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Estimation of soil aggregate 
stability indices using artificial 
neural network and multiple 
linear regression models 
 
Estimación de índices de estabilidad de agregados de suelo mediante redes neuronales 
artificiales y modelos de regresión múltiple linear
Estimativa de índices de estabilidade de agregados do solo usando redes neuronais artificiais 
e modelos de regressão linear múltipla

ABSTRACT
 
During recent decades, an artificial intelligence system has been used for developing the pedotransfer 
functions (PTFs) for estimation of soil properties. In the present study, the capabilities of multiple 
linear regression (MLR) and artificial neural networks (ANNs) in developing PTFs for estimating 
mean weight diameter (MWD) from routine soil properties (P1) and combination of routine soil 
properties and fractal dimension of aggregates (P2) were evaluated. The results showed that the ANN 
model for estimating MWD is more accurate than the MLR model. Application of fractal dimension 
of aggregates as a predictor in both methods improved the accuracy of PTFs. 

RESUMEN
 
Durante las últimas décadas se ha utilizado un sistema de inteligencia artificial para desarrollar funciones de 
pedotransferencia (PTFs) que permiten estimar las propiedades del suelo. En este trabajo se evaluó la capacidad del 
modelo de regresión múltiple linear (MLR) y de las redes neuronales artificiales (ANNs) para desarrollar PTFs 
que permitan estimar el diámetro medio ponderado (MWD) a partir de propiedades rutinarias del suelo (P1) y de 
la combinación de propiedades rutinarias del suelo y agregados de dimension fractal (P2). Los resultados mostraron 
que el modelo ANN para estimar el MWD es más exacto que el modelo MLR. La aplicación de la dimensión fractal 
de los agregados como herramienta de predicción en ambos métodos mejoró la exactitud de las PTFs.

RESUMO
 
Durante as últimas décadas, tem sido usado um sistema de inteligência artificial para desenvolver funções de 
pedotransferência (PTFs) que permitam estimar as propriedades do solo. Neste estudo, foram avaliadas as capacidades 
do modelo de regressão linear múltipla (MLR) e das redes neuronais artificiais (ANNs) para o desenvolvimento de 
PTFs que permitam estimar o diâmetro ponderado médio (MWD) a partir das propriedades clássicas do solo (P1) e 
da combinação destas propriedades do solo e da dimensão fractal dos agregados (P2). Os resultados mostraram que o 
modelo ANN para estimar o MWD é mais exato que o modelo MLR. A aplicação da dimensão fractal dos agregados 
em ambos os métodos melhorou a precisão dos PTFs.
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1. Introduction

Evaluation and measurement of soil erosion in fields is often expensive or time-consuming. 
Thus, soil aggregate stability (SAS) indexes could be used as the main indicators in erodibility 
and resistivity to mechanical stresses of soil. A lowering of the SAS index enhances soil 
degradation and soil erodibility. The concept of SAS is usually determined by the destructive 
action of water on soil aggregates. Several indexes including geometric mean diameter 
(GMD) and mean weight diameter (MWD) of aggregates are directly used to characterize and 
quantify the SAS. Nevertheless, measurement and quantitative description of these indexes 
are difficult and time-consuming (Alijanpour Shalmani et al. 2011). Thus, prediction of these 
indexes could be done indirectly via easily available data (which are closely correlated with 
SAS index) such as clay, organic matter, and pH (Cañasveras et al. 2010). Due to their 
electrical charge, clay particles and polysaccharides in the components of organic matters 
bind inorganic soil particles into stable aggregates, therefore they could increase SAS. The 
concept of fractal dimension (Dn) is the other relatively method for describing soil structure 
in a quantitative style (Parent et al. 2011). Based on their particle numbers and sizes, those 
fractals appeared to be appropriate to model the soil aggregation building process. Several 
studies showed that fractal geometry could be a useful tool in quantifying scale-dependent 
soil characteristics such as aggregate mass, particle mass, and soil particle surface (Zhao 
et al. 2006; de Boer et al. 2000). So, fractal geometry could also be used as another easily 
available property to predict and estimate SAS. 

The use of simulation modeling has increased rapidly in recent decades. Pedotransfer 
functions (PTFs) are undirected methods that predict time-consuming soil properties 
from easily and readily measured properties. Nowadays, using artificial neural networks 
(ANNs) has been increased for developing PTFs (Bocco et al. 2010; Gago et al. 2010; 
Besalatpour et al. 2013). ANNs are generally the computing systems which mimic biological 
neural networks (Saffari et al. 2009) and finally can learn patterns and predict. The input 
layer, hidden layer(s), and an output layer of neurons are the main parts of each ANN 
structure (Tracey et al. 2011). Besalatpour et al. (2013) predicted the wet soil aggregate 
stability from easily available properties by ANFIS, ANN, generalized linear model (GLM), 
and multiple linear regressions (MLR). Their results showed that ANN and ANFIS models 
showed greater potential in predicting SAS from soil and site characteristics, whereas linear 
regression methods did not perform well. Several studies reported that in nonlinear data like 
soil properties, ANN models are reliable and simple useful prediction tools in soil analysis 
(Kisi et al. 2009; Huang et al. 2010; Silva et al. 2010; Besalatpour et al. 2013). Hence, the 
objectives of this study were to evaluate and compare the capabilities of ANN and multiple 
linear regression (MLR) to develop PTFs between SAS indices (MWD) and various sets of 
input variables.
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2. Materials and methods

2.1. Study area, soil sampling, and laboratory 
analysis

East Azerbaijan province with an area of 45491 
square kilometers is located in the north-west 
of Iran, between 39º26´-36º45´N latitudes 
and 45º5´-48º22´E longitudes, and has mostly 
foothills and mountains. The highest peak 
of East Azerbaijan is Sahand Mountain with  
3,722 m height. The province includes arid and 
semi-arid climates. Drawing upon 43 years of 
data, the average annual rainfall is reported as 

300 mm and it varies between 254 to 452 mm, 
and the average temperature varies between 
7.6 to 12.7 °C, across the province.

One hundred soil samples with diverse 
properties were collected (0-30 cm depth) from 
the northwest of Iran (Figure 1). Then soils 
samples was air-dried and passed through a 
2 mm sieve. Then, some soil properties such 
as soil texture were determined by hydrometer 
(Gee and Or 2002), cation exchange capacity 
(CEC) by sodium acetate (Bower et al. 1952), 
and organic carbon (OC) by wet oxidation and 
Walkey and Black (1934) methods. A factor of 
1.72 can be used to convert OC to soil organic 
matter (OM) content (Sparks et al. 1996).

[ ESTIMATION OF SOIL AGGREGATE STABILITY INDICES USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRES-
SION MODELS ]

Figure 1. Geographical distribution of studied soil samples in East Azerbaijan province of Iran.

The mean weight diameter (MWD) of wet-sieved 
aggregates was measured by the method 
proposed by Nimmo and Perkins (2002). The 
MWD (mm) of water-stable aggregates were 
calculated using the following equation:

where:

Xi: mean of the remained aggregates diameter 
on the sieve (mm) 
Wi: ratio of the remained aggregates weight on 
the sieve to the sample total weight
n: the number of sieves used for separation

Fractal dimension of aggregates could be 
estimated between number-diameter (Dn), 
mass-diameter (DmT), and bulk density-diameter 
(DmY) of the aggregates (Ahmadi et al. 2011). 
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Ahmadi et al. (2011) studied several fractal 
models (Dn, DmY and DmY) to estimate the fractal 
dimension of soil aggregates, as indexes of soil 
erodibility. They reported that Dn and Dmt could 
be better alternative variables for predicting soil 
erodibility factor empirically. Hence, we choose 
Dn as an easily available soil property to predict 
SAS. For the calculation of number-based 
fragmentation fractal dimension of aggregates 
(Dn), the size distribution of aggregates was 
determined by the method which is described in 
Ahmadi et al. (2011). Then, according to Rieu 
and Spositoʼs (1991) model, Dn was calculated 
using the following equation:

N (>xi)=Kn (xi)-Dn

where:

N (> xi): the cumulative number of aggregates 
greater than xi
Dn: the slope of the regression line of N versus 
xi in the log–log scale
Kn: the intercept of the regression line of N 
versus xi in the log–log scale

2.2. Datasets and descriptive statistics

Two datasets of easily and readily measured 
properties were applied separately as inputs 
for the prediction of MWD. For the investigation 
of the improvement of the model performance 
by using fractal dimension of soil aggregates 
as a predictor, once a PTF (marked as P2) 
was developed without Dn (2nd dataset) as the 
predictor, and once again another PTF (marked 
as P1) was developed using Dn (1st dataset) 
as the predictor. To determine the degree of 
variability of soil characteristics, we analyzed the 
data statistically. Classical descriptors such as 
mean, median, minimum, maximum, coefficient 
of variation (%CV), standard deviation (SD), 
skewness and kurtosis of data distribution were 
determined using the statistical software SPSS 
(IBM Com., Chicago, USA). For increasing the 
speed and accuracy of the models’ calibration, 
both input and output data were normalized 
within the range 0-1 using the following equation:

N: Normalized data
X: Measured value for the factor
Xmin and Xmax: Minimum and maximum values in 
the database 

For the development of PTFs, the database is 
randomly divided into two subsets: calibration 
and validation subset. Ratios for calibration 
and validation were chosen 85% and 15%, 
respectively. Calibration process of ANN- and 
MLR-PTFs was performed by calibration (85 
data) dataset. Then, ANN- and MLR-PTF’s 
performance was evaluated by validation 
dataset (15 data).

2.3. PTFs development

2.3.1. Multiple linear regressions (MLR) PTFs

MLR is one of the statistical methods which 
attempts to model the relationship between two 
or more interpretive variables (independent) 
and a response variable (dependent) by fitting a 
linear equation to the observed data. The model 
for MLR is:

where yi is the dependent variable, b0 is 
a constant called the intercept, xi,k is an 
independent variable, bk is the vector of 
regression coefficients called slope, and ei 
represents random measured errors. In the 
present study, the statistical software SAS 
(Cary, NC., USA) was applied to calculate the 
MLR models. 

2.3.2. Artificial neural networks (ANNs) PTFs

Multilayer perceptrons (MLPs) with Levenberg-
Marquardt learning algorithm as learning 
role (which is highly more influential than the 

[ MARASHI M., MOHAMMADI TORKASHVAND A., AHMADI A. & ESFANDYARI M. ]
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conventional gradient descent techniques) was 
used for ANN examination.

The structural design for MLP models was done 
by sigmoid function (as transfer functions in 
inputs and output datasets), and hidden layer(s). 
An MLP type of ANN consists of one input layer; 
one or more hidden layer(s) and one output layer 
with a large number of inter-connected neurons. 
The basic structure of a typical MLP network is 

shown in Figure 2. An MLP could have more 
than one hidden layer. However, several studies 
showed that a single hidden layer is satisfactory 
for an ANN to estimate any complex nonlinear 
function (Kisi 2004). In the present study, the 
optimum number of hidden neurons and epoch 
was tested through trial-and-error. Calculation of 
ANN analysis was done using NeuroSolutions 
5.05 software.

[ ESTIMATION OF SOIL AGGREGATE STABILITY INDICES USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRES-
SION MODELS ]

Figure 2. Schematic of a typical MLP network.

2.4. Performance criteria

The performance of four PTFs was assessed 
based on the differences between the observed 
and predicted MWD by the determination 
coefficient (R2), root mean square error (RMSE), 
mean absolute percentage error (MAPE), 
and mean absolute deviation (MAD). The four 
statistical parameters used to compare the 
performance of the three methods are defined 
as:

E (xi)= Estimated value of observation i
M (xi)= Measured value of observation i
n = total number of observations
p = number of regression coefficients
MSE = mean square error
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Xk = measured value
Yk = predicted value
X = mean of observed values
Y = mean of predicted values

For the assessment of performances of PTFs, 
the validation datasets were used.

3. Results and discussion

3.1. Descriptive statistics

Table 1 shows the statistical characteristics of the 
calibration and validation data for the prediction 

of MWD. Clay with an average of 25.8% (8.55%-
50.17%) plays an important role in SAS index. 
Rasiah and Kay (1994) and Dimoyiannis et al. 
(1998) showed a significant positive correlation 
between clay content and SAS index. Based on 
data, pH values of the samples ranged between 
6.81 and 8.3 with an average value of 7.78, 
which show most of the soil samples in study 
area are alkaline. The amount of organic matter 
in soil samples varies from 0.06 to 4.38% with 
an average of 1.98%. Idowu (2003) stated that 
OM and pH are the main soil properties which 
could improve the accuracy of the prediction of 
SAS. It seems that soil CEC with an average of 
24.3 cmol(+) kg-1 (6.8 to 59.9 cmol(+) kg-1) could 
be useful in the prediction of main soil property 
in SAS index. However, Igwe and Mbagwu 
(1995) showed that CEC had no significant 
influence on SAS. Generally, quantities of 
statistical characteristics (Table 1) revealed 
that distributions of inputs and outputs data are 
normal, based on Kolmogorov-Smirnov test. 

[ MARASHI M., MOHAMMADI TORKASHVAND A., AHMADI A. & ESFANDYARI M. ]

Variables Mean Median Max Min SD Skewness Kurtosis
P value for 

Kolmogorov– 
Smirnov test

Training datasets (n = 85)

Clay (%) 26.78 22.44 50.17 8.55 12.34 0.29 -1.14 0.18

OM (%) 1.58 1.33 4.32 0.06 1.11 1.10 1.25 0.200

pH 7.79 7.79 8.30 7.48 0.19 0.61 1.64 0.083

CEC (cmol(+) kg-1) 22.30 21.30 49.40 11.00 8.94 0.99 2.33 0.150

Dn 3.98 4.01 5.78 2.70 0.82 0.66 0.06 0.28

MWD (mm) 0.23 0.20 0.55 0.05 0.11 1.20 2.53 0.051

Validation dataset (n = 15)

Clay (%) 24.93 24.78 38.53 9.75 8.94 0.02 -0.97 0.061

OM (%) 2.38 2.33 4.38 0.12 1.55 -0.03 -1.70 0.071

pH 7.78 7.87 8.19 6.81 0.39 -1.21 1.26 0.096

CEC (cmol(+) kg-1) 26.30 23.10 59.90 6.80 13.50 1.32 1.76 0.051

Dn 3.77 3.74 5.26 2.63 0.66 0.63 1.19 0.067

MWD (mm) 0.36 0.23 1.18 0.09 0.33 1.75 2.26 0.120

Table 1. Statistics of training and validation dataset which used for development and testing of PTFs 
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3.2. Prediction of SAS

3.2.1. MLR-PTFs

Table 2 presented the evaluation criteria of the 
created models in the current study. Estimated 
data versus observed data for the validation 
dataset of the investigated models are also 
designed in Figures 3 and 4. According to the 
results, among the investigated models, the 
MLR model had the lowest prediction accuracy. 
However, where the predicted and the observed 
values are almost gathered, the MLR model 
showed relatively acceptable performance 
in predicting MWD. Using MLR with only soil 
properties as the input data (P1) had lower 
determination coefficient (R2) between the 
observed and estimated output compared 
to using second dataset (P2) as input data. 
Prediction capability of the created MLR model 
using P2 was better than using P1 and a higher 
R2 and a lower RMSE value was obtained. The 
MAPE values for the created MLR model using 

P1 were 31.52%, whereas the application of 
P2 as input dataset decreased MAPE values 
(26.20%), with respect to using P1 as input 
dataset, which shows that the addition of Dn 
had considerable effect on the accuracy of the 
predicted MWD by created LMR model. The 
MLR model is introduced as an accurate tool 
to evaluate soil quality (Zornoza et al. 2007), 
which is used by different researches to predict 
soil properties (Trasar-Cepeda et al. 1998; 
Lentzsch et al. 2005). However, in the present 
study, this model was to some extent poor 
in predicting the SAS indexes in P1 dataset. 
Insufficient data for developing a reasonable 
MLR model, as well as the sample distribution 
and introduced spatial variation effects could 
be the main reasons for the low accuracy of the 
MLR approach in predicting the measured SAS 
values (Besalatpour et al. 2012). Besalatpour 
et al. (2012, 2013) and Sobhani et al. (2010) 
reported that the regression models have low 
accuracy and prediction capability.

[ ESTIMATION OF SOIL AGGREGATE STABILITY INDICES USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRES-
SION MODELS ]

Models
P1 P2

R2 RMSE MAPE MAD R2 RMSE MAPE MAD

MLR 0.78 0.18 31.52 0.12 0.90 0.11 26.20 0.08

ANN 0.87 0.17 30.09 0.12 0.93 0.09 21.41 0.06

P1 and P2 means that the model developed without and with using Dn as a predictor in modeling, respectively (n = 15).

Table 2. Accuracy and reliability criteria obtained using validation dataset for MLR and ANN models which 
developed for prediction of MWD

3.2.2. ANN-PTFs

Several neurons and epoch were evaluated 
through trial-error to find the best construction 
of ANN for the prediction of MWD. The MLP 
was trained using 1 to 10 hidden layers. After 
each calibration, R2, MAPE, and RMSE were 
computed using only the validation dataset to 
find the suitable number of hidden layers. The 
results of trial-error showed that two or more 
hidden neurons and epoch set more than 
1000, decreased the prediction efficiency of 
outputs, and increased RMSE. Therefore, one 

hidden layer and an epoch set number at 1000 
were applied for the calibration of ANN model. 
Similar to the obtained results from MLR model, 
the created ANN model using P2 as an input 
dataset gave a greater R2 and lower RMSE in 
comparison with P1 as an input dataset. The 
R2, RMSE, MAPE, and MAD values in MWD 
prediction using ANN technique were 0.87-
0.93, 0.09-0.174, 21.41-30.09% and 0.06-0.12, 
respectively. These results suggest that the 
ANN model is a relatively better predictor of 
MWD than the MLR model. Yilmaz and Kaynar 
(2011) used MLR, ANN (RBF, MLP) and ANFIS 
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models for the prediction of swell potential of 
clayey soils. They reported that RBF exhibited 
a higher performance than MLP, ANFIS and MR 
for predicting swell potential. Kalkan et al. (2009) 
used the ANNs method to develop a model 
for the prediction of unconfined compressive 
strength (UCS). They used clay content, fine silt 
content, coarse silt content, fine sand content, 
middle sand content, coarse sand content, 
and gravel content of the total soil mass as 
independent variables. For the calibration of 
model, they subjected 84 soil samples to the 

unconfined compressive tests under laboratory 
conditions. They used 64 data for the calibration 
of the model and 20 data for test. Finally, they 
observed that their ANN model predicted the 
testing data effectively (R2 = 0.86). 

Overall, the comparison of the models showed 
that ANN was more feasible in predicting and 
gave more perfect predictions of MWD than 
MLR. ANN is able to recognize the connection 
of information with less data for distributed and 
parallel computing natures, while MLR requires 

[ MARASHI M., MOHAMMADI TORKASHVAND A., AHMADI A. & ESFANDYARI M. ]

Figure 3. Relationship between the predicted and measured values of MWD by MLR models for validation dataset (P1 and P2 
means that the model developed without and with using Dn as a predictor in modeling, respectively).
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a large amount of data for the predication 
of unknown data, which is the main reason 
for the priority of ANN over MLR. Several 
studies have shown that ANN is appropriate 
for nonlinear relationships (Yilmaz and Kaynar 
2011; Besalatpour et al. 2013). Since the fractal 
geometry was introduced as a predictor of soil 
texture-related properties (Liu et al. 2009), and 
the heterogeneity of soil structure could be 
described by fractal mathematics (Prosperini 
and Perugini 2008), it was expected that 
addition of Dn to soil properties could increase 

R2 value in prediction of SAS indexes. According 
to the results, the use of a combination of fractal 
geometry and soil properties as the input dataset 
(P2) give a lower RMSE, MAPE, and MAD and 
higher R2 values rather than using soil properties 
alone (P1). Kalkan et al. (2009) concluded that 
the intelligent artificial systems (ANNs and 
ANFIS) performed better than empirical methods 
for the prediction of the unconfined compressive 
strength of compacted soils. Finally, the results 
indicate that ANN approach may always be a 
better choice for predicting MWD.

[ ESTIMATION OF SOIL AGGREGATE STABILITY INDICES USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRES-
SION MODELS ]

Figure 4. Relationship between the predicted and measured values of MWD by ANN model for validation dataset (P1 and P2 
means that the model developed without and with using Dn as a predictor in modeling, respectively).
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[ MARASHI M., MOHAMMADI TORKASHVAND A., AHMADI A. & ESFANDYARI M. ]

4. Conclusions

SAS index is known as a main indicator of 
erodibility and resistivity to mechanical stresses 
of soil. There are numerous ways of showing 
SAS; the determination of the MWD of soil 
aggregates is the most common method. In 
addition, Dn has been known as another method 
to describe SAS. Thus, we tested and compared 
the performance ANN and MLR in predicting 
MWD (as SAS indexes) with different input 
datasets. The best answer was obtained using 
ANN (with the combination of soil properties 
and Dn as dataset) with the RMSE of 0.09 and 
determination coefficient of 0.9643. Prediction 
of MWD using P1 dataset (soil properties alone) 
resulted in the lowest R2-value. Addition of Dn to 
soil properties (P2) as input data improved the 
prediction of both methods. As the result, the 
ANN model generally shows greater potential in 
predicting MWD from routine properties of soil, 
whereas MLR indicated better correlation with 
the second dataset. 
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