pesce AJ, First MR, Balistreri WF (1989) Lidocaine metabolism as an index of liver function in hepatic transplant donors and recipients. *Transplant Proc* 21: 2299–2301

109. Schroeder TJ, Pesce AJ, Ryckman FC, Tressler TP, Brunson ME, Pedersen SH, Tchervenkov JI, Penn I, Alexander JW, Balistreri WF (1991) Selection criteria for liver transplant donors. *J Clin Lab Anal* 5: 275–277

110. Shaw BJ, Gordon RD, Iwatsuki S, Starzl TE (1985) Retransplantation of the liver. *Semin Liv Dis* 5: 394–401

111. Sherlock S, Dusheiko G (1991) Hepatitis C virus updated. *Gut* 32: 965–967

112. Shulman GI, Rosetti L, Rothman DL, Blair JB, Smith D (1987) Quantitative analysis of glycogen repletion by nuclear magnetic resonance spectroscopy in the conscious rat. *J Clin Invest* 80: 387–393

113. Simonds RJ, Homberg SD, Hurwitz RL, Coleman TR, Bottenfield S, Conley LJ, Kohlenberg SH, Castro KG, Dahan BA, Schable CA, Rayfield MA, Rogers MF (1992) Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. *N Engl J Med* 326: 726–732

114. Smit Sibinga CT, Achterhof L, Waltje J, Swierenga J, Das PC (1985) Blood bank logistics in liver transplantation. In: Gips CH, Krom RAF (eds) *Progress in liver transplantation*. Nijhoff, Dordrecht, pp 85–89

115. Son WJ van, Tegzess AM, The TH, Duipmans J, Slooff MJH, Mark TW van der, Peset R (1987) Pulmonary dysfunction is common during a cytomegalovirus infection after renal transplantation even in asymptomatic patients: possible relationship with complement activation. *Am Rev Respir Dis* 136: 580–585

116. Sonsino E, Mouy R, Fougaud P, Aigrain Y, Bocquet L, Navarro J (1984) Intestinal pseudoobstruction related to cytomegalovirus infection of myenteric plexus. *N Engl J Med* 311: 196–197

117. Starzl TE, Nalesnik MA, Porter KA, Ho M, Iwatsuki S, Griffith BP, Rosenthal JT, Hakala TR, Shaw BW Jr, Hardesty RL, Atchinson RW, Jaffe R (1984) Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steroid therapy. *Lancet* I: 583–587

118. Stoutenbeek CO, Saene HKF van, Miranda DR, Zandstra DF, Langrehr D (1987) The effect of oropharyngeal decontamination using topical nonabsorbable antibiotics on the incidence of nosocomial respiratory tract infections in multiple trauma patients. *J Trauma* 27: 357–364

119. Sunzel H (1963) Effects of fasting and of intravenous glucose administration on liver glycogen in man. *Acta Chir Scand* 125: 107–117

120. Takada Y, Ozaki N, Ringe B, Mori K, Gubernatis G, Oellerich M, Yamaguchi T, Kiuchi T, Shimahara Y, Yamaoka Y, Sakurai K, Ozawa K, Pichlmayr R (1992) Receiver operating charac-

teristic (ROC) analysis of the ability of arterial ketone body ratio to predict graft outcome after liver transplantation – its sensitivity and specificity. *Transpl Int* 5: 23–26

121. Tanaka J, Ozawa K, Tobe T (1979) Significance of blood ketone body ratio as an indicator of hepatic cellular energy status in jaundiced rabbits. *Gastroenterology* 76: 691–700

122. Telenti A, Smith TF, Ludwig J, Keating MR, Krom RAF, Wiesner RH (1991) Epstein-Barr virus and persistent graft dysfunction after liver transplantation. *Hepatology* 14: 282–286

123. Teperman L, Podesta L, Mieles L, Starzl TE (1989) The successful use of older donors for liver transplantation. *JAMA* 262: 2387

124. Thoma WJ, Ugurbil K (1988) Rapid 31P NMR test of liver function. *Magn Reson Med* 8: 220–223

125. Uno S, Ito S, Kurono M, Yamaoka Y, Kamiyama Y, Ozawa K (1987) A simple and sensitive assay for blood ketone bodies using highly purified 3-hydroxybutyrate dehydrogenase. *Clin Chim Acta* 168: 253–255

126. Visser JJ, Bom-van Noorloos AA, Meijer S, Hoitsma HFW (1984) Serum total bile acids monitoring after experimental orthotopic liver transplantation. *J Surg Res* 36: 147–153

127. Wall WJ, Mimeaule R, Grand DR, Bloch M (1990) The use of older donor livers for hepatic transplantation. *Transplantation* 49: 377–381

128. Watanabe F, Kamiike W, Hishimura T, Hashimoto T, Tagawa K (1983) Decrease in mitochondrial levels of adenine nucleotides and concomitant mitochondrial dysfunction in ischaemic rat liver. *J Biochem* 94: 493–499

129. Watkins JB, Ingall D, Szczepanik P, Klein PD, Lester R (1973) Bile-salt metabolism in the newborn. Measurement of pool size and synthesis by stable isotope technique. *N Engl J Med* 288: 431–434

130. Watkins JB, Szczepanik P, Gould JB, Klein P, Lester R (1975) Bile salt metabolism in the human premature infant. Preliminary observations of pool size and synthesis rate following pre-natal administration of dexamethasone and phenobarbital. *Gastroenterology* 69: 706–713

131. Weiner MW, Hetherington HP (1989) The power of proton. *Radiology* 172: 318–320

132. Whitman GJR, Harken AH (1985) Applications of nuclear magnetic resonance to surgical disease: a collective review. *J Surg Res* 38: 187–199

133. Willebrand E von, Pettersson E, Ahonen J, Häyry P (1986) CMV infection, class II antigen expression, and human kidney allograft rejection. *Transplantation* 42: 364–367

134. Winkel P, Ramsoe K, Lyngbye J, Tygstrup N (1975) Diagnostic value of routine liver tests. *Clin Chem* 21: 71–75

135. Wolf RFE, Kamman RL, Mooyaart EL, Haagsma EB, Bleichrodt RP, Slooff MJH (1993) 31P-Magnetic resonance spectroscopy of the isolated human donor liver: feasibility in routine clinical practice and preliminary findings. *Transplantation* 55: (in press)

136. Wreggitt TG (1987) Viral and *Toxoplasma gondii* infections. In: Calne RY (ed) *Liver transplantation*, 2nd edn. Grune & Stratton, Orlando, pp 365–384

137. Yamaoka Y, Taki Y, Gubernatis G, Nakatani T, Okamoto R, Yamamoto Y, Ishikawa Y, Ringe B, Bunzendahl H, Oellerich M, Kobayashi K, Ozawa K, Pichlmayr R (1990) Evaluation of the liver graft before procurement. Significance of arterial ketone body ratio in brain-dead patients. *Transpl Int* 3: 78–81

138. Yanaga K, Tzakis AG, Starzl TE (1989) Personal experience with the procurement of 132 liver allografts. *Transpl Int* 2: 137–142

139. Yokoyama I, Tzakis AG, Imventarza O, Todo S, Casavilla A, Leggio A, Starzl TE (1992) Pediatric liver transplantation from neonatal donors. *Transpl Int* 5: 205–208

140. Zutter MM, Martin PJ, Sale GE, Shulman HM, Fisher L, Thomas ED, Durnam DM (1988) Epstein-Barr virus lymphoproliferation after bone marrow transplantation. *Blood* 72: 520–529