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The North China Plain (NCP), a major maize production region in China, faces critical
challenges of P overuse under intensive farming, leading to soil P accumulation, leaching
risks, and threats to groundwater quality and P resource sustainability. This study
employed a parameter-calibrated APSIM model (v7.9) to simulate long-term effects
(2007–2017) of eight P application rates (0–300 kg P2O5 ha−1) on maize growth, P
utilization, and soil P dynamics using field trial data fromQuzhou Country (36.9°N, 115.0°E),
Hebei Province, China. Results demonstrated that 71 kg P2O5 ha−1 optimized maize
productivity, achieving mean aboveground biomass and grain yields of 17.5 t ha−1 and
9.3 t ha−1, respectively, with a P use efficiency (PUE) of 17%. Continuous P fertilization
induced progressive accumulation of labile P (32mg/kg under 75 kg P2O5 ha

−1 application
rate vs. 40.8 mg/kg under 100 kg P2O5 ha

-1 application rate in 2017) and stable inorganic
P pools, with P100 exceeding the environmental threshold (39.9 mg/kg) for calcareous
soils. Post-cessation simulations (22 years) revealed that legacy P from 11-year
P75 applications sustained maize yields at 8–10 t ha−1 for 12–13 years, despite labile
P decreasing from 32.3 to 15.8 mg/kg. Model analysis highlighted limitations in APSIM’s
current P module, which prioritizes adsorption-desorption over precipitation-dissolution
mechanisms critical for calcareous soils. These findings provide a theoretical foundation for
P reduction strategies in NCP maize systems.
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INTRODUCTION

Global yields of the three major cereal crops–wheat, rice, and maize–have increased greatly over the
past 5 decades: wheat and rice have tripled and maize increased fivefold (Soto-Gómez and Pérez
Rodríguez, 2022). However, the consumption rate of chemical phosphorus (P) fertilizers has far
outpaced these yield gains (IFA, 2016), creating dual challenges of environmental pollution risks and
unsustainable financial burdens for farmers, while exacerbating P resource depletion (Aulakh et al.,
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2007; Bai et al., 2013; Gong et al., 2025). Global P demand
continues to escalate, with production projected to peak within
decades, drawing international concern due to P non-renewable
nature (Cordell et al., 2009; Gilbert, 2009; Shen et al., 2011). This
critical situation underscores the urgent need to establish
scientifically sound P application strategies within intensive
agricultural systems to balance productivity enhancement with
resource conservation and environmental protection.

P management is fundamental to sustainable farmland
ecosystems, directly influencing both agricultural productivity
and environmental impacts (Mathot et al., 2020). In the North
China Plain, maize stands as a primary grain crop. In recent years,
maize yields under intensive cultivation have shown a steady
increase. However, the high P fertilizer inputs required for such
production have led to significant accumulation and leaching of
soil P nutrients, posing severe threats to groundwater
environments. Furthermore, P is a key contributor to water
eutrophication, with P loss from agricultural soils closely
linked to water pollution (Zhang et al., 2019). As a non-
renewable mineral resource, P faces critical challenges: China’s
current phosphate reserves are insufficient to meet economic
development demands, and global phosphate resources are
projected to be depleted in the near future (Cordell et al.,
2009). Compounding this issue, most P fertilizer applied to
soils is converted into slowly available or unavailable forms,
with only a small fraction remaining as soluble available P
(Zhou et al., 2010). Consequently, reducing P inputs while
optimizing application rates has emerged as a critical
consideration in farmland management strategies.

Maintaining rational P application rates and enhancing the
utilization efficiency of residual soil P enables significant
reductions in fertilizer inputs while improving P use efficiency
(Zhang et al., 2019). Optimal P application rates are
fundamentally determined by crop-specific P requirements,
which exhibit substantial interspecies variability. In the context
of global phosphate rock scarcity, residual soil P defined as the net
balance between cumulative P inputs and outputs–represents an
underutilized reservoir capable of meeting crop demands across
multiple growing seasons (Gong et al., 2023; Sattari et al., 2012).
The availability of this legacy P pool is governed by soil P
adsorption capacity, pH dynamics, crop species selection, and
temporal patterns of fertilizer management (Sanchez, 2019).
Furthermore, the immobilization of phosphate ions through
adsorption processes with soil Ca2+ and precipitation reactions
with Fe/Al oxides substantially reduces both newly applied and
residual P bioavailability (Wang et al., 2014). Developing robust
models to elucidate P dynamics in soil-crop systems necessitates
comprehensive long-term field experimental data on maize
growth responses to varied P supply regimes. However,
acquiring region-specific, soil-type-dependent, and crop-varied
P response datasets remains prohibitively time-intensive. In this
context, system-level soil-crop models offer a powerful
computational framework to simulate crop growth patterns
and nutrient cycling processes with predictive accuracy.

Water and fertilizer management practices represent the most
effective and commonly used regulatory approaches in
agricultural production. Extensive experimental evidence

demonstrates that P distribution across various processes can
be actively modulated through farmland management measures.
In recent years, research on P management and regulation in
farmlands has increased significantly, with numerous studies
focusing on the North China Plain (Guan et al., 2024; Li et al.,
2021; Jiao, 2016). However, these studies predominantly rely on
empirical equations or static experiments to determine
management strategies (Wang, 2009), often neglecting the
impacts of climate change and soil characteristics while
lacking long-term monitoring and evaluation of
regulatory measures.

The Agricultural Production Systems Simulator (APSIM) has
emerged as a globally recognized modeling platform for
simulating crop growth dynamics, yield formation, and
resource use efficiency across major cereal crops (maize,
wheat, rice) and intensive cropping systems (wheat-maize and
wheat-rice rotations). Its robust architecture enables
comprehensive analysis of agricultural systems under variable
environmental and management conditions, particularly in
response to dynamic climatic patterns and agronomic
interventions such as water management and nitrogen
fertilization (Chen et al., 2010; Hochman et al., 2009; Lai
et al., 2025; Verburg et al., 2025; Wang et al., 2012). The
APSIM framework incorporates a specialized SoilP module
specifically designed to simulate P dynamics in agricultural
soils. This module mechanistically represents fundamental soil
processes governing P availability, including adsorption-
desorption equilibrium and fertilizer-soil interactions,
providing critical insights for optimizing P management
strategies (Delve et al., 2009). Empirical validation studies have
demonstrated the module’s capability to accurately predict crop
responses to P fertilization, particularly in P-fixing soils where
adsorption-desorption mechanisms dominate soil P dynamics
(Shen et al., 2011). The module’s process-based algorithms enable
researchers to evaluate both short-term fertilizer effects and long-
term P cycling in diverse agroecosystems. Our previous study had
established a set of parameters regarding to the maizeP and soilP
modules, and the parameterized APSIMmodule could predict the
response of the crop yield to soil P dynamics within seasons on
calcareous soils in NCP (Zhang et al., 2024).

Our study integrates field trial data from the Quzhou region
with modeling approaches to investigate the long-term effects of
P fertilizer management on maize growth, resource use efficiency,
and soil P pool dynamics in the North China Plain. Through
scenario analysis, we assess the comprehensive long-term impacts
of P management practices and propose optimized strategies. The
findings aim to provide both theoretical foundations and practical
guidance for achieving high-yield and high-efficiency maize
production.

MATERIALS AND METHODS

Initial Soil Properties and Model Settings
The model simulation was conducted for Quzhou Experimental
Station of China Agricultural University (36.9°N, 115.0°E) in
Hebei Province, China, covering the period from 2007 to
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2017. The experimental site, which located in the core
agricultural region of the North China Plain, features
calcareous fluvo-aquic soil, and the top 20-cm soil layer
exhibited a loamy-silty texture comprising 14.7% clay,
74.0% silt, and 11.3% sand. The chemical properties of the
soil at the start of APSIM simulation in 2006 were as follows:
soil pH (1:2.5 w/v H2O) measuring 8.7, extracted mineral N
(Nmin) 19.8 mg kg−1, labile P 6.6 mg kg−1, and organic matter
content 10.7 g kg−1, respectively. Daily climate data from
2007 to 2017 including daily maximum and minimum
temperature, rainfall, and sunshine hours were obtained
from the weather station of Quzhou County. Daily solar
radiation was calculated with daily sunshine hours using the
Angstrom equations (Angstrom, 1924).

The management practices implemented in the APSIM model
precisely replicated those applied in the field experiments from
2016 to 2017. Both the simulation period (2007–2017 and field
experiment (2016–2017) were single-season maize cultivation.
The maize cultivar Zhengdan 958 (ZD 958) was sown on May
26 at a final planting density was 75,000 plants ha−1 with 60 cm
row spacing of. All treatments were received with 225 kg N ha−1

as urea, 60 kg K2O ha−1, and P fertilizer as calcium
superphosphate. P and potassium were broadcast and
incorporated into 0–20 cm soil before sowing. Urea was

FIGURE 1 | Diagram of the structure and simulated processes of the APSIM SoilP module (modified from Wang et al., 2014).

TABLE 1 |Maize cultivar, LAI and soil P parameters used in the simulation (Zhang
et al., 2024).

Cultivar parameters ZD958

Head grain no max (maximum grain number per head) 900
Grain gth rate (grain-filling rate (mg/grain/day)) 5
tt emerge to end juv (thermal time from emergence to the end of the
juvenile stage (°C·d))

240

tt flower to maturity (thermal time from flowering to maturity (°C·d)) 900
tt flower to start grain (thermal time from flowering to the start of the
grain-filling stage (°C·d))

120

Photoperiod slope 21

LAI parameters Original
APSIM

Modified
APSIM

leaf_no_dead_const (coefficient for the leaf
senescence rate following flowering)

−0.025 −0.005

leaf_no_dead_slope 0.00035 0.00025
partition_rate_leaf (coefficient of the sigmoidal
function between the leaf partition fraction and
internode number)

0.0182 0.006

Soil P parameters Original
APSIM

Modified
APSIM

a in the Freundlich isotherm 50 100
b in the Freundlich isotherm 0.7 0.75
Rate of P availability gain/loss 0.3 0.90
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FIGURE 2 |Modeling of the effects of different P application rates on the dynamic changes of maize shoot biomass (A) and yield (B) simulated by the revised APSIM
v7.9 model from 2007 to 2017.

FIGURE 3 | Effects of different P applications on maize aboveground biomass (A), yield (B), and aboveground P uptake (C) simulated by the revised APSIM
v7.9 model from 2007 to 2017.
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applied in three applications during whole maize growth stage:
90 kg N ha−1 at sowing, 60 kg N ha−1 at the six-leaf stage,
and 75 kg N ha−1 at the 12-leaf stage. The automatic- irrigation
switch was turned on to avoid water stress throughout the
simulations.

APSIM Model Parameterization and
Validation
The APSIM model version 7.9 was used to simulate above-
ground biomass, grain yield, and P use efficiency of maize at
the study site. In APSIM, phenological development of maize
from emergency towards maturity is driven by the accumulation
of thermal time. Above-ground biomass is simulated with the
intercepted radiation.

The APSIM model has demonstrated capability in simulating
maize aboveground biomass, crop yield, and nitrogen/
phosphorus use efficiencies (Lai et al., 2025; Wang et al., 2014;
Liu et al., 2012). Validation studies by Chen et al. (2010), Liu et al.
(2012), Wang et al. (2012), Zhang et al. (2012), and Wang (2009)
confirmed the model’s robust performance in simulating maize
growth dynamics in the North China Plain and Northeast China,

particularly regarding dry matter accumulation, yield formation,
and nutrient uptake responses to nitrogen/phosphorus supply.
Notably, Chen et al. (2010) identified systematic underestimation
of aboveground biomass and yield in North China Plain
simulations. This limitation was addressed by modifying the
radiation use efficiency (RUE) parameter from its default value
of 1.6 g/MJ to 1.8 g/MJ, based on methodologies established by
Bastiaanssen and Ali (2003) and Tao et al. (2005), resulting in
significantly improved biomass and yield predictions.

Within the APSIM framework, maize phenological
progression from emergence to physiological maturity is
governed by thermal time accumulation. Aboveground
biomass production is determined by the interaction
between canopy light interception and RUE across
developmental stages, while P uptake dynamics are
regulated by organ-specific P concentration thresholds
during critical growth phases. The APSIM model,
incorporating both the maize module and the soil P module
(Figure 1), was calibrated using field experiment data
(2016–2017) from Quzhou County, Hebei Province, China.
Subsequently, the model was validated with data published in
the literature, which was also sourced from the same site

FIGURE 4 | Effects of different P application rates on maize biomass increase (A), yield increase (B), and PUE (C) simulated by the revised APSIM v7.9 model from
2007 to 2017. The box plots display the minimum, maximum, and the 10, 25, 50, 75, 90 and 100 percentiles.

Spanish Journal of Soil Science | Published by Frontiers September 2025 | Volume 15 | Article 147185

Zhang et al. Modelling P-Fertilization Impacts on Maize

mailto:Image of SJSS_sjss-2025-14718_wc_f4|tif


(Zhang et al., 2018). Comprehensive calibration of these
parameters, including thermal time requirements, light
interception algorithms, RUE adjustments, and P allocation
thresholds of this research program was shown in Table 1,
ensuring model fidelity to regional agroecological conditions.

Predicting the Soil P Pools Dynamics and
Optimal P Fertilization Rate Based on
Scenarios Analysis
The calibrated APSIMmodel was employed to evaluate long-term P
fertilization management effects on maize growth and soil P pool
dynamics in Quzhou County. Scenario analyses of field P
management practices focused on crop-soil system responses
under varying P application rates. Eight P fertilization rate levels
(0–300 kg P2O5 ha

−1) were simulated: 0 (P0), 25 (P25), 50 (P50), 75
(P75), 100 (P100), 125 (P125), 150 (P150), and 300 (P300) kg P2O5

ha−1. Single superphosphate (SSP) was selected as the P source, with
full-dose basal application at a 5 cm soil depth. To eliminate water
stress effects, automated irrigation was triggered when soil moisture
dropped below 85% of field capacity. Model outputs encompassed
interannual variations in crop biomass, grain yield, P uptake, and soil
P pools (labile P and unavailable P fractions). This configuration
enables systematic quantification of legacy P effects, fertilizer
utilization efficiency, and environmental risks under continuous P
fertilization regimes.

RESULTS

Response of Maize Growth to Long-Term P
Application (2007–2017)
The influence of soil P supply intensity on aboveground biomass
and yield of maize exhibited significant interannual variations

FIGURE 5 | Dynamic changes in soil available P concentration (A) and steady-state P concentration (B) under different P application treatments simulated by the
revised APSIM v7.9 model from 2007 to 2017.

FIGURE 6 | Dynamic changes in soil available P concentration (A) and steady-state P concentration (B) after 22 years of no fertilization under different soil baseline
P concentration conditions, simulated by the revised APSIM v7.9 model.
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(Figure 2). From 2007 to 2017, maize yield demonstrated a
gradual increasing trend with elevated P supply intensity.
However, during 2007–2009, no significant differences in
maize biomass or yield were observed among P fertilizer
treatments, indicating that soil P supply intensity did not
substantially affect maize growth during the initial 3 years of
the experiment. From 2010 to 2013, both biomass and yield under
the P75 treatment were significantly higher than those under the
P0 treatment. Notably, maize yield in 2014 under equivalent P
fertilizer treatments significantly higher than that of other years
with. Thus, the P75, P100, P125, P150, and P300 treatments
resulted in significantly greater maize biomass and yield
compared to P0, and P0 showed significant decrease both in
shoot biomass and yield when compared to P25 and
P50 treatments (Figure 2).

Aboveground biomass, grain yield, and P uptake in maize
shoots increased significantly with increased P application rates
(Figure 3). The linear-plateau model was used to describe the
relationship between P application rates and maize shoot biomass
(R2 = 0.607), yield (R2 = 0.627) and shoot P uptake (R2 = 0.860)
(Figure 3). The critical P fertilization rate was different among
maize shoot biomass, yield and shoot P uptake. For shoot biomass
and yield, the critical P fertilization rate was ranged from 64.5 to

71.0 kg ha−1. In contrast, the critical P application rate for shoot P
uptake was 193.5 kg ha−1.

The incremental gains in maize biomass and yield across P
application treatments exhibited diminishing trends with
increasing P inputs (Figures 4A,B), accompanied by a
gradually decline in P use efficiency (PUE) (Figure 4C). When
P fertilizer application exceeded 75 kg P2O5/ha, the biomass and
yield increments per kilogram of applied P2O5 significantly
decreased from 92 kg/kg P2O5 and 52 kg/kg P2O5 to 25 kg/kg
P2O5 and 15 kg/kg P2O5 at P300, respectively (Figures 4A,B).
Meanwhile, PUE declined from 17% at 75 kg P2O5/ha to 10%
under the 300 kg P2O5/ha treatment (Figure 4C).

Dynamics of Soil P Accumulation Under
Continuous P Fertilization (2007–2017)
Under long-term P fertilization, both soil available P (labile_P)
and steady-state P concentrations (unavail_P) exhibit progressive
accumulation. Figure 5 illustrates the divergent temporal
trajectories of labile_P and unavail_P concentrations in
calcareous soils under long-term P fertilization regimes during
2007–2017. Over this 11-year period, all P-fertilized treatments
except P0 and P25 demonstrated significant increases in soil

FIGURE 7 | Dynamic changes in maize aboveground biomass (A), yield (B), and aboveground P content (C) after 22 years of no fertilization under different soil
baseline P concentration conditions, simulated by the revised APSIM v7.9 model.
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available P concentrations: P50 (18.1→ 22.2 mg/kg), P75 (20.0→
28.1 mg/kg), P100 (22.2 → 35.2 mg/kg), P125 (24.6 →
42.8 mg/kg), P150 (26.9 → 50.8 mg/kg), and P300 (43.2 →
121 mg/kg). Conversely, P0 treatment showed a decline in
topsoil available P concentration from 14.4 to 11.6 mg/kg. A
parallel accumulation pattern was observed for unavailable P
concentrations across all fertilized treatments except P0 and P25:
P50 (205 → 250 mg/kg), P75 (212 → 316 mg/kg), P100 (218 →
389 mg/kg), P125 (225→ 467 mg/kg), P150 (231→ 549 mg/kg),
and P300 (274 → 1,117 mg/kg). The P0 treatment exhibited a
marked reduction in topsoil steady-state P concentration from
193 to 131 mg/kg. Notably, Bai et al. (2013) established
environmental thresholds for soil available P concentrations
across Chinese agricultural soils, ranging from 39.9 mg/kg
(Yangling Lou soil) to 90.2 mg/kg (Qiyang Red soil). Given
the calcareous soil characteristics of Quzhou, the regional
environmental threshold for available P should not exceed
39.9 mg/kg. While the P75 treatment maintained available P
concentrations below this critical threshold (32.0 mg/kg in 2017),
persistent P accumulation poses ongoing environmental risks. Of
particular concern is the P100 treatment, where available P
concentrations surpassed the threshold (40.8 mg/kg in 2017).
The 23% steady-state P increase observed between P75 and
P100 treatments demonstrates a substantial reservoir for
available P replenishment, significantly elevating the
probability of threshold exceedance. This phenomenon
highlights the critical need for optimized P management
strategies to mitigate environmental risks while maintaining
agricultural productivity in calcareous soil systems.

Long-Term Transformation of Soil P Pools
Following 22-Year Cessation of P
Fertilization
Figure 6 illustrates the dynamic changes in soil available P and
steady-state P pools across various P-fertilization treatments
following prolonged application (2007–2017) and a subsequent
22-year cessation period. During the 22-year post-application
phase, all P-treated soils exhibited continuous declines in
available P concentrations: P0 (11.2 →7.3 mg/kg), P25
(18.1→10.6 mg/kg), P50 (23.3→12.4 mg/kg), P75
(32.3→15.8 mg/kg), P100 (41.2→19.8 mg/kg), P125
(55.6→29.8 mg/kg), P150 (71.3→40.7 mg/kg), and P300
(134.6→102.1 mg/kg). A parallel decreasing trend was observed
for unavailable P concentrations across all treatments: P0
(149→74.7 mg/kg), P25 (253 →115 mg/kg), P50
(327→142 mg/kg), P75 (447→195 mg/kg), P100
(567→254 mg/kg), P125 (703→383 mg/kg), P150
(869→516 mg/kg), and P300 (1,504→1,145 mg/kg). These
systematic reductions in both available P and steady-state P pools
highlight the gradual depletion of legacy P reserves in calcareous soils
under extended fertilization discontinuation, emphasizing the
critical hysteresis effect between historical P inputs and long-term
soil P dynamics. The differential residual P persistence across
treatment gradients (e.g., P300 maintaining SSP >1,000 mg/kg
post-cessation) underscores the nonlinear relationship between
initial P loading intensity and environmental legacy duration.

Figure 7 illustrates the dynamic changes in maize
aboveground biomass, grain yield, and P uptake under
different long-term P fertilization regimes following P
withdrawal. After 22 years of continuous P deprivation, both
biomass production and grain yield in P0, P25, and
P50 treatments exhibited progressive decline (Figure 7A). In
contrast, the P75maintained biomass and yield levels comparable
to those of P100, P125, P150, and P300 treatments,
demonstrating sustained high productivity (Figures 6A,B).
Notably, long-term fertilization (75 kg P2O5 ha−1 yr−1 for
11 years) builds up significant legacy P reserves, sustaining
maize yields at 8–10 t ha−1 for 12–13 years after stopping P
applications without yield decline (Figure 7B). Shoot P content
increase along with the increase of P fertilization rate, and
treatments P0-P100 displayed continuous diminishing trends,
while P125-P300 treatments maintained elevated P uptake
capacities without observable downward trajectories over the
experimental duration (Figure 7C). In the maize shoots, P
content exhibited a consistent decreasing trend with
treatments P0, P25, P50, P75, and P100. In contrast,
treatments P125, P150, and P300 maintained elevated P
uptake (approximately 40 kg ha−1) without showing a
significant downward trend (Figure 7C).

DISCUSSION

Effects of Different Long-Term P
Fertilization on Maize Yield, Biomass
Accumulation, and P Uptake Dynamics
Figure 2 demonstrates that maize biomass and grain yield
exhibited no significant declines during the initial three
experimental years (2007–2010) under zero or low P supply
regimes, indicating that initial soil P concentration sufficiently
met crop demands during this period. This observation aligns
with Jiao’s (2016) findings that residual soil P can sustain maize
productivity for three consecutive years without P fertilization.
The residual P pool in agricultural soils has been recognized as a
critical potential P resource for sustainable crop production
(Sattari et al., 2012). Empirical evidence from multiple long-
term studies consistently confirms that legacy P in cultivated soils
can effectively satisfy crop P requirements under optimized
management conditions (Aulakh et al., 2007; Valkama et al.,
2009, 2011). Based on the integrated assessment of aboveground
biomass, grain yield, and P uptake, the optimal P fertilizer
application rate was determined to be 71 kg P2O5/ha
(Figure 3). At 71 kg P2O5 ha−1 application rate, both maize
biomass and grain yield were maintained at highest level with
17.5 t ha−1 and 9.28 t ha−1, respectively. Maize P uptake was only
23 kg ha−1 (Figure 3C). Therefore, 71 kg P2O5 ha

−1 application
rate can help to achieve the dual objectives of ensuring food
security and conserving P rock resources.

Following 25 years of continuous P fertilization, both peanut
and rapeseed systems demonstrated the capacity to sustain yields
for three subsequent years without P application by utilizing
residual soil P pools (Aulakh et al., 2007). In high P -fixing soils
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such as red soils, a single high-dose P application enabled crop
production to remain stable for 7–9 years under subsequent P
withdrawal regimes (Kamprath, 1967). This phenomenon
extends beyond field-scale observations to regional patterns:
Japan achieved maintained crop yields from 1985 to
2005 despite progressive reductions in both mineral and
organic P fertilizer inputs (Sae and Kohyama, 2010). Similarly,
European Union nations observed stabilized or even enhanced
agricultural productivity post-1980s alongside declining total P
fertilizer usage, attributable to efficient legacy P mobilization
(Sattari et al., 2012). These findings collectively demonstrate
crops’ ability to exploit residual soil P reserves to buffer yield
declines during P fertilizer application reduction.

Long-Term P Supply Intensities Modulate
Soil P Pool Dynamics: Implications for
Fertilization Management Strategies
The APSIM model has incorporated a soil P module (soilP
module) and coupled it with crop modules to simulate crop
growth responses to soil P availability (Delve et al., 2009; Wang
et al., 2014). This study represents the first application of this
framework to simulate maize growth responses to P fertilization
in fluvo-aquic soils of the North China Plain. Soil organic and
inorganic P pools exhibit fundamentally distinct transformation
pathways (Hansen et al., 2004; Turner and Leytem, 2004),
accounting for 30%–65% and 35%–70% of total soil P
respectively (Condron et al., 2005; Shen et al., 2011). The
organic P pool predominantly exists in stabilized forms and
contributes to available P through mineralization processes
(Shen et al., 2011), with mineralization rates being regulated
by soil moisture, temperature, and chemical properties. Inorganic
P speciation varies significantly between soil types. In acidic soils,
P primarily associates with Fe/Al oxides or forms complexes with
clay minerals through adsorption processes, while desorption
mechanisms can release P into soil solution. Conversely, in
neutral/calcareous soils, phosphate ions tend to precipitate on
calcium carbonate surfaces. The dissolution of these P
precipitates becomes enhanced under decreasing soil
pH conditions, thereby increasing labile P availability (Wang
and Nancollas, 2008). These transformation pathways-
encompassing adsorption-desorption equilibria, precipitation-
dissolution reactions, and mineralization processes—constitute
a complex dynamic system that requires comprehensive
evaluation to advance our understanding of P cycling in
agricultural ecosystems.

In the soil P module of the APSIM model, two principal P
transformation processes are incorporated: 1) the mineralization/
immobilization process between organic P pools and labile P
pools, and 2) the sorption/desorption process between stable
inorganic P pools and labile P pools (Delve et al., 2009; Wang
et al., 2014). These core processes enable the model to accurately
simulate P stress conditions in soils of eastern Kenya and the
effects of P fertilizer types (chemical or organic) on maize
biomass accumulation and grain yield (Kinyangi et al., 2004;
Micheni et al., 2004; Probert, 2004). The module has also
demonstrated robust performance in simulating crop rotation

systems in Australia (Wang et al., 2014) and P dynamics across
diverse soil types for maize and soybean cultivation (Delve et al.,
2009). Our findings confirm the model’s capability to realistically
simulate maize biomass growth and P uptake patterns (Zhang
et al., 2024). However, it should be noted that the current APSIM
P module calculates labile P content primarily through sorption/
desorption mechanisms while neglecting the predominant
precipitation/dissolution processes that govern P availability in
neutral/calcareous soils. This limitation may constrain the
model’s accuracy in simulating labile P dynamics in soils
where precipitation-dissolution equilibria prevail. To enhance
the model’s performance and broaden its applicability across
pedologically diverse systems, further experimental data
quantifying P fractionation and transformation kinetics across
different soil types are critically required. We employed the
APSIM model in conjunction with a scenario analysis
approach to systematically evaluate maize productivity, P
utilization efficiency (PUE), and the dynamics of soil P pools
across different long-term P fertilizer application strategies. This
integrated methodology establishes a robust quantitative
framework to inform future long-term experimental research.

CONCLUSION

Our study used the parameter-calibrated APSIM model to
conduct scenario analyses of maize growth under varying P
application levels in the North China Plain. Simulation
results demonstrate that 71 kg P2O5/ha constitutes the
optimal P application rate for maize production in this
region. Beyond this threshold, the marginal productivity of
P fertilizer declines substantially, with incremental biomass
and grain yield per kilogram of applied P2O5 significantly
decreased. Concurrently, PUE diminishes from 17% at 75 kg
P2O5/ha to 10% at 300 kg P2O5/ha. However, under sustained
P75 fertilization regimes, continuous accumulation of labile
and stable inorganic P pools in soil is observed. Long-term
field simulations reveal that maize yields can be maintained at
8–10 t/ha for 12–13 years following P75 application without
additional P inputs. Considering the maize productivity and
environmental implications of soil P accumulation suggests
that following a decade of annual 75 kg P2O5 ha-1

applications, P fertilization discontinuation for 12–13 years
enables effective mobilization of legacy P pools while
maintaining grain yields at 8–10 t ha-1, demonstrating
sustainable P management through residual nutrient
utilization. This approach enables efficient utilization of
residual soil P while sustaining high yield levels (8–10 t/
ha), thereby achieving dual objectives of P resource
conservation and pollution mitigation without
compromising crop productivity.
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