

Effects of cyclosporin A on the blood flow of the native and transplanted rat pancreas and duodenum

Leif Jansson¹, Olle Korsgren¹, Jan Wahlberg², and Arne Andersson¹

¹ Department of Medical Cell Biology Uppsala University, S-751 23 Uppsala, Sweden

² Department of Surgery, Uppsala University, S-751 23 Uppsala, Sweden

Received: 17 June 1992/Received after revision: 7 October 1992/Accepted: 12 October 1992

Abstract. The aim of the present study was to evaluate the effects of cyclosporin A (CyA) on the blood perfusion of the transplanted pancreas. For this purpose syngeneic pancreaticoduodenal transplantations were performed in Wistar-Furth rats. After nephrectomy the graft was anastomosed using a nonsuturing cuff technique to the left renal vessels. Beginning 7 days after transplantation and then continuing for 2 weeks, CyA (15 mg/kg body weight) or vehicle was given p. o. once daily, 6 days a week. The serum CyA concentrations were greater than 600 ng/ml at all points in time tested. Intraperitoneal glucose tolerance tests were normal in CyA-treated animals after 12 days, but the pancreatic insulin concentration was decreased to the same extent in the native and transplanted pancreas. A microsphere technique was used to measure the blood perfusion of the pancreaticoduodenal graft, the native pancreas and duodenum, and remaining kidney 14 days after starting the CyA treatment. The renal blood flow was markedly decreased by CyA when compared with the control animals. In rats given vehicle alone, pancreatic, islet, and duodenal blood flows were higher in the graft than in the corresponding native organs. However, in rats given CyA, hyperperfusion of the graft was not observed. We conclude that the administration of CyA prevents the transplantation-induced blood flow increase seen in pancreaticoduodenal grafts of vehicle-treated rats. These observations may reflect graft denervation.

Key words: Pancreas transplantation, rat – Pancreas transplantation, blood flow – Cyclosporin, pancreas transplantation

Introduction

Since its introduction, cyclosporin A (CyA) [6], in combination with azathioprine and prednisolone, has been the most commonly used immunosuppressant after solid

organ transplantation [39]. CyA may also be of potential value in the treatment of several autoimmune disorders, such as diabetes mellitus [31], iridocyclitis [24], and thyroiditis [35]. Major toxic effects involving the kidneys [19, 29], liver [8], and pancreas [9, 41] have, however, precluded a more common clinical use. The endocrine pancreas is more sensitive to the toxic effects of CyA than the exocrine part [21], and treatment with CyA leads to a marked degranulation and functional impairment of the pancreatic islets both in vitro [2] and in vivo [9, 11, 41]. Recently, it has been suggested that CyA decreases the pancreatic blood perfusion in acute experiments [16], a finding similar to that observed in the kidney [20, 22, 30].

The present study was performed to elucidate what effects CyA may have on syngeneic pancreaticoduodenal grafts in rats. In order to compare its effects on a transplanted pancreas with those on the intact gland, the implantations were performed on normoglycemic animals, i. e., rats with a normal native pancreas. After 2 weeks of CyA treatment, the glucose tolerance of the animals was investigated. In addition, the pancreatic insulin concentration and the blood perfusion of the whole pancreas and the islets in both the native and transplanted pancreas were measured.

Materials and methods

Animals

Inbred male Wistar-Furth rats (ALAB, Sollentuna, Sweden) weighing approximately 300 g were used in all of the experiments. The animals had free access to tap water and pelleted food (Type R43; Ewos, Södertälje, Sweden) throughout the experiments. After the transplantation the animals were housed one per cage in a room with a 12-h light/dark cycle at a constant temperature (22 °C).

Pancreaticoduodenal transplantation

This procedure has been described in detail elsewhere [15]. Briefly, the donor was anesthetized with an intraperitoneal injection of chloral hydrate (360 mg/kg body weight) and placed on a heated operating table. The whole pancreas, together with approximately 1 g of

the small intestine, was dissected free from surrounding tissues. Via a catheter in the aorta, the preparation was flushed with 5–7 ml of cold (4°C) University of Wisconsin (UW) solution (Belzer UW-CSS, Du Pont Pharmaceuticals, Wilmington, Del., USA) [37] at a pressure of approximately 100 cm H₂O. The warm ischemia time was less than 2 min. The graft was then removed from the animal, together with approximately 1 cm of the aorta, which contained the two arterial vessels to the gland, and stored at 4°C for 1.5–2 h (cold ischemia time) before being implanted in the recipient.

The recipients were also anesthetized with chloral hydrate and placed on a heated operating table. The left kidney was removed and the pancreaticoduodenal graft was anastomosed to the renal vessels using a nonsuturing cuff technique as previously described in detail [15, 25]. The graft small intestine was sutured end-to-side to a loop of the colon of the recipient with approximately 10 sutures of 7-0 silk. After closure of the abdominal wound, the animals were injected subcutaneously with 10 mg doxycycline (Idocyclin; AB Leo, Malmö, Sweden) and were observed until fully recovered from anesthesia.

Treatment with cyclosporin A

All animals were allowed to recover for 7 days after the transplantation since rats given CyA immediately after transplantation developed severe infections (unpublished observation). From day 8 onwards the animals were given one daily oral dose of 15 mg/kg body weight CyA (Sandimmun; Sandoz, Basel, Switzerland) dissolved in 2–2.5 ml of a fatty emulsion (Intralipid; KabiVitrum AB, Stockholm, Sweden). Control animals received the vehicle alone. This treatment was given 6 days a week for a total of 2 weeks. Approximately 0.2–0.4 ml of blood was withdrawn from the cut tip of the tail every 3rd day after starting the CyA or vehicle treatment. This blood was later analyzed for concentrations of CyA with a monoclonal antibody in a commercial radioimmunoassay kit (Sandoz, Basel, Switzerland) according to the kit instructions.

Measurements of glucose and insulin

The blood glucose concentration was measured before starting the CyA or vehicle treatment and then every 3rd day with an ExacTech blood glucose meter (Baxter Travenol Labs, Deerfield, Ill., USA) in samples collected from the cut tip of the tail. Twelve days after starting the treatment with CyA or the vehicle, some of the animals were injected intraperitoneally with a 30% (w/v) glucose solution (2 g glucose/kg body weight). Blood samples were secured immediately before the injection and 10, 30, 60, and 120 min later; they were subsequently analyzed as described above.

At the time of the blood flow measurements, 21 days after transplantation, i.e., 14 days after starting the CyA or vehicle treatment, blood samples were collected from arterial catheters and later analyzed for glucose concentrations using an automated glucose oxidase technique (Glucose Analyzer 2; Beckman Instruments, Fullerton, Calif., USA) and for insulin concentrations with radioimmunoassay. After performing the blood flow measurements, approximately 20 mg (wet weight) from the caudal region of both the native and transplanted pancreas were removed and immediately frozen. The pancreatic pieces were then analyzed for their insulin concentration as previously described [14].

Blood flow measurements

Fourteen days after starting treatment with either CyA or the vehicle, i.e., 21 days after transplantation, the animals were anesthetized with an intraperitoneal injection of thiobutabarbital sodium (110 mg/kg body weight; Inactin Byk; Byk Gulden, Konstanz, FRG), heparinized, and placed on a heated operating table. Mean arterial blood pressure and body temperature were monitored throughout the experiments. Blood flows of the whole native and transplanted pancreases, the islets in both glands, the native and

transplanted intestines, and the kidney were then measured using a microsphere technique, as previously described in detail [13, 15]. Briefly, arterial polyethylene catheters were placed at the aortic root via the right carotid artery and in the lower part of the abdominal aorta via the left femoral artery. After allowing the blood pressure to stabilize for at least 20 min, 1.5–2.0 × 10⁸ nonradioactive microspheres (diameter 11.1 ± 0.2 µm; mean ± SD; NEN Chemicals, Boston, Mass., USA) were injected for 10 s through the catheter into the carotid artery. Starting 5 s before this injection and continuing for a total of 60 s, arterial blood was allowed to flow freely (approximate rate 0.50 ml/min) from the catheter in the femoral artery into a pre-weighed tube. The withdrawal rate was then calculated by weighing the sample. Both the native and transplanted pancreas and the duodenum and kidney were removed, blotted, and weighed. The microsphere contents of the organs and the blood reference sample were then counted in a microscope equipped with both light and dark field illumination, as previously described [13]. The blood flow values could then be calculated according to the formula: Q_{org} = Q_{ref} × N_{org}/N_{ref}, where Q_{org} is the organ blood flow (ml/min), Q_{ref} is the withdrawal rate of the reference sample (ml/min), N_{org} is the number of microspheres in the organ, and N_{ref} is the number of microspheres in the reference sample.

Morphological examinations

Small pieces (approximately 10% of the whole organ) were removed from both the native and transplanted pancreas and duodenum, respectively, after the blood flow measurements. These pieces were subsequently fixed in Bouin's solution, dehydrated, and embedded in paraffin. Seven-micrometer-thick sections were then stained with hematoxylin and eosin.

Statistical calculations

All values are given as means ± SEM. Probabilities (P) of chance differences between the values for the native and transplanted organs within the same animals were calculated with Student's paired, two-tailed *t*-test, while comparisons between the values for CyA- and vehicle-treated rats were calculated with Student's unpaired, two-tailed *t*-test.

Results

Of 23 transplanted animals, 3 were excluded from the study (1 CyA-treated and 2 control rats) due to excessive fibrosis of the pancreatic gland. The vehicle-treated controls increased significantly in body weight during this time period (from 308 ± 7 to 323 ± 6 g; *P* < 0.05; *n* = 9), whilst the animals given CyA maintained their body weight (323 ± 5 vs 318 ± 7 g; *n* = 11). The serum concentrations of CyA were high at all points in time tested and were never below 600 ng/ml (988 ± 63 ng/ml; *n* = 58).

Glucose and insulin concentrations

The serum glucose and insulin concentrations of the CyA-treated rats were similar to those of the control animals at the time of the blood flow measurements (Table 1). Blood glucose concentrations measured every 3rd day after transplantation were normal at all points in time (< 7 mM) and did not differ between the CyA and control rats (data not shown). Intraperitoneal glucose tolerance tests performed 12 days after initiation of the CyA treat-

Table 1. Mean arterial blood pressure, serum glucose and insulin concentrations, and pancreatic insulin concentrations of the native and transplanted pancreas, respectively, in rats transplanted with a syngeneic pancreaticoduodenal graft 21 days earlier. The animals had been given cyclosporin A (15 mg/kg body weight p.o.) or vehicle alone for 14 days before the measurements. All values represent means \pm SEM. * $P < 0.05$ when compared with the vehicle-treated rats

Treatment given No. of animals	Vehicle 9	Cyclosporin A 11
Mean arterial blood pressure (mm Hg)	116 \pm 6	110 \pm 6
Serum glucose concentration (mM)	8.2 \pm 0.7	8.3 \pm 0.5
Serum insulin concentration (ng/ml)	1.39 \pm 0.29	1.43 \pm 0.21
Pancreatic insulin concentration (ng/mg wet weight)		
Native pancreas	103 \pm 14	79 \pm 12*
Transplanted pancreas	114 \pm 21	88 \pm 13*

Table 2. Whole pancreatic blood flow, islet blood flow, and small intestinal blood flow in the native and transplanted (tx) pancreas and duodenum, respectively, and renal blood flow in rats transplanted with a syngeneic pancreaticoduodenal graft 21 days earlier. The animals had been given cyclosporin A (15 mg/kg body weight p.o.) or vehicle alone for 14 days before the measurements. All values represent means \pm SEM. * $P < 0.05$, ** $P < 0.01$, and *** $P < 0.001$ compared with the vehicle-treated rats

Treatment given No. of animals	Vehicle 9	Cyclosporin A 11
Renal blood flow (ml/min \times g kidney)	4.30 \pm 0.48	2.20 \pm 0.26***
Pancreatic blood flow (ml/min \times g pancreas)		
Native pancreas	0.68 \pm 0.10	0.75 \pm 0.06
Tx pancreas	1.01 \pm 0.21	0.82 \pm 0.11
Islet blood flow (μ l/min \times g pancreas)		
Native pancreas	45 \pm 7	47 \pm 6
Tx pancreas	88 \pm 21	45 \pm 6*
Islet blood flow (% of pancreatic blood flow)		
Native pancreas	6.8 \pm 0.8	6.2 \pm 0.5
Tx pancreas	9.1 \pm 0.8	5.9 \pm 0.5**
Intestinal blood flow (ml/min \times g intestine)		
Native intestine	0.78 \pm 0.07	0.57 \pm 0.09
Tx intestine	1.07 \pm 0.09	0.70 \pm 0.04**

ment were similar in both groups of animals (Fig. 1). The insulin concentrations of both the native and transplanted pancreas were decreased to the same degree in the CyA-treated rats as in the control animals (Table 1).

Blood flow values

The mean arterial blood pressure was similar in both groups of animals at the time of the blood flow measurements (Table 1). The renal blood flow was markedly decreased in the animals given CyA when compared to the control rats (Table 2). Not only the whole pancreatic

blood flow ($P < 0.05$) but also the islet ($P < 0.05$) and duodenal blood flows ($P < 0.01$) were higher in the transplanted organs than in the native organs in the animals given only the vehicle (Table 2). However, there was no such increase in the blood perfusion of the pancreaticoduodenal graft after administration of CyA (Table 2).

Whole pancreatic blood flows of both native and transplanted pancreases did not differ between CyA-treated and control rats (Table 2). The islet blood flow was similar in the native pancreas of control and CyA rats, whereas CyA treatment caused a significant decrease in the transplanted pancreas (Table 2). These latter changes were also seen when islet blood flow was expressed as a fraction of the whole pancreatic blood flow (Table 2). CyA also caused a reduction in the flow of the transplanted, but not the native, duodenum when compared with the vehicle-treated animals.

Morphology

When examined by light microscopy, the appearance of both the native and transplanted organs was normal, with the exception of a few scattered mononuclear cells that were present in the pancreatic stroma and in the duodenal submucosa of the graft.

Discussion

Oral administration of CyA may lead to a variable absorption of the drug [38]. However, treatment with 15 mg/kg body weight CyA, as performed in the present study, produced serum concentrations of CyA known to give sufficient immunosuppression in the rat [38]. The reduced renal blood flow observed after CyA administration also shows that there was sufficient absorption of the drug [22, 30]. In contrast, CyA did not influence the whole pancreatic, islet, or duodenal blood flow in the native organs. It is not known why the susceptibility to the flow-decreasing properties of CyA between organs is different. It has, however, been suggested that CyA may interfere with calcium channels in vascular smooth muscle [23]. The addition of calcium channel blockers, such as verapamil or diltiazem, seems to prevent some of the toxic effects on the kidney by increasing the renal blood perfusion [30, 32, 36]. Interestingly, Jennings and Corry [16] observed an increased vascular resistance in the native pancreas of non-transplanted rats when giving CyA in acute experiments. This increase could, however, be prevented by the simultaneous administration of verapamil. Youngelman et al. [43], on the other hand, demonstrated an increased pancreatic blood flow in nontransplanted sheep after oral administration of CyA for 4 weeks. These discordant findings on the effects of CyA on pancreatic blood flow are likely to be due to differences in the duration of the CyA treatment and species differences. Furthermore, when CyA is given parenterally, it is dissolved in Cremophor, a castor oil derivative. This substance has vasoactive properties [1], which may also explain some of the differences referred to above.

Fig. 1. Blood glucose concentrations before and at different points in time after an intraperitoneal injection of D-glucose (2 g/kg body weight). The glucose was given 12 days after transplantation in animals treated with cyclosporin A (●) or vehicle (□)

Duodenal, whole pancreatic, and islet blood flows were all higher in the graft of the vehicle-treated rats than in the corresponding native organs, thereby confirming previous results in the pancreas [15] and in other organs [12, 40]. The mechanisms behind this flow increase are unknown but may reflect graft denervation. That denervation changes the blood flow of the transplanted pancreas is supported by findings that the beta₂ adrenoceptor agonist terbutaline exerts its islet blood flow-decreasing properties [14] only in the innervated native pancreas and not in the denervated transplanted pancreas (unpublished observation). Administration of CyA prevented this blood flow increase in the whole pancreaticoduodenal graft, especially in the islets. It has been shown repeatedly that CyA decreases the blood flow of transplanted kidneys, but kidneys with intact innervation seem to be even more sensitive to this effect [20, 22].

The pancreaticoduodenal graft is not reinnervated 3 weeks after implantation (unpublished observation). However, both the intestines and the pancreas contain a highly developed intrinsic nervous system, with several ganglia [33, 34]. It is of interest in this context that CyA is a nonspecific alpha-adrenergic receptor antagonist, which competitively inhibits both alpha-1 and alpha-2 receptors [27]. This means that circulating and/or local adrenergic substances may exert a predominant effect on the beta-adrenergic receptors, leading to a decreased islet blood flow [14]. However, since the islet blood flow was affected only in the transplanted gland, there may be a difference in sensitivity, e.g., a hypersensitivity, to adrenergic substances in grafted organs, as suggested for intraportally implanted islets [28]. It is not known if this also occurs in vascularized grafts. An alternative explanation for the CyA-induced decrease in the graft blood flow may be induced changes in arachidonic acid metabolism [5, 7, 18] or effects on the formation of endothelin-1 [4, 42]. To what

extent the observed prevention of the normally observed hyperperfusion of the pancreaticoduodenal graft may be beneficial or detrimental to the ultimate function of the graft is presently unknown. Although CyA prevents hyperperfusion of the graft, it does not decrease the blood flow below that normally encountered in each respective native organ. Therefore, the blood flow impairment caused by CyA in the pancreaticoduodenal graft may be of little practical importance.

CyA is known to accumulate in the pancreas [17] and to produce glucose intolerance, both in humans [8] and in experimental animals [10, 26, 41]. We were, however, unable to detect any abnormalities in the glucose homeostasis of the animals treated for 12 days with CyA. It should be noted, however, that our rats actually had two functional pancreases, and the large excess of insulin-producing cells may have partially compensated for the toxic effects of CyA. That CyA nevertheless had a detrimental effect on the endocrine pancreas, both in the native and in the transplanted gland, was shown by the 20%–25% decrease in pancreatic insulin concentration. This has previously been shown in studies carried out both *in vivo* [10, 11] and *in vitro* [2]. Although not investigated morphometrically, islet morphology of both the native and transplanted glands seemed to be normal [3]. This may indicate that CyA in this study induced a degranulation of the B cells, but probably not cell death. The insulin concentration of the transplanted gland of these CyA-treated rats was similar to that of their native pancreas, suggesting that no preferential loss of islets in the graft had taken place. This may also indicate that the sensitivity of the islets to CyA was similar in the native and transplanted pancreas [26].

Acknowledgements. The skilled technical assistance of Ms. Birgitta Bodin is gratefully acknowledged. The study was supported by grants from the Swedish Medical Research Council (12X-109, 12P-9287, 19P-8982), the Juvenile Diabetes Foundation International, the Swedish Diabetes Association, the Nordic Insulin Fund, the Tore Stens and Ragnar Söderberg Foundation, the O. E. and Edla Johansson Foundation, the Family Ernfors Fund, and the Swedish Hoechst Diabetes Foundation.

References

1. Abraham JS, Bentley FR, Garrison RN, Cryer HM (1991) The influence of the cyclosporine vehicle Cremophor EL on renal microvascular blood flow in the rat. *Transplantation* 52: 101–105
2. Andersson A, Borg H, Hallberg A, Hellerström C, Sandler S, Schnell A (1984) Long-term effects of cyclosporin A on cultured mouse pancreatic islets. *Diabetologia* 27: 66–69
3. Bani-Sacchi T, Bani D, Filippini F, Michel A, Houssin D (1990) Immunocytochemical and ultrastructural changes of islet cells in rats treated long-term with cyclosporine at immunotherapeutic doses. *Transplantation* 49: 982–987
4. Benigni A, Perico N, Ladny JR, Imberti O, Bellizzi L, Remuzzi G (1991) Increased urinary excretion of endothelin-1 and its precursor, big-endothelin-1, in rats chronically treated with cyclosporine. *Transplantation* 52: 175–177
5. Bossaller C, Förstermann U, Hertel R, Olbricht C, Reschke V, Fleck E (1989) Cyclosporin A inhibits endothelium-dependent vasodilatation and vascular prostacyclin production. *Eur J Pharmacol* 165: 165–169

6. Calne RY, White DJG, Evans DB, Thiru S, Henderson RG, Hamilton DV, Rolles K, McMaster P, Duffy TJ, MacDougall GRD, Williams R (1981) Cyclosporin A in cadaveric organ transplantation. *BMJ* 282: 934–936
7. Fan TPD, Lewis GP (1984) Effect of cyclosporin A and inhibitors of arachidonic acid metabolism on blood flow and cyclooxygenase products in rat skin allografts. *Br J Pharmacol* 81: 361–371
8. Groen PC de (1989) Cyclosporine: a review and its specific use in liver transplantation. *Mayo Clin Proc* 64: 680–689
9. Gunnarsson R, Klintmalm G, Lundgren G, Wilczek H, Östman J, Groth CG (1983) Deterioration in glucose metabolism in pancreatic transplant recipients given cyclosporin. *Lancet II*: 571–572
10. Hahn HJ, Laube F, Lucke S, Klöting I, Kohnert KD, Warzok R (1986) Toxic effects of cyclosporine on the endocrine pancreas of Wistar rats. *Transplantation* 41: 44–47
11. Helmchen U, Schmidt WE, Siegel EG, Creutzfeldt W (1984) Morphological and functional changes of pancreatic B cells in cyclosporin A-treated rats. *Diabetologia* 27: 416–418
12. Henderson JM, Millikan WJ, Hooks M, Noc B, Kutner MH, Warren WD (1989) Increased galactose clearance after liver transplantation: a measure of increased blood flow through the denervated liver? *Hepatology* 10: 288–291
13. Jansson L, Hellerström C (1983) Stimulation by glucose of the blood flow to the pancreatic islets of the rat. *Diabetologia* 25: 45–50
14. Jansson L, Eizirik DL, Sandler S (1989) Terbutaline decreases the blood flow of the pancreatic islets but does not reduce the diabetogenic action of streptozotocin in the rat. *Eur J Pharmacol* 161: 79–83
15. Jansson L, Korsgren O, Wahlberg J, Andersson A (1992) Pancreatic islet blood flow after syngeneic pancreatico-duodenal transplantation in rats. Differences in the blood perfusion between the native and the transplanted gland. *Transplantation* 53: 517–521
16. Jennings WC, Corry RJ (1990) Vascular response to cyclosporine and verapamil in the rat pancreas. *J Surg Res* 49: 341–343
17. Kahan BD, Ried M, Newburger J (1983) Pharmacokinetics of cyclosporine in human renal transplantation. *Transplant Proc* 15: 446–448
18. Kawaguchi W, Goldman MN, Shapiro R, Foegh ML, Ramwell PW, Lower RR (1985) Increase in urinary thromboxane A₂ in rats caused by cyclosporine. *Transplantation* 40: 214–216
19. Klintmalm GB, Iwatsuki S, Starzl TE (1981) Nephrotoxicity of cyclosporine A in liver and kidney transplant recipients. *Lancet I*: 470–471
20. Moss NG, Powell SL, Falk RJ (1985) Intravenous cyclosporine activates afferent and efferent renal nerves and causes sodium retention in innervated kidneys in rats. *Proc Natl Acad Sci USA* 82: 8222–8226
21. Müller MK, Bergmann K, Degenhardt H, Klöppel G, Löhr M, Coone HJ, Gocbell H (1988) Differential sensitivity of rat exocrine and endocrine pancreas to cyclosporine. *Transplantation* 45: 698–700
22. Murray BM, Paller MS (1986) Beneficial effects of renal denervation and prazocin on GFR and renal blood flow after cyclosporine in rats. *Clin Nephrol* 25 [Suppl 1]: S37–S39
23. Nagineni C, Misra BC, Lee DBN, Yanagawa N (1987) Cyclosporine calcium channel interaction: a possible mechanism for nephrotoxicity. *Transplant Proc* 19: 1358–1360
24. Nussenblatt RB, Rodrigues MM, Levario SS, Salinas-Carmona MC (1981) Cyclosporin A: inhibition of experimental autoimmune uveitis in Lewis rats. *J Clin Invest* 67: 1228–1231
25. Olausson M, Mjörnstedt L, Lindholm L, Brynger H (1984) Non-suture organ grafting to the neck vessels in rats. *Acta Chir Scand* 150: 463–466
26. Otsu I, Kitano N, Taminato T, Fujiya H, Nozawa M (1987) Cyclosporine A toxicity for vascularized pancreatic transplantation in the rat. *Transplant Proc* 19: 1252–1256
27. Parkhurst GW, Prancan AV, Moon BH (1991) Alpha adrenergic antagonism by cyclosporine. *Transplantation* 51: 1080–1084
28. Pipeleers DG, Marichal P (1978) Secretory capability of islets transplanted intraportally in the diabetic rat. *Diabetes* 27: 817–821
29. Remuzzi G, Bertani I (1989) Renal vascular and thrombotic effects of cyclosporine. *Am J Kidney Dis* 13: 261–272
30. Rooth P, Dawidson I, Diller K, Täljedal I-B (1988) Protection against cyclosporine-induced impairment of renal microcirculation by verapamil in mice. *Transplantation* 45: 433–437
31. Stiller CR, Laupacis A, Dupre J, Jenner MR, Keown PA, Rodger RA, Wolff BMJ (1983) Cyclosporine for treatment of early type I diabetes: preliminary results. *N Engl J Med* 308: 1226–1227
32. Sumpio B, Baue A, Chaudry IH (1987) Alleviation of cyclosporine nephrotoxicity with verapamil and ATP-MgCl₂. *Ann Surg* 204: 655–670
33. Sundler F, Böttcher G (1991) Islet innervation with special reference to neuropeptides. In: Samols E (ed) *The endocrine pancreas*. Raven Press, New York, pp 29–52
34. Tiscornia OM (1978) The neural control of the exocrine and endocrine pancreas. *Am J Gastroenterol* 67: 541–560
35. Vladutio AO (1983) Effect of cyclosporine on experimental autoimmune thyroiditis in mice. *Transplantation* 35: 518–520
36. Wagner K, Albrecht S, Neumayer HH (1987) Prevention of post-transplant acute tubular necrosis by the calcium antagonist diltiazem: a prospective randomized study. *Am J Nephrol* 7: 287–293
37. Wahlberg J, Love R, Ladegaard L, Southard JH, Belzer FO (1987) 72 hour preservation of the canine pancreas. *Transplantation* 43: 5–8
38. Wassef R, Cohen Z, Langer B (1985) Pharmacokinetic profiles of cyclosporine in rats. *Transplantation* 40: 489–493
39. Weil C (1984) Cyclosporin A: review of results in organ and bone marrow transplantation in man. *Med Res Rev* 4: 221–265
40. White TP, Maxwell LC, Sosin DM, Faulkner JA (1981) Capillarity and blood flow of transplanted skeletal muscle of cats. *Am J Physiol* 241: H630–H635
41. Yale JF, Roy RD, Gross M, Seemayer TA, Murphy GF, Marliss EB (1985) Effects of cyclosporine on glucose tolerance in the rat. *Diabetes* 34: 1309–1313
42. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yasaki Y, Goto K, Yasaki K (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. *Nature* 332: 441–415
43. Youngelman DF, Kahng KU, Dresner LS, Munshi IA, Wait RB (1991) Cyclosporine-induced alterations in renal, intrarenal, and pancreatic blood flow. *Transplant Proc* 23: 718–720