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The decomposition of organic matter represents a fundamental pedogenetic process,
since it impacts the carbon cycle and the release of nutrients to the soil. However,
quantitative research aimed at micro-scale in situ analysis is scarce, despite its relevance in
the decomposition process. Therefore, the objectives of this research were to generate
discriminating functions of the degrees of organic matter decomposition, based on the
brightness values associated with each morphological stage, and from this step, to
generate thematic maps. Soil thin sections of forest and compost soils were selected,
and petrographic microscope images with three light sources were taken: plane polarized
light (PPL), crossed-polarized light (XPL), and crossed polarizers and a retardation plate
(gypsum compensator) inserted (XPLλ). Subsequently, the RGB (red, green, blue) image
was broken down into three bands, resulting in nine bands for each image. Two thousand
sampling points were generated for each band, obtaining brightness values for each
decomposed organic matter stage. The points were classified into four categories based
on their degree of decomposition: no (A), light (B), moderate (C), and strong (D), in addition
to porosity (P). Linear discriminant analysis was performed to obtain classification models
for each level of decomposition. The results show that each degree of organic matter
decomposition can be highlighted through specific light sources and a set of bands, with
an overall accuracy of >94% and kappa coefficients of >0.75 for all classes. In addition, the
resulting functions were validated in training images and high-resolution mosaics to create
final thematic maps. The use of linear models automated the production and quality of
thematic maps at the microscopic level, which can be useful in monitoring the organic
matter decomposition process.
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INTRODUCTION

The decomposition of organic matter represents a fundamental pedogenic and pedomorphological
process (Fanning and Fanning, 1989), where mineralization, humification, stabilization and
melanization have been widely studied (Zech et al., 1997). Nevertheless, little research has been
done at fine scale despite its importance in particle stabilization (Brzychcy and Zagórski, 2010).
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Soil micromorphology describes organic components at
microscopic level using undisturbed soil samples (Bullock
et al., 1985); nonetheless, their description is complex because
their characteristics change swiftly during the decomposition
process (Stoops, 2003). Colour, opacity, and birefringence are
some criteria used to characterize the subtypes of organic
components (Bullock et al., 1985; Stoops, 2003); these criteria
however, may be subjective with quantification since the
decomposition of organic matter is a diffused-nature feature
rather than a discrete feature (Bullock et al., 1985).

Image analysis of soil thin sections to study different soil
components (Protz et al., 1992; Terribile and Fitzpatrick, 1995;
Taina and Heck, 2010; Brzychcy et al., 2012; Jangorzo et al., 2014;
Gutiérrez-Castorena et al., 2018) has been an adaptation based on
remote sensing techniques (Protz et al., 1987; Ringrose-Voase,
1991; Protz and VandenBygaart, 1998). These routines have
made it possible to eliminate the subjective description of soil
thin sections (Skvortsova and Sanzharova, 2007), allowing better
understanding of soil morphological process and their impacts on
processes at greater geographical scale, such as ecosystems
resiliency and adaptation, among others. In spite of that, the
study of organic components and their dynamics at microscale
has been little addressed, due to the complexity of their features
(Poch 2015), and as a result of the changes that occur within the
humification process in a relatively short period of time (Stoops,
2003).

Gutiérrez-Castorena et al. (2018) proposed to use the
brightness levels of organic components from composite
(RGB) images. This method provided a gain of information;

yet it requires an elaborate and complex image processing
routine. Other authors (Ringrose-Voase, 1991;
Marschallinger, 1997; Terribile et al., 1997) have therefore,
proposed the use of multivariate techniques when complexity
is associated with the identification of soil components. One of
these multivariate techniques is Linear Discriminant Analysis
(LDA), which allows selecting, reducing variables, and
generating classification models (Mika et al., 1999; Brown
and Wicker, 2000; Hallinan, 2012). In addition, through the
application of LDA it is possible to choose the best light source,
band or set of bands handling visible light compositions (RGB)
that present the highest sharpness and contrast of the organic
feature. The hypothesis was: “since each image consists of
pixels associated with a numerical value, it is also possible to
create models to produce thematic maps using brightness
values, and to quantify the organic features produced
during the different stages of organic matter decomposition
at microscopic level.

Therefore, the objectives of this research were: to generate
linear discriminant functions based on the brightness values of
each level of organic matter decomposition and to produce
thematic maps at the microscopic scale in individual images
and high-resolution mosaics of the whole soil thin section.

MATERIALS AND METHODS

The methodology used in this research consists of six steps, as
illustrated in Figure 1.

FIGURE 1 | Flow diagram of the procedure developed in the investigation. PPL = Plain polarized light; XPL =Cross-polarized light; XPLλ =Cross-polarized light with
gypsum compensator. R = Red, G = Green, B = Blue.
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Organic Materials and Their
Micro-Morphological Description
We selected twenty soil thin sections corresponding to various surface
horizons (O andH) of two soil classes (Andosols andHistosols) across
the Valley of Mexico, plus one obtained from composting and
vermicomposting material, to quantify various features of organic
materials we wished to study. The description of the organic
components of the sections studied is reported in Table 1. The
description of organic components with different degrees of
decomposition was based on their colour, internal structure and
opacity in PPL, and birefringence and isotropy in XPL, according

to the terminology proposed byBullock et al. (1985) and Stoops (2003).
Consequently, four classes were established: A) Not decomposed
(internal structure and birefringence); B) Light (internal structure
and birefringence), C) Moderate (internal structure, opacity, and
isotropy), and D) Strong (opacity and isotropy); in addition, a
category corresponding to the porous system P (transparency in
PPL and isotropy in XPL) was added, as reported in Table 2.

Image Capture and Processing
In each soil thin section, single digital images (6) or digital sequential
images (20) were taken to build high-resolution mosaics. All images

TABLE 1 | Description of Organic Components in different soils and composts.

Soil/compost Description

Andosol Abundant Cupressus sp. leaves, reddish-brown on inner tissues and dark brown on epidermis; opaque in XPL; moderate
preservation. Common leaf controns, moderate to strong decomposition. Few fine roots, light brown in PPL and birefringent
in XPL, moderate preservation. Few microaggregates and few reddish brown hyphae. 65% porosity. Fine, common
excrements of mite (Oribatid). 65% porosity. Monte Tláloc, Texcoco, Mexico.

Acrisol Plan residues of Pinus sp.; moderate to a strong degree of preservation needles residues; abundant leaf comminuted;
abundant coarse contours with a high degree of decomposition; coalescence and abundant fine excrements of mites;
abundant actinomycetes. Oaxaca, Mexico.

Andosol Roots and tissues residues (parenquimatic, and lignified tissues), moderate preservation; fine organic material (cell residues,
spores, and hyphae), and amorphous fine material. Coarse, and well-preserved roots and fine common contours; few
charcoal residues; few excrements. Texcoco, Mexico.

Organic amendments Frequent, moderate to strong degree of preservation of organ and tissues of vegetables and fruits (oranges, nopales, lettuce
leaves, etc.); common organ and tissues fragments; few well-preserved roots; common organic fine material (spores);
common fine and medium excrements; 35% microaggregates. Anthrosol, Texcoco.

Histosol Frequent, medium to coarse, well-preserved roots; abundant, strong decomposition of tissue fragments; amorphous fine
material. Glacier area (H horizon). Iztaccíhuatl, México.

Compost

Initial stage

Maize: Coarse stalk fragments; light brown in PPL and first order white interference colors in XPL; good to moderate degree
of preservation.
Manure: Fragments of organ and tissues of alfalfa, moderate degree of decomposition, and moderate degree of
preservation. Ratio 6:1.

Vermicompost Vermicompost from grass pruning (Cynodon dactylon); good preservation; light yellow in PPL, and white in XPL. Tissues
show first-order birefringence, primary fluorescence. The internal structure is complete. Few coalescence excrements.
Nuevo Leon, Mexico.

Vermicompost Vermicompost from bovine manure. Vegetable residues with a high degree of crumbling and alteration that has led to the
formation of aggregates of subangular blocks, so there is no longer recognition of the original structure; dense coalescence
excrements. Nuevo Leon, Mexico.

Vermicompost Vermicompost from residues of sorghum (Shorgum bicolor). Vegetable residues with a high degree of crumbling and
alteration that has led to the formation of aggregates of subangular blocks, so there is no longer recognition of the original
structure. The degree of decomposition is mainly moderate; dense coalescence excrements. Nuevo Leon, Mexico.

Andosols Plant residues of Cupressus sp and Pinus sp. Abundant reddish-brown controns of leaves and aciculae, moderate
preservation. Fine to medium roots well preserved, 5% carbon residue; few, medium porous excretions; cell fragments
common; moderately preserved. 15% microaggregates. Tlaxcala, Mexico.

TABLE 2 | Optical properties of organic matter decomposition levels for each light source.

Class PPL XLP XPLλ

Colour Opacity Internal structure
(%)

Birefringence Isotropy Colour

A. No decomposition Light brown — 75–100 *** — Light brown
B. Light Yellowish brown — 50–75 * — Yellowish brown
C. Moderate Reddish brown- dark brown ** 25–50 — *** Reddish brown
D. Strong Dark brown-black *** — — *** Black
P. Porosity White — — — *** Pink

*Low, ** Medium, *** High.
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in the raw format (*.CR2) were captured fromdigital camera (Canon
Rebel) mounted on a petrographic microscope (Olympus BX51).
The images were obtained with a ×2 magnification on exposure of
three light sources: plain polarized light (PPL), crossed-polarized
light (XPL), and gypsum compensator (XPLλ). Each single digital
image had a resolution of 1840 × 1,093 pixels, in RGB colour
composition (24 bits); meanwhile the mosaics had 9,159 × 4,361
pixels. Therefore, the pixel size (spatial resolution) was
approximately 10−2 (0.01388) mm. In addition, with sequential
images, high-resolution mosaics were constructed using the
procedure described by Gutiérrez-Castorena et al. (2018).

Image processing was carried out using the procedure described
by Gutiérrez-Castorena et al. (2018). First, the images obtained in
raw format were transformed to BIP format (24 bits) with
extension.TIFF; then a resampling was performed using a bilinear
interpolation method, and the original image dimension was
transformed to the field of view of the microscope (11.9 ×
7.46mm) with a pixel size of 2.6 μm2. Subsequently, the images
were clipped to remove dark corners generated by the concave lens
of the microscope. The final image size was 1,840 × 1,093 pixels,
corresponding to a field of view of 9.2 mm × 5.47mm. Finally, the
digital images in each light source were rectified to achieve pixel-level
overlap and broken down into its three components (R-G-B),
acquiring a total of nine for each image (Figure 2).

Data Collection and Classification
Of the total of the individual images obtained, four were selected
that had the maximum representativeness of each class and the
highest quality in their elaboration, i.e., no birefringence caused
by strain in resin. Then, 20 training fields were created, each
consisting of 100 points, giving a total of 2,000 training sites for all

images (Figure 3). For each training site, the brightness values of
each of the nine bands were obtained using the “Extract values by
points” routine of ArcGIS v.10.3 software. (Environmental
Systems Research Institute, 2015). Each training site with its
respective brightness values was classified (A, B, C, D or P). The
2,000 points included mainly organic components; however, in
some thin sections there were also inorganic components.
Therefore, their removal was necessary to obtaining the
organic material models. Consequently, a raster database was
built with 1,511 points bearing 13,599 point-data.

Dataset Preparation for Binary
Classification
Five replicas of the original database were created to obtain the
discriminant functions for binary classification, one for each
level of decomposition and porosity. A cell reclassification was
carried out in each database, which involved changing the class
column; for example, Class A was changed to a value of 1 and
the rest of the classes to values of 0 classes, producing binary
classifications. Subsequently, the data set of each database was
randomly divided into two: 80% to train the models and 20% to
validate them according to the recommendations of James
et al. (2013).

Separability between binary classes was performed using scatter
diagrams with R version 3.5.3 (R Core Team, 2017) for each class
analyzed, using the ggplot2 package. In addition, the minimum and
maximum values of each class were evaluated to establish their
ranges. If the scattergrams showed overlap between the binary classes,
the points were reclassified and assigned values of 0; this process was
called data cleaning, also known as data cleanse or data purge.

FIGURE 2 | Light sources decomposition to obtain the bands (RBG). Image length 0.9 mm. PPL = Plain polarized light; XPL = Cross-polarized light; XPLλ = Cross-
polarized light with gypsum compensator.
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Linear Discriminant Analysis and Estimation
of Accuracy
Linear discriminant analysis (LDA) was carried out on the
training fields of each database, using R v.3.5.3 through the
MASS (Modern Applied Statistics with S) package and
resulting in nine coefficients. The highest brightness values
were selected from these coefficients, and a constant and a
centroid were generated for each equation. According to
Brown (2000), centroids are the mean of the values of the
group members in a given discriminant function.

Kappa coefficient criterion to assess the classification (user’s
and producer’s accuracy) of the reliability of themodels were used
according to Story and Congalton (1986) and Jensen (2015)

proposals. The confusion matrix was carried out using the
predict and confusion matrix functions of the caret and lattice
packages of R v.3.5.3.

Construction of Thematic Maps and
Quantification of Organic Features
The discriminating functions were applied to the images from
which training fields were obtained, the individual images, and
the mosaics, all this to execute the validation process of such
discriminant functions. This procedure was performed with the
ArcGIS raster calculator v.10.3, in which the selected bands in the
LDA were multiplied by the coefficients of the generated

FIGURE 4 | Representative colours of composite images (RGB format) of different light sources and each degree of decomposition of organic matter. (A) No
decomposition; (B) Light; (C) Moderate; (D) Strong, and Porosity (P).

FIGURE 3 | Location of training sites for the degrees of decomposition of organic matter. The arrows indicate the sampled points. The box on the right represents a
site with 100 sampling pixels in PPL. The image corresponds to forest soil, Acrisols, Oaxaca, Mexico.
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discriminant function. After running the models in ArcGIS, a
raster map was obtained showing classes of varying degrees of
organic matter decomposition.

Finally, the quantification of each class was carried out by
obtaining the percentage of pixels with respect to the total image.

RESULTS

Colour of the Degrees of Decomposition of
Organic Matter
Figure 4 shows the representative colours of the five classes
evaluated with different light sources, in which it can be observed
that there is better separation of colours between PPL and XPLλ;
while in XPL, there is confusion in three classes (C, D, and P) as a
result of the isotropy of all materials. It is also shown that classes
A, B, and D have some colour homogeneity regardless of light;
class P contrasts in all light sources.

Degrees of Brightness
Figure 5 shows an overlap in brightness values between some
classes when analyzing the original values, ranging from
minimum (Class A, C, D, and P) to evident (Class B).
However, with the re-categorization, the brightness values
intervals were modified. For example, in class B, with less
30% modification, the brightness values of the intervals were
reduced from 49 to 215 to 77–157 (green band in PPL) and
from 17 to 177 to 17–79 (blue band in PPL) as it can be seen in
Table 3.

Discriminant Functions
Each class studied with the linear discriminant analysis has
specific lights and bands where the feature was characterized
due to its increased sharpness and contrast (Table 4). For
example, because by the type of light, the non-decomposed
organic matter (Class A) stands out better in XPL
(birefringence); whereas, the totally decomposed organic
matter (Class D) is best identified (opacity and isotropy) in
PPL. With XPLλ, the function coefficients obtained from LDA
were low, and therefore were not further analysed.

As for the bands, the green (G) is helpful for all classes, the blue
(B) gives good results in classes A, B, and C (up to moderate
decomposition) and the red (R) only in class D, when the organic
matter (OM) is strongly decomposed. Of the nine original
variables, only two or three bands of the PPL and XPL were
used to generate the models.

Accuracy of Models
The overall accuracy of the models was greater than 94% for Class
A, C, D, and P and 89.1% for Class B. The accuracy increased by
almost 5% for Class A and up to 6% for Class B, when data cleanse
is applied to the training data set (Table 5).

Producer´s accuracy was for classes A, B, and C of 97.6%, 75.9%,
and 87.3%, respectively, and for class D and P of 100%. After cleaning
the data, the accuracy was increased, especially for class B (>22%).
However, in user´s accuracy, percentages were lower for all classes
when compared to those obtained in producer’s (70.7%–98.3%);

furthermore, after data cleansing, most percentages decreased (up to
8%), except for class A, which increased 11%.

The kappa coefficient obtained values ranged from 0.66 (Class
B) to 0.99 (in the rest of the classes). After the data cleanse was
applied, the values were irregular.

Application of the Model, Extraction of
Features, and Creation of Thematic Maps
When the discriminant function was applied with the new pixel
values, grayscale images were generated, where the class of
interest was highlighted in a lighter shade compared to the
other classes (Figure 6A). Subsequently, the layers were
extracted (Figure 6B) and joined together to generate the
thematic map of the different degrees of organic matter
decomposition (Figure 6C).

Figure 7 shows the maps generated in individual images, and
Figure 8 shows the maps constructed from high resolutions
mosaics where it can be seen that there is no clear division in
classes A and B (without slight decomposition).

Quantification
The percentages of the objects classified in raster format agree
with the visual analysis; however, in most training images, an
overestimation was found in several classes as the percentages
exceeded 100%. On the other hand, with the validation images,
the percentages were less than 100% in most cases (Table 6).

As mentioned above, a “subclass” was presented in the
images, which could not be classified with this method. This
subclass was identified as the transition between non-
decomposed materials and those with slight decomposition.
Therefore, if the percentages are below 100%, this class was
present in the image.

Analysis of Thematic Maps
The resulting thematic maps (Figure 8) show the distribution
at microscale, of the varying degrees of decomposition of
organic matter in the topmost layers of several soils and
composting materials. These maps only highlighted the
organic feature, no other features were highlighted except
for the void; therefore, no associations could be identified
with other pedofeatures, at this present time. However, it is
safe to assume that material with relatively higher degrees of
composition were closer to the proximity of voids (Figures
8D,F), since these materials are more exposed to decomposing
agents; in contrast to materials relatively farther from the
voids, which presented lower degrees of decomposition. In
addition, the distribution of these stages followed a gradual
pattern, that is, classes A and B, or classes C and D, would
cluster together more frequently (Figures 8B,D), than classes
A and C or classes B and D (top right of Figure 7). The
occurrences of clusters of class A with classes C and D can be
explained as abrupt displacements of materials due to water
flow or faunal activity. Finally, no inferences could be made
between degrees of organic matter decomposition with size of
voids, suggesting the decomposition process of organic occurs
independently of the size of voids within the soil fabric.
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FIGURE 5 |Scatter-plots of brightness values obtained in selected bands for each class. Left-hand column shows the classes without data cleaning and right-hand
column the classes after the application of data cleaning. The highest point reduction is shown in class B. Red points represents the level of decomposition of interest.
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DISCUSSION

Data Collection and Classification
The extraction of brightness values directly from the raster
images provided descriptive statistics that were used to
determine class membership (Foody and Mathur, 2006). This
procedure allows for direct analysis of the data and establishing
degrees of decomposition of organic matter with an increased
reliability.

The high-resolution images obtained in this research of just
over 2,000,000 pixels in an individual image and up to
586,000,000 pixels in a ×2 mosaic make traditional sampling
impractical (Congalton, 1991; Foody and Mathur, 2006). For
example, Congalton (1988) suggested sampling 1% of themapped
area; however, this would mean a total of 20,000 pixels per

category without considering that classes do not have the
same representativeness in the images.

We found that the sampling intensity can be between 160 and
537 training pixels for each class. Congalton (1991) recommends
using 50 pixels as the minimum number of units to perform
classifications, while Mather (2004) suggests that 30 training
pixels are helpful for each class regardless of each classification
method. Aydemir et al. (2004) set a minimum of 100 points for
each class to obtain the brightness values of the features evaluated
on thin sections of soil.

It is essential to highlight that the expert knowledge used to
generate the classification reduced the sampling intensity due to
the choice of representative sites as significant features of
interest for the proposed classes, as established by Lu and
Weng (2007). This procedure allows the proper collection of

TABLE 3 | Number of sampling points used (PDE) for each class and their intervals of brightness values for each band analyzed before and after of data cleaning.

Class Bands/Light Without cleaning data Cleaning data

Training points Brightness values Training points Brightness values

A. No decomposition G XPL 476 52–255 476 52–255
B 102–255 102–255

B. Light G PPL 301 49–215 203 77–157
B 17–177 17–79

C. Moderate R PPL 88 46–210 79 46–210
G 6–117 6–82
B 0–92 0–32

D. Strong R PPL 176 9–101 153 9–73
G 9–74 9–49

P. Porosity G PPL 370 207–239 343 207–239
R XPL 5–115 5–58

TABLE 4 |Bands and light source used to generate themodels for each level of decomposition evaluated. The information that is presented is derived from the data cleaning.

Class/Degree Light sources Band Discriminant function Centroid

R G B

A. No decomposition XPL * * (G*−0.01516403) + (B*0.04774093) −3.218647 0.8040
B. Light PPL * * (G*0.05868941) + (B*−0.06535330) −0.6480741 0.769385
C. Moderate PPL * * * (R*−0.08307243) + (G*-0.16502634) + (B*0.07993119) −0.5141844 2.6354
D. Strong PPL * * (R*−0.06047865) + (G*0.03148932) +6.758695 2.4631
P. Porosity PPL * (G*0.03305831) + (R*0.02557389) 1.3942

XPL * −2.04559 (G*0.02653818) + (G*0.01991728) −1.660535

TABLE 5 |Overall, user’s and producer’s accuracy as well as Kappa coefficient of models applied in the classification of decomposition of organic matter. These values were
obtained from the initial data and after a cleaning process.

Class/Decomposition
degree

Without cleaning data Kappa Coef. Cleaning data Kappa Coef.

Accuracy (%) Accuracy (%)

Producer User Overall Producer User Overall

A. No decomposition 97.6 87.1 94.9 0.89 99.4 98.8 99.4 0.99
B. Slightly decomposed 75.9 70.7 89.1 0.66 99.1 68.2 93.9 0.78
C. Moderately decomposed 87.3 86.4 96.1 0.85 92.5 77.7 96.6 0.82
D. Strongly decomposed 100 77.9 96.7 0.86 100 73 96.2 0.82
P. Porosity 100 98.3 99.6 0.99 100 91.6 98.1 0.94

Spanish Journal of Soil Science | Published by Frontiers May 2022 | Volume 12 | Article 103488

González-Vargas and Gutiérrez-Castorena Classification Models of Organic Matter



data from the proposed categories and the correct class
assignment to a pixel. Blamire (1996) mentions that
differences in sampling intensity (training fields) are
attributable to the representativeness of the class in the
image and its complexity to be classified.

Degrees of Brightness
In the first stage of this research, the analysis of different degrees
of decomposition is visual and qualitative; therefore, errors in
classification are introduced by confusing the different shades of
colour and the degree of membership of the pixels to the
predetermined classes. For this reason, re-classification of data
was convenient to increase the accuracy of the models and to
achieve brightness intervals that better represented the
decomposition levels of organic matter.

Data cleanse or properly referred as data purge decreased the
values identified as non-distinctive within each class (Arai, 1992;
Mather, 2004), and resulted in a more refined representation of
classes (Foody and Mathur, 2006). In addition, data purge is
necessary in quantitative research so as to bring data to a quality

and reliability levels to be used for statistical modelling (Van der
Loo and de Jonge, 2018).

As regards to the varying degrees of organic matter
decomposition, Gutiérrez-Castorena et al. (2018) reported
intervals that differ from those presented in this study. This is
because the authors established three categories of degrees of
decomposition (light, moderate, and strong) instead of four.
And the image processing performed by these authors was
more complex; therefore, the brightness values were
different.

Optical Characteristics of Degrees of
Organic Matter Decomposition and Their
Relationship to Brightness Values
The brightness values showed overlap, mainly because of the
nature of the decomposition of organic matter. The
decomposition is a gradual process; therefore, transitions
between different stages present abrupt or diffuse boundaries
according to their optical properties in the different light sources

FIGURE 6 | Application of linear models to identify the decomposition levels of organic matter, which shows a lighter colour (red arrows) than the rest of the
components. (A) Original image in PPL, (B) No decomposition, (C) Light, (D) Moderate, (D) Strong, and (E) Porosity. In this last case the model creates a balance
between PPL and XPL and generate the porous space appears gray. Frame length 5.5 mm. Andosols-Texcoco, Mexico.
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(Bullock et al., 1985). Nonetheless, the overlapping intervals
provide a general idea of how classes can be described and
characterized (Marschallinger 1997; Adderley et al., 2002).

This criterion has been used by some authors, but for other soil
components. For example, Adderley et al. (2002) determined the
degrees of brightness of carbonates in each band of the XPL, where
the feature of interest is best represented by its high birefringence, in
what is called the “pure signature” (Gutiérrez-Castorena et al., 2018).
This feature occurs in brightness values close to 255 in the red, green,
and blue bands in XPL. This condition can be explained by two
optical properties: contrast and sharpness, which are essential for
establishing relationships between the feature of interest and the
adjacent materials (Bullock et al., 1985; Stoops, 2003). Carbonates
have prominent contrast and abrupt sharpness in XPL, a light source
where the feature is enhanced (Bullock et al., 1985).

In the case of organic matter decomposition, materials without
decomposition are better characterized in XPL caused by the high
cellulose birefringence (Babel, 1975; Bullock et al., 1985; Stoops,
2003), with prominent contrast, and abrupt sharpness. The
behaviour is similar in the class with high decomposition, but
characterized in PPL, where the contrast is also sharp, and the
colors are darker than any other level of decomposition (Bullock
et al., 1985). Therefore, the identification of the light source is very
important for the delimitation of the component based on its
optical properties.

In class B, the sharpness is diffuse, and the contrast is faded,
hence this class involves a critical transition, i.e. decrease its
birefringence in XPL, which indicates the decomposition of
the cellulose fibres (Babel, 1975) and present yellowish/brown
colorations in PPL (Bullock et al., 1985; Stoops, 2003). This
class was the most difficult to characterize and showed the
most significant overlap during the classification process.
Finally, it was impossible to characterize an intermediate
“subclass” between class A and B, although more sampling
sites were placed on the unclassified pixels. In this sense, this
intermediate class deserves special attention and more
exhaustive analysis to complete its characterization.

Finally, the porosity required two light sources for its
extraction due to the similarity with the characteristics of
some state of decomposition of the organic components. For
example, highly decomposed organic material (Class D) and
porous space are isotropic in XPL (Bullock et al., 1985), and
some light brown tones of non-decomposed or lightly
decomposed organic material can be confused on light
intensity. Therefore, using two bands on two light sources
creates a balance and dramatically enhances the feature.
Gutiérrez-Castorena et al. (2018) found that porosity, in the
case of Andosols, is better characterized by PPL and XPL
because of the confusion caused by andic materials that
present isotropic nature.

FIGURE 7 | (A) Application of models and creation of thematic maps from individual images of thin sections of composting process. (B) Extraction of
decomposition levels and (C) generation of thematic maps resulting from the union of the layers generated in the previous step. Frame length 9 mm.

Spanish Journal of Soil Science | Published by Frontiers May 2022 | Volume 12 | Article 1034810

González-Vargas and Gutiérrez-Castorena Classification Models of Organic Matter



FIGURE 8 | Application of decomposition models on thin sections of composting process and creation of thematic maps from high-resolution mosaics. (A,C,E,G)
original mosaics; and (B,D,F,H) classified mosaics.

TABLE 6 | Quantification of decomposition levels of organic matter in training and validation images. The superscript indicates the figure from which the quantification was
performed.

Organic materials images Class A Class B Class C Class D Class P Total

%

Training 1. Cupressus6A (Forest) 8.4 14.4 6.7 20.1 54.8 104.4
2. Humus (Forest) 11.8 12.4 6 21.4 51.4 103
3. Compost (Manure) 22.7 8.7 3 17.4 56.4 108.2
4. Organic amendments 17.1 4 1.9 23.8 50.4 98.2

Validation 5. Compost7B 16.9 15 1 5.9 59 79.9
6. Compost7D 22.7 17.5 1 6.4 38.7 86.6
7. Compost7F 7 9.1 11.3 10.2 59 96.6
8. Compost7H 30.7 9.2 1.7 6.1 38.2 85.9
9. Mosaic8B 26.6 3 1.5 0.7 63.9 95.7
10. Mosaic8D 4.3 44.5 5.1 5 52.3 111
11. Mosaic8F 3.1 13.1 2.5 5.4 64.5 85

Spanish Journal of Soil Science | Published by Frontiers May 2022 | Volume 12 | Article 1034811

González-Vargas and Gutiérrez-Castorena Classification Models of Organic Matter



Linear Discriminant Analysis
The importance of creating models or discriminating functions of
organic matter decomposition levels is that they can represent the
process through mathematical relationships or equations (Motta
and Pappalardo, 2012). Furthermore, when these models are
applied to other new cases (images), automation of
classification and quantification of decomposition levels
becomes easier to carry out. An additional advantage of using
the models is that the user does not necessarily have to be an
expert in soil micromorphology since the discriminant functions
have been previously created based on expert knowledge.

Some statistical methods have been used previously to analyze
images of other soil components in thin sections. These routines
include supervised and unsupervised classification (Tarquini and
Favalli, 2010; Sauzet et al., 2017; Gutiérrez-Castorena et al., 2018),
ANOVA (Brzychcy et al., 2012), and multivariate analysis such as
that of principal components (Terribile et al., 1995; Jangorzo et al.,
2014). Gutiérrez-Castorena et al. (2018) used the supervised and
unsupervised classification in organic materials; however, the
processing was complex and demanding in computational terms
becausemap operators were carried out with the composite images,
i.e., in their original color composition (RGB). Sugiyama, 2007
mention that separate bands allowed less information processing
and computational time when performing image analysis.

Accuracy
Overall precision values obtained were very high (greater than
94%) for all cases because of the LDA’s robustness (Foody and
Mathur, 2006). Additionally, the percentages obtained are
comparable with other supervised grading methods previously
used for thematic mapping in soil thin sections (Sauzet et al.,
2017; Gutiérrez-Castorena et al., 2018).

In addition, producer’s accuracy increases significantly,
both before and after applying data purge, which means
that the omission error decreases; that is, a smaller number
of pixels were not omitted from the class category. This
statistic indicates how well a specific area can be mapped
(Story and Congalton, 1986); however, when user’s accuracy
is evaluated, the values are lower, especially when data cleanse
is applied. This indicates that it increases the commission
error, i.e., the probability that a pixel falls into one category
and belongs to another.

According to Jensen (2015), kappa coefficient >0.80 represents
a high agreement between the classification map and the
reference information. Values between 0.4 and 0.8 represent a
moderate agreement and <0.40 a poor/poor agreement. As a
result, classes A, C, D and P show a high concordance and class B
a moderate one. Even this is the same classification before
applying data clean-up. According to previous statisticians, the
discriminant functions generated in this research can classify the
levels of organic matter decomposition into O horizons.

An important aspect to mention is that it is necessary to check
the execution of the model visually. Consequently, validation
through acquired knowledge or what is known as “expertise” is
very important in micromorphological analysis and should even
be considered as an additional criterion to numerical data
(Mather, 1987). Hence, after the generation of a model and

checking the accuracy, it was visually analyzed whether the
classification was correct; in other words, it is a method that
employs an expert system.

Application of the Model and Quantification
With the application of the model, new pixel values are
generated, the images are improved, and the feature of
interest is highlighted, while the rest of the components are
opaque. The application of the model is fast because a “macro-
model” can be built within the software, as a basis for adding
bands of the new image. Therefore, there is no need to rewrite
the entire process every time the image analysis for such a
purpose is performed. Also, it is necessary to consider that this
process is straightforward when there is a high quality of
elaboration within the thin section (birefringence in porous
space in XPL). An additional issue is when a pixel falls into two
classes because the model can overestimate or underestimate
the class area. The second case is attributed to the fact that a
pixel with a not well defined membership may be more
susceptible to fall into two classes when using a binary
classification algorithm. An option to improve the
separability between classes is the application of map
algebra. In this routine, the layer with the highest
representativeness serves as the basis for subtraction over
the one that overlaps the class of interest. Protz and
VandenBygaart (1998) applied this same technique in clayey
coatings, which was obtained by subtracting pores and
minerals.

Despite the difficulties mentioned above, discriminant
functions can be applied to research aimed at assessing
decomposition levels in the O horizon, in the O-A transition,
or to composting materials, as a way to probe/explore the
decomposition status of organic matter. The recommended
routine is: photographing, decomposition of strips, application
of models, and quantification. The user will also decide whether,
apart from applying the models, other processes (such as map
algebra) need to be carried out to eliminate class overlap, as
described above.

CONCLUSION

The banding of the images obtained from different light sources
of the petrographic microscope proved to be very useful for
analyzing the brightness values associated with each level of
decomposition of organic matter. Each level was related to one
or two light sources (only PPL and XPL) and the combination of
two or three bands.

The functions were generated using linear discriminant analysis
to classify the degrees of organic matter decomposition with high
precision. Furthermore, the application of the functions automated
the creation of layers of the organic matter decomposition degrees
of to create thematic maps.

Finally, this research represents a first approach to creating
classification models in soil thin sections and may be helpful in
the generation of more classification models for other soil
components using different statistical methods.
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