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ABSTRACT
 
A review of the effects of wildfires on Mediterranean soils was carried out with special emphasis on 
the biogeochemical processes involved in soil C sequestration. Modifications to the composition and 
properties of soil humic substances and related resilient C-forms in soil resulting from fires were also 
discussed. The systematic effects of fires on soil organic matter (SOM) mainly involve changes to 
its solubility and colloidal properties, selective thermal degradation, structural condensation and the 
cyclization of soil C and N-forms. These effects represent an increase in the biogeochemical stability 
and chemical diversity of the SOM after the thermal generation of structures that are not found 
in soils unless they are affected by fire. Non-systematic effects also depend on local environmental 
constraints and on the great differences in fire intensities and propagation patterns. The effects of 
fire were also discussed, taking advantage of the results of laboratory simulation experiments. This 
approach is indispensable for differentiating fire intrinsic effects on soil from those produced by 
fire-induced inputs of charred necromass and the subsequent effects of soil erosion. In some cases, 
the characteristic properties acquired by post-fire soils can be explained in terms of molecular-level 
features of humic substances and, in particular, those concerning resistance to biodegradation, cation 
exchange capacity, N-availability, soil water repellence and aggregate stability. 

RESUMEN
 
En este trabajo se lleva a cabo una revisión sobre los efectos de los incendios forestales en los suelos mediterráneos, 
con especial énfasis sobre sus efectos en los procesos biogeoquímicos de acumulación o secuestro de C en el suelo. 
Asimismo, se revisan los efectos de los incendios sobre la composición y propiedades de las sustancias húmicas y 
otras formas resilientes de C en el suelo. Las principales efectos sistemáticos del fuego sobre la materia orgánica 
incluyen cambios en su solubilidad y propiedades coloidales, así como degradación térmica selectiva, condensaciones 
estructurales y ciclación de formas de C y N en el suelo. Estos efectos, en conjunto, se consideran responsables del 
aumento en la diversidad química de la materia orgánica debido a la generación térmica de nuevos compuestos 
inexistentes en los correspondientes suelos no afectados por el fuego. Además de ello, deben considerarse los efectos 
no sistemáticos del fuego, que dependen de las condiciones ambientales locales y la amplia diversidad de los tipos de 
incendios. También se discuten los resultados de estudios sobre efectos del fuego en experimentos de simulación en 
laboratorio, que constituyen una aproximación experimental indispensable para diferenciar los efectos intrínsecos 
de los incendios en el suelo de aquellos producidos por aportes de necromasa carbonizada. Finalmente, se revisan 
los efectos del fuego en la estructura molecular de las sustancias húmicas, que pueden ser asociadas con cambios en 
las propiedades de los suelos, en particular respecto a la resistencia a la biodegradación, capacidad de intercambio 
catiónico, disponibilidad de N, repelencia al agua y estabilidad de los agregados del suelo.
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RESUMO
 
Neste estudo faz-se uma revisão dos efeitos dos incêndios florestais nos solos mediterrânicos dando particular enfase 
aos efeitos nos processos biogeoquímicos de acumulação e sequestro de C no solo. Por outro lado, revem-se os aspectos 
relacionados com os efeitos dos incêndios sobre a composição e  propriedades das substâncias húmicas e outras for-
mas resilientes de C no solo. Os principais efeitos sistemáticos do fogo sobre a matéria orgânica incluem alterações 
da sua solubilidade e propriedades coloidais, bem como degradação térmica selectiva e condensação e ciclagem das 
formas de C e N no solo. Estes efeitos representam um aumento da estabilidade biogeoquímica e da diversidade 
química da matéria orgânica do solo devido à formação térmica de novas estruturas e compostos inexistentes nos 
solos não afectados pelos fogos. Para além disso, consideram-se os efeitos não-sistemáticos dos fogos, que dependem 
das condições ambientais locais bem como da grande diferença de intensidade dos fogos e padrões da sua propagação. 
Apresentam-se também resultados sobre o efeito dos fogos em ensaios de simulação laboratorial, que constituem uma 
abordagem experimental indispensável para distinguir os efeitos intrísecos dos incêndios dos produzidos devido a 
inputs no solo de necromassa carbonizada. Finalmente, faz-se uma revisão dos efeitos do fogo na estrutura mo-
lecular das substâncias húmicas associados a alterações nas propriedades do solo, particularmente no que se refere 
à resistência à biodegradação, capacidade de troca catiónica, disponibilidade de N, caracteristícas hidrofóbicas e 
estabilidade dos agregados do solo.
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1. Introduction
On a planetary scale, it has been estimated that 
between 530 and 555 × 106 ha of forest lands 
are affected by fire every year, causing losses 
of about 50 Pg yr-1 of biomass (Levine 1996). In 
addition fire has severe effects on terrestrial eco-
systems, which are reflected in soil health and 
ecosystem stability. The subsequent soil loss 
associated with erosive processes is frequently 
considered to be the most severe environmen-
tal perturbation caused by wildfires in terms of 
C exportation from the ecosystem (Certini 2005; 
Bowman et al. 2009).

Early investigations (Almendros et al. 1990, 
1992, 2003b; González-Vila and Almendros 
2003; González-Pérez et al. 2004 and citations 
therein) have pointed out a number of direct 
or indirect molecular alterations, the most sig-
nificant being the component of the SOM that is 
transformed into a recalcitrant organic substrate 
not readily recognized by specific enzymes in 
the soil. The effects of fire are comparable to 
several features of the biological maturation 
of SOM, a molecular diagenesis produced by 
enzymatic or abiotic processes usually taking 
hundreds or thousands of years. In many cases, 
low- and medium-intensity fires induce structural 
changes in SOM not readily distinguishable from 
those due exclusively to biotic soil processes 
(Almendros et al. 1990; Hernández and Almen-
dros 2012). 

When considering the importance of soil C in 
the global Earth’s biogeochemical cycle, it is 
easy to understand the key importance of the 
above quantitative and qualitative alterations to 
the SOM, leading to the removal of a significant 
portion of C from the fast-turnover biogeochemi-
cal cycle. 

Current trends in SOM research pay special at-
tention to the quality rather than the quantity of 
C stored in soils (Almendros 2008a), a relevant 
approach considering that the Kyoto Protocol 
does not consider soil as a primary C-sink. The 
above considerations justify the detailed as-
sessment of SOM composition and structure. 
In particular, the molecular characterization of 
the SOM provides objective information on soil 
processes, quality and resilience, i.e., its poten-

tial to remain unchanged against environmental 
impacts. Structural studies on SOM are also 
helpful in establishing the variable extent of the 
independent C-stabilization processes in the 
different types of soils. However, the systematic 
use of multianalytical approaches for these 
purposes is not frequent, since it requires time-
consuming preparative laboratory techniques as 
well as the availability of expensive instrumental 
techniques.

2. Diversity of wildfires 
effects
The history of fire and its management is also 
the history of human ecology adapted to fire, 
subjected to continuous changes as regards the 
prevailing paradigms on the origin and effects 
(catastrophic vs. chronic and even useful) of 
forest fires. Caldararo (2002) comprehensively 
reviewed the relationships between human 
activities and forest fires and concluded that in 
the present day frequent fires are a direct con-
sequence of human forest management. Pyne 
(2001) addressed the fact that fires behave as 
part of the terrestrial ecosystems and have a de-
terminant role in the structure of the landscapes 
associated with different human societies.

The impact of wildfires on the environment is 
commonly considered to be especially harmful, 
mainly due to the severe changes produced in 
physical and chemical properties of the soils 
(Giovannini and Lucchesi 1983; Tinoco 2000).   
However, the extent of fire effects on soils can 
be highly variable depending on the ecosys-
tem; for example, the impact of fire on soil in a 
subhumid forest is very different to its impact 
on soil in a continental semiarid Mediterranean 
ecosystem. In general, subhumid forests accu-
mulate thick C horizons mainly consisting of raw 
humus with biodegradable SOM, which would 
be rapidly exchanged with the atmospheric C in 
a hypothetical climate change scenario with in-
creased humidity and temperature. Conversely, 
the semiarid Mediterranean soils (comparatively 
resilient) contain a lower concentration of SOM 
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but a comparatively longer residence time and 
higher humification degree. This stability would 
be favored by its formation under conditions of 
high seasonality with drastic soil drying-rewetting 
cycles leading to intense organo-mineral in-
teractions. These are associated with structural 
condensation and diagenetic maturity of SOM 
with enhanced resistance to further biodegrada-
tion (Almendros et al. 1984a, 1984b, 1990). 

Research taking advantage of experimental de-
signs that compare the effects of natural fires 
with those of controlled fires (including small-
scale heatings in laboratory conditions) could 
help to unravel the controversy over the variable 
effects of fires on the quality of the different forms 
of SOM. Some of these effects may be positive, 
at least regarding the biogeochemical cycles in 
certain soils. Although controlled burning of bio-
mass wastes in the field is currently prohibited in 
many developed countries for obvious reasons 
of environmental health, fire as an agroforestry 
management tool is still used in many parts of 
the world. These include traditional slash & burn 
practices for conversion of ecosystems or shrub 
forest areas into agriculture or livestock use, and 
may represent an interesting field to study the 
mechanisms leading to the stabilization of SOM 
as a result of heating (Almendros et al. 2003a). 

3. Wildfires and their interest 
for the scientific community
The study of the effects of forest fires on the 
functioning of the soils is a current research line 
receiving increasing attention, given the relevant 
environmental impact of this phenomenon in 
certain phytosociological formations (marcescent 
forests and savannas) and in several geographic 
areas (Da Silva and Batalha 2008).

Amongst the research lines focused on the effects 
of forest fires in the soil system, the following 
topics could be emphasized:

• Wildfires and the ecological succession
• Fire, soil erosion and soil degradation

Influence on surface and subsurface hydro-
logical processes
Fire and soil water-repellency
Fire and soil structure and physical properties
Fire and the accumulation of stable C-forms 
in the long-term (black-carbon, pyrogenic 
humus, etc)
Molecular proxies of the effect of fire in SOM
Soil biology of fire-affected ecosystems with 
regard to enzyme activity and soil micro-
fauna
Prescribed burnings and intentional forest 
fires and their bearing on land use
Wildfires and release into the atmosphere 
of carcinogenic or mutagenic volatile com-
pounds

The above broad subjects have led to prolifera-
tion of extensive literature and periodic inter-
national conferences on specific topics. These 
included a high-impact series of conferences 
such as "Forest Fires Research" and "Fire 
Ecology and Management", as well as specific 
workshops on the effects of forest fires, such as 
those included in conventions of the European 
Geosciences Union (EGU, Vienna, 2002-2012) 
in many conferences on environmental risks. 
There is a growing number of specific journals 
(Journal of Forest Fire Research, International 
Journal of Wildland Fire, Fire Safety, Fire and 
Materials, Fire Management Notes, etc) and a 
current trend for publishing articles on this topic 
in multidisciplinary journals on Ecology and Soil 
Sciences, Forestry and Environment. A large 
compendium of specialized papers is available 
from the monthly Current Titles and database at 
the Wildland Fire Research Institute of Arizona 
(http://www.fireresearchinstitute.org).

There are scientific societies in several coun-
tries including specialists in various aspects of 
the study of the effects of fire. This is the case 
with the Spanish network “Fuegored” (http://
grupo.us.es/fuegored) created in 2007 under 
the auspices of  the Spanish Min is t ry 
o f  Sc ience and Innovation, which has already 
held four national meetings (Valencia 2008, 
Seville 2009, Santiago de Compostela 2010, 
Tenerife 2012), published comprehensive books 
reviewing the large number of studies conducted 
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by Spanish scientists on the effect of fire on soils 
(Cerdà and Mataix-Solera 2009), and produced 
monographic issues on specific methodologi-
cal approaches and techniques appropriate to 
the study of the impact of wildfires (Cerdà and 
Jordán 2010). The growing interest in the spe-
cific effects of fires on soil is also evident from 
the series of FESP conferences (International 
Meetings of Fire Effects on Soil Properties) 
formerly held in Barcelona (Spain, 2007), with 
further editions in Marmaris (Turkey, 2009), Gui-
marães (Portugal, 2011) and Vilnius (Lithuania, 
2013), that are contributing to the improved un-
derstanding of the fire issue and to the organiza-
tion of the scientific community.

4. A case study: the effect of 
fire on the C cycle in soils of 
Mediterranean ecosystems
The incidence of fires is particularly frequent in 
countries with a Mediterranean climate, where 
fire is currently recognized as one of the main 
drivers in the structure and functioning of terres-
trial ecosystems. Fire is also considered the dis-
turbing factor that most influences the composi-
tion, type, goods and services provided by the 
ecosystems (Richardson 1998 and references 
therein). To large extent, this is due to peculiar 
characteristics of the semi-arid Mediterranean 
climate, such as:

1. A hot and dry season with a soil water deficit 
which determines a contrasting seasonal bio-
goechemical activity. In some cases this leads 
to the enzymatic soil processes of biodegrada-
tion and humification being active only for two 
to three months of the year, a limitation which 
is also reflected by a slow C flow and a sub-
optimum release of the nutrients required for 
recharging the soil solution (Almendros et al. 
2008)

2. Under the above conditions, fire is a recurrent 
agent with long-term effects on the humification 
processes and biogeochemical performance. 

It forces a temporary replacement of the slow-
growth vegetation by post-fire vegetation in few 
months, at expense of the release of nutrients 
from the ash. In soils not affected by post-fire 
erosive phenomena, however, the amounts of 
humified C-forms may remain constant or even 
increase to a variable extent.

3. The biomass of many typical Mediterranean 
plant species is self-combustible due to their 
low water content and relatively high concentra-
tion of essential oils. In addition, Mediterranean 
vegetation frequently consists of pyrophyte 
plant species with anatomical or physiological 
pre-adaptations to withstand fires. Concern-
ing this fact, ecologists often consider that py-
rophytes, in addition to marcescent forest (i.e., 
trees with senescent leaves, remaining attached 
to the branches until spring) are factors that in-
vite wildfire in Mediterranean environments and 
could represent outstanding ecophysiological 
adaptive advantages in ecosystems where the 
biological nutrient recycling is a limiting factor.

4. Ecosystems with characteristically high bio-
logical activity (e.g., rainforest) may have a zero 
or negative balance with regard to the accumu-
lation of soil C, due to its active C turnover and 
the fact that atmospheric C is sequestered in 
biomass more than in soil. This is not the case 
with semi-arid ecosystems, where the accumu-
lation of "black carbon" and recalcitrant SOM not 
amenable to enzymatic degradation (from past 
fires) are abiotic processes largely contribut-
ing to SOM stabilization. The above-indicated 
stable organo-mineral interactions favored by 
drying-rewetting cycles contribute to this process 
(Borken and Matzner 2009).

5. Complex socio-economic factors also con-
tribute to the proliferation of fires in some sce-
narios. The reasons are varied and include: 

a. Maintenance of traditional practices 
based on burning of forest waste, stubble 
and other crop residues. 

b. Migration of the rural population, associ-
ated with abandonment of croplands and 
further bush encroachment, which in Medi-
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terranean countries favours the occurrence 
of fires. This has also led to the abandon-
ment of traditional sustainable management 
practices of silvopastoral systems that con-
tributed to controlled extraction of forest fuel.

c. The intentional cause of a large percentage 
of fires, over 50% in Spain and about 30% in 
the Mediterranean area (Spanish Ministry of 
Environment 2005).

5. Research on recovery 
indexes of fire-affected soils
Monitoring the effects of fires on soil properties 
is required to design successful strategies for 
rehabilitation and restoration of burned areas. In 
this sense, most of the current research on the 
impact of fire on soil focuses on the alteration of 
SOM, with particular emphasis paid to the mo-
lecular-level analysis of the various forms of soil 
C, particularly the so-called humic substances 
(recalcitrant polydispersed and polyfunctional, 
three-dimensional quasi-chaotic structures, 
formed in the soils and not synthesized by living 
organisms). Humic substances comprise the hu-
mic acids (acid-insoluble, alkali-soluble), fulvic 
acids (acid- and alkali-soluble) and humin (in-
soluble, linked to minerals). As a whole, humic 
substances represent the major forms of stabi-
lized C in soil and sediments (Aiken et al. 1985; 
Schnitzer and Khan 1978; Stevenson 1982; Al-
mendros 2008b).

So far, studies on SOM have contributed to a 
‘neutral view’ of fires as a soil forming factor: not 
considered as a progressive or regressive fac-
tor in the evolution of ecosystems, but leading 
to scale-dependent effects which vary in terms 
of local conditions. The effect of fire is primarily 
topographic given its importance in the erosion 
of surface horizons, but in flat areas it is respon-
sible for significant changes in the dynamics of 
soil C (Cerdà 2004). It is well known that the 
carbon cycle after forest fires can be severely 
affected by the high soil erosion rates. Long-
term experiments show that fires form part of the 

geomorphological system, since the recovery of 
previous soil erosion rates may take a number 
of years, depending on vegetation coverage, 
vegetation type, and its effect on soil hydro-
phobicity (Cerdà and Doerr 2005).

Fire is an abiotic factor with a clear impact on 
the molecular record in the SOM. The study of 
fire-induced changes is therefore a subject of in-
terest for the correct interpretation of soil health 
and the quality of ecosystems, which are reflected 
in the chemical composition of SOM, mainly lipids 
and humic substances (Arias et al. 2005). 

Studies on SOM alteration by the fire also have 
a practical purpose, since the molecular com-
position of humic substances can be used as 
a source of information on the impact and po-
tential recovery of soils affected by forest fires 
(González-Vázquez 2011). Nevertheless, studies 
focusing on the identification of molecular 
descriptors or proxies of the impact or intensity 
of fires in the past do not provide straightforward 
qualitative or quantitative indexes of immediate 
diagnostic value for the different ecosystems. 
As indicated below, fire shares too many effects 
in common with biological humification pro-
cesses. The proxies frequently indicated in the 
literature are unspecific. This is the case with, 
for example, the formation of benzenecarboxylic 
acids, the generation of furfural, the cycliza-
tion of the amide forms of N, the cleavage or 
insolubi l izat ion into nonextractable forms 
of perylenequinones (Tinoco et al. 2006; Al-
mendros et al. 2010a).  Recently, it has been 
proven that in the case of soil lipids, changes 
in C preference index (ratio of alkyl molecules 
with odd-to-even number of C atoms) in addi-
tion to shortening in the average length of alkyl 
chains (mainly in straight-chain n-hydrocarbons 
and fatty acids) could also be valid surrogates of 
the degree of alteration and potential recovery 
of soils affected by fires (Dettweiler et al. 2003a, 
2003b; Kuhn et al. 2010). 
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6. Revisiting fire-induced 
molecular-level changes in 
soil organic matter 
1. Fires’ impact on the soil C cycle through its 
selective effects on young and matured organic 
matter fractions

Earlier studies on the impact of fires on SOM re-
vealed an enhanced stability against biodegra-
dation of the organic C-forms in post-fire soils. 
For instance, much of the fire-induced C-loss is 
accounted for in the case of the free organic mat-
ter, which consists of non-decomposed organic 
particles, and the fulvic acid fraction of compara-
tively low polymerization extent and high O con-
tent. Both fractions tend to decrease preferen-
tially after the fire. Conversely, a relative increase 
was observed both in the amount of particulate 
SOM protected in soil aggregates, and in the hu-
mic acid and the ‘non-extractable insolubilized 
humin’ consisting of condensed humic acid-type 
fractions more or less tightly associated with the 
clay-size mineral soil fraction (Almendros et al. 
1984a). These results are consistent with the 
empirical assumption in humus chemistry that 
the organic fractions more resistant to biodegra-
dation are also those more resistant to laboratory 
degradation by thermal or wet chemical methods.

Several studies coincide in pointing out that the 
total amount of humic-type SOM fractions does 
not necessarily decrease after the impact of 
most types of fires. In organic soils the humic 
substances (in particular humic acids) tend to 
accumulate, which leads to changes in the type 
of humus, with up to eightfold increases in the 
humus reserves having been reported in post-
fire soils (Efremova and Efremov 2006).

2. Intrinsic and extrinsic factors explaining the 
variability of fire-induced changes

The assessment of systematic impacts of forest 
fires on the stability of SOM is largely limited 
by the wide variability of natural fires (e.g., fire 
propagation patterns and heat transfer types, 
final temperatures and exposition times of 
different kinds of biomass —self-combustible or 
not—, soil moisture, etc.). In addition, the limita-
tion of any experimental approach on the effect 
of wildfires is the fact that the post-fire SOM is 
the combined result of changes in the chemical 
composition of the original SOM and consider-

able inputs of charred biomass coming from par-
tially burnt vegetation. This does not necessarily 
consist of charred organic matter, charcoal or 
‘black carbon’, but frequently includes fresh bio-
mass consisting mainly of woody tissues and/or 
herbaceous material, and is particularly the case 
with underground biomass such as plant roots. 
These, in most cases, are practically unaffected 
by the direct thermal effect and is incorporated 
into soil as dead fresh biomass. Depending 
on the inputs of the non-humic organic matter, 
charred or not, certain types of fires may lead 
to accumulation of raw humus—young organic 
matter—and may even represent a significant 
increase in total soil C levels. In this complex 
scenario, laboratory simulation of the effects of 
fires by progressive heating of soil samples at 
increasing temperatures and/or heating times is 
required to differentiate fire intrinsic effects from 
those ascribed to the inputs of charred residues 
or fresh biodegradable necromass (Almendros 
et al. 1984b, 1988; Knicker et al. 2006a).

Laboratory experiments on the “intrinsic effects” 
of fire demonstrated that, apart from the pertur-
bation represented by plant necromass, mas-
sive inputs of the ‘pyromorphic humus’ in the 
soil C cycle present a series of specific charac-
teristics irrespective of the fire and the vegeta-
tion type. These include aromatization, loss of 
oxygen-containing functional groups mainly by 
decarboxylation, structural condensation after 
dehydration with enhanced resistance against 
further chemical and enzymatic degradation, 
and an increase in the relative proportion of 
heterocyclic N-forms (Almendros et al. 1984b). 
These changes in general depend on the inten-
sity of the thermal impact, since moderate char-
ring may led to oxidation of the organic matter 
and the concentration of all types (amide, het-
erocyclic) of organic N-forms (Orioli and Cur-
vetto 1978; Almendros et al. 1985). Evidence 
for the alternative increase in oxygen-containing 
structures in humic substances after moderate 
heating was obtained from 13C NMR studies 
under quantitative acquisition conditions. This 
suggests an enhanced carboxyl-C content of 
post-fire organic matter which is compatible with 
the occurrence of oxidation reactions during—or 
very shortly after—the fire (Knicker et al. 2006a).
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The physico-chemical surrogate descriptors 
more readily reflecting the above structural, fire-
induced changes should be: the increase in soil 
water repellency, the decrease in the C/N ratio, 
the increase in optical density of all humic frac-
tions, the decreased extractability (in alkaline 
solutions) of the SOM, and the progressive de-
crease—in the infrared spectra—of alkyl stretching 
and bending bands indicating selective deple-
tion of aliphatic C-forms. The latter SOM 
constituents include carbohydrate (Martín et al. 
2009), cutans, suberans and extractable lipids, in 
addition to the less structurally condensed ali-
phatic domains in humic fractions, which often 
represent up to 50% of the total constituents (Al-
mendros et al. 1989a). 

At the molecular level, and exclusively considering 
the intrinsic fire effects (excluding the incorpora-
tion of external biomass), chemical degradation, 
pyrolysis techniques and spectroscopic data 
show: a) the selective thermal degradation of 
the most labile SOM forms (mainly oxygen-con-
taining), and b) the thermal distillation of volatile 
aliphatic compounds (alkanes, alkene-generating 
structures, fatty acids) that may represent either 
pre-existent free lipid fractions or products 
generated during pyrolysis or ‘cracking’ of the 
aliphatic domains of the humic substances (Al-
mendros et al. 1984a; Rovira et al. 2012). When 
the structure of humic substances is studied by 
alkaline permanganate oxidation, for example, 
which is a classical method to compare rela-
tive amounts of structural components in SOM 
(Matsuda and Schnitzer 1972), a progressive 
quantitative decrease in α,ω-alkanedioic acids 
with the fire intensity is observed. The yields of 
alkanes and fatty acids remain relatively stable, 
especially in the case of compounds with cyclic 
and branched chains. There is also a typical de-
methoxylation of lignin-derived phenolic acids at 
the advanced heating stages, which lead to a 
relative increase in the yield of benzenecarboxylic 
acids after oxidative degradation. The latter 
compounds have even been postulated to be 
surrogates of the occurrence of black carbon in 
soils (Glaser et al. 1998).

3. Quantitative rearrangement in the different 
humic fractions resulting from the effects of fire 

The modification of the colloidal properties of 
SOM is probably one out of the most marked 
effects of fire (González-Vila and Almendros 
2003; Iglesias et al. 2008) since it is straight-
forwardly reflected both in the cation exchange 
capacity and the stability of soil organo-mineral 
complexes. 

Despite the environmental relevance of the 
chemical properties of post-fire humic substances, 
both field and laboratory experiments are based 
on excessively complex systems which only 
provide limited information on the effect of ther-
mal impact on SOM. Alternatively, laboratory 
experiments using ‘reconstructed soil samples’ 
of organic matter-free mineral substrates with 
added isolated humic or fulvic acids (Almendros 
et al. 1990), suggest rapid decarboxylation and 
dehydration reactions leading to striking changes 
in the hydrophobicity and speciation status of all 
SOM forms (Figure 1). In fact, the different hu-
mic fractions are operationally defined in terms 
of laboratory protocols based on their solubility 
(in acid or alkaline pH). The experiments with 
reconstructed soils with isolated humic sub-
stances (Almendros et al. 1990) demonstrate 
that fire-affected organic matter systematically 
follows thermal diagenetic paths in which fulvic 
acids turn into an alkali-insoluble humic-acid 
type substance (Figure 2). With the progress of 
heating, the above substances lead to acid-and 
alkali-insoluble, humin-like fractions and, after 
severe heating, to a black-carbon-like material 
(here defined as heavily condensed black resi-
due which resists even alkaline permanganate 
oxidation in laboratory conditions). This is con-
sistent with the quantitative decreases in hu-
mic and fulvic fractions found after natural fires 
(Vergnoux et al. 2011).

Results of laboratory heating of the ‘reconstructed 
soil samples’ with isolated fulvic acids as the sole 
type of SOM showed that this mixture is trans-
formed after few seconds of heating (e.g., 120 
sec at 350 oC with sample size 5 g) into complex 
mixtures of all types of humic substances with in-
creased stability against chemical and biological 
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Figure 1. Evolution of major humic organic fractions in ‘reconstructed soil 
samples’ consisting of isolated humic substances from forest soil under holm 
oak and the corresponding mineral fraction. Samples were subjected to labo-
ratory isothermal heating at 350 oC for progressive periods. Vertical axis units 
correspond to the percentage of total soil humic carbon.

FA: fulvic acids which remain unaltered
HA: humic acids which remain unaltered
HA  FA: HA-like fraction formed during the heating of FA
H  FA and H  HA: humin-like fraction formed by the heating of either 
FA or HA, respectively
BC  FA and BC  HA: black carbon fraction formed by the heating of 
either FA or HA

Figure 2. Changes in elementary composition (H/C and O/C atomic ratios, 
Van Krevelen’s diagram) of humic acids (HA) and fulvic acids (FA) isolated 
from soil under holm oak and subjected to laboratory isothermal heating at 
350 oC for progressive periods ranging from 60 (1) to 150 seconds (4). 
Arrows show the progress of classical reactions indicated in the plot. The 
size of the circles is proportional to the nitrogen content of the humic samples.

The data are plotted on a contour diagram that illustrates the natural variability 
(distribution and frequencies) of atomic ratios in humic acids, obtained from 
a large sample collection (ca. 300) of humic acids mainly obtained from 
Mediterranean soils. 
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degradation. The same occurs in the case of re-
constructed soils exclusively based on humic acid 
as the sole C source, where the evolution paths 
is in the same direction, i.e. formation of humin-
like and black carbon-like fractions (Fernández 
et al. 2001). No quantitatively significant ‘reverse 
evolution’ towards a simpler material (e.g., ful-
vic acid-type) was observed, which could have 
been expected from depolymerization or thermal 
breakdown reactions (Almendros et al. 1989a, 
2003b).

These experiments support the above-indicated 
increase in structural complexity induced by 
thermal processes. The decrease in solubility 
is presumably due to the removal of oxygen-
containing functional groups, and probably ac-
companied by free-radical condensation of the 
C-backbone where the structural stability and 
resistance to chemical and biological 
degradation are enhanced and the molecular 
size progressively increased. Laboratory incuba-
tion experiments in addition to the determination 
of the atomic H/C and O/C ratios of the isolated 
humic substances isolated after heating the 

‘reconstructed’ soil samples indicate that their 
stoichiometry, solubility properties and spec-
troscopic characteristics (visible and infrared 
spectra) can be difficult (if not impossible) to 
distinguish from the corresponding pre-existent 
humic fractions in the soil before thermal impact.

4. Selective degradation simultaneous to ther-
mal neoformation of soil organic matter structu-
res 

In spite of the destructive effects expected in 
the case of severe thermal impact, most types 
of fires or laboratory heating of soil samples 
showed a typical enhancement in the complexity 
of the molecular assemblages released by ana-
lytical laboratory degradation of the SOM. Fire-
induced reactions typically lead to the generation 
of aromatic structures from aliphatic precursors 
in humic substances (probably carbohydrate or 
carbohydrate-derived i.e, O-alkyl constituents), 
and induce complex rearrangements of the 
structure of free lipid compounds (Almendros 
et al. 1988) that are mainly chain breakdowns 
with thermal diagenesis of cyclic biogenic con-

Figure 3. Relative proportion of the major resin acids in the lipid fraction of a soil 
under pine forest; C, control sample; I, II laboratory-heated whole soil samples heat-
ed at 160 °C (I) or at 210 °C (II). Compound numbers correspond to: (a) Methyl 
7-hydroxydehydroabietate; (b) Methyl 8(14),15-pimaradien-18-oate; (c) Methyl 2S-
(2'(m-isopropylphenyl)ethyl)-lR,3S-dimethylcyclohexane-carboxylate; (d) Methyl 
8,12-abietadien-18-oate; (e) Methyl 8,11,13-abietatrien-18-oate.
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stituents e.g., diterpene resin acids (Figure 3). 
In the case of the lipid fractions, several studies 
have confirmed that the homologous series of 
post-fire lipid fractions show an increased rela-
tive abundance of short-chain (< C20) alkanes 
and fatty acids, and a convergence of the car-
bon preference index (ratio of even-to-odd C-
numbered chains) to close to unity (Almendros 
et al. 1988). These changes lead to a progres-
sive smoothing of the biogenic signature: even-
C numbered chains dominating in the case of 
fatty acids, and the opposite in alkanes due to 
the decarboxylation of fatty acids derived from 
higher plants. These changes (Figure 4) were 
confirmed in different types of soils (Dettweiler et 
al. 2003a, 2003b) and explain the fact that post-
fire lipids, which to a large extent could originally 
derive from epicuticular waxes of higher plants, 
frequently acquire characteristic features typical 
of fossil lipids and microbial lipids (i.e., domi-
nance of homologues < C20 and no even-to-odd 
C-number preference). 

The considerable enhancement in the complex-
ity of the molecular composition of the organic 
matter after heating is clearly shown in the case 
of carbohydrates (Pastorova et al. 1994; Almen-
dros et al. 1989b). The major thermal rearrange-

ment products of most carbohydrates are anhy-
drosugars (Figure 5) such as levoglucosenone, 
but total assemblages of pyrolytic products may 
amount to hundreds of major compounds includ-
ing furans, acetic acid and homologous series 
of alkylbenzenes, tetralins, indenes, as well as 
a conspicuous series of polycyclic aromatic hy-
drocarbons, with their relative abundance de-
pendant on the intensity of heating (Almendros 
et al. 1997).

5. Fire-induced formation of recalcitrant aliphatic 
and aromatic macromolecules via condensation 
of biogenic organic matter compounds

Most products from the thermal cleavage of 
SOM are both reactive and polyfunctional, i.e., 
compounds prone to spontaneous condensa-
tion and polymerization into three-dimensional 
structures. They show some resemblance to 
humic substances, although frequently have 
comparatively low proportions of reactive oxy-
gen-containing functional groups. As regards 
the stabilization of C-forms in soil, all of the 
above processes are likely to be relevant. The 
chaotic structure of humic substances and the 
newly-formed C–C bonds (intra-macromolecular 
bridging) enhanced by the fire, give the SOM a 

Figure 4. Changes in n-aIkane patterns of control soils (above) and soils heated at 350 °C for 600 seconds. Open 
and solid bars differentiate between odd- and even-C numbered alkanes, respectively.
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generalized recalcitrance against chemical and 
biological degradation (Almendros and Dorado 
1999; Knicker et al. 2011). This lack of repeating 
structures is characteristic of recalcitrant natu-
ral organic matter. The increased resistance to 
biodegradability is combined with an effective 
negative short-term effect of fire on the microbial 
activity (Barreiro et al. 2010).

After the development of 13C NMR spectroscopy 
under reliable quantitative conditions, a series of 
studies were carried out in order to examine the 
dynamic balance between the different C-types 
involved in the fire-induced reactions (Knicker 
at al. 2006b). This represents an interesting 
progress, since chemical and pyrolytical ap-
proaches in general lead to non-stoichiometric 
yields of degradation units that are only valid for 
comparative purposes in a series of samples 
subjected to the same treatments. Calculations 
based on percentages of C in humic samples 
subjected to laboratory heatings under con-

trolled conditions were suitable for monitoring 
the weight loss, the initial and final C percentages 
and the C-lost as CO2 (Figure 6). With these 
data, and the integration values of the different 
13C NMR signals (Almendros et al. 1990, 1992), 
the calculated values supported the hypothesis 
that after moderate heating (up to 60 seconds at 
350 oC) the increase in aromaticity of the SOM 
corresponds mainly to the concentration of re-
sistant aromatic compounds concomitant of the 
selective depletion of aliphatic structures. Never-
theless, after severe heating representative of 
higher intensity wildfires (i.e., weight loss greater 
than 40%) there was an absolute increase in 
the amount of aromatic C compared to unburnt 
samples. The quantitative values also suggest 
that carbohydrates or carbohydrate-derived 
structures such as furans and cyclic ketones are 
probably the main source of these secondary 
aromatic compounds generated by severe heat-
ing. Concerning the remaining aliphatic products 
i.e., alkyl carbons, diverse transformations were 

Figure 5. Pyrolysis products from a heated cellulose preparation: heating time for 180 sec at 
350 °C. The structures of the major compounds are shown on the peaks. 
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Figure 6. Fire-induced changes in humic acid reflected by solid-state nuclear 
magnetic resonance spectroscopy.

HAB: control humic acid from unburnt sample; HA-180: after heating for 180 
seconds at 350 oC.
HA90-HA120: example of quantitative difference spectrum obtained by digital 
subtraction of two HA spectra at different stages of progressive heating. Spec-
tra were previously scaled considering the C-loss between the two heating 
stages. The negative peak ca. 126 ppm indicates the aromatic, unsaturated 
material formed during heating that was not present in the unburnt sample. 
Positive peaks correspond to structures selectively removed from HA as a re-
sult of heating.

Spectral ranges and main peaks: 0-46 ppm= alkyl +α-amino (13= methyl, 21= 
acetate, 33= polymethylene); 46-110 ppm= O-alkyl (56= methoxyl + α-amino); 
numbers in brackets refer to C-types in glucopyranosyde-derived structures; 
103-105= anomeric C in carbohydrate, quaternary aromatic carbons in tan-
nins); 110-160 ppm= aromatic/unsaturated (126= unsubstituted, 147-153= 
heterosubstituted, vanillyl+syringil lignin units); 160-200 ppm= carbonyl (172= 
carboxyl + amide, 198= ketone/aldehyde).
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observed. These consisted of thermoevapora-
tion, cracking and ‘fixation’ probably by molecular 
entrapment into condensed C–C bonded struc-
tures in humic substances, or even chemical 
condensation and polymerization in the case of 
unsaturated structures (Almendros et al. 1996, 
2005). These 13C NMR quantitative studies 
showed that a recalcitrant domain of alkyl Cs, 
probably including resistant N-compounds, is 
systematically present in natural and laborato-
ry-heated humic samples. To date, no detailed 
information has been presented on the chemi-
cal structure of this recalcitrant aliphatic domain 
shown by 13C and 15N NMR spectroscopy of 
SOM affected by fires. It has some similarity to 
a ‘protokerogen-like’ material showing a typical 
‘bimodal’ 13C NMR spectroscopic profile (Figure 
6) indicating a residual C=O signal ca. 172 ppm 
(residual carboxyl, ester/lactone and amide Cs), 
a dominant aromatic region (160-110 ppm), and 
a significant (> 30%) signal for alkyl structures 
peaking at 33 ppm, suggesting a polymethylene 
or cycloalkane structure. These are compatible 
with alkyl side-chains in a melanoidin (aminoacid 
and carbohydrate-derived) domain resistant to 
chemical and biological degradation.

6 Thermal formation of heavily condensed, 
defunctionalized, black-carbon type aromatic 
structures in soil organic matter
 
Not only in-depth structural characterization of 
the black-carbon residues but also its quanti-
tative determination is especially difficult and 
probably biased (Skjemstad et al. 1999; Preston 
and Schmidt 2006; Reeves et al. 2008), owing 
to its multiple-ring polycyclic skeletal structures 
which tend to remain ‘invisible’ after 13C NMR 
spectroscopy due to intrinsic problems with the 
T1 relaxation time in polycondensed aromatic 
structures (Knicker et al. 2004).

Complementary studies based on chemical 
degradation also provide limited additional in-
formation because black carbon structures in 
general do not readily release structural blocks 
upon chemolysis, but are degraded into CO2 
and H2O under the effect of the strong chemi-
cal reagents. This is hypothetically due to its 
structure, consisting of a continuous condensed 

network where the strength of the bonds between 
atoms is similar to that between possible dis-
crete molecular units (Almendros et al. 2004; 
González-Vila et al. 2002; González-Pérez et 
al. 2002). Dipolar dephasing 13C NMR suggests 
a polycondensed three-dimensional structure 
with small clusters of about six aromatic rings 
connected by approximately two bridging Cs 
(Knicker et al. 2005a). Alternatively, benzanthra-
cene-like structures joined together with three 
to five bridging Cs are possible (Knicker et al. 
2005a, 2005b). 

7. The fate of nitrogen compounds in fire-affec-
ted soil organic matter 
 
Fire-induced changes are especially relevant 
to the total concentration, chemical structure, 
and potential bioavailability of N-forms, and 
consequently the effect on the dynamics of the 
whole N- and C-cycles. It seems probable that 
fires play an outstanding role in the long-term 
stabilization of N-compounds into complex re-
calcitrant, insoluble macromolecular material 
(González-Vila et al. 2002). Early studies based 
on 15N NMR under quantitative acquisition con-
ditions (Almendros et al. 1991a) suggested that 
most of the nonhydrolyzable-N in soils does not 
consist of heterocyclic N-compounds, as was 
hypothesized in the classical literature based 
on 20-60% ‘unknown N’ in SOM being resistant 
to hydrolysis. Extensive composting of 15N-la-
belled fresh plant residues or 15N NMR analysis 
of biologically active soils failed to demonstrate 
the major accumulation of N-forms other than 
those present in proteins, chitins or aminoacids 
(Knicker et al. 1996 and references therein). 
More recent laboratory heating studies on, for 
example, 15N enriched plant-biomass, indicated 
that fire is necessary to produce heterocyclic 
N-compounds (Figure 7) in concentrations de-
tectable by 15N NMR (Almendros et al. 2003b; 
González-Vila et al. 2006a). This phenomenon 
could explain the frequent decrease of the C/N 
ratio observed in most post-fire soils (Figure 2). 
Although the exact structure and reasons for the 
low hydrolyzability of the fire-resistant amide 
N-forms in SOM remain obscure (Knicker et al. 
1996), it seems clear that fires produce specific 
qualitative changes not achieved by biological 
transformations of plant and microbial biomass.
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Additional insights on the nature of soil organic 
N-forms and the effect of fire can be obtained 
using destructive techniques, mainly analyti-
cal pyrolysis, which is suitable for structural re-
search on condensed C–C linked macromo-
lecular material such as charred organic matter 
(González-Vila et al. 2001; González-Pérez et 
al. 2004). In the case of lignocellulosic biomass, 
a progressive increase in imidazole-releasing 
SOM structures was found, whereas structures 
yielding pyrroles and pyrrolynes were rapidly 
depleted. Indole-releasing structures showed an 
intermediate thermal stability. In these studies using 
progressively heated plant biomass, it is also 
important to point out that cyclization of organic 
N-forms paralleled the accumulation of polyalkyl 
resistant material, which probably consists of 
chemically-bonded alicyclic or polymethylene 
compounds in addition to structural domains 
yielding non-volatile alkanes (e.g., > C30). This 
recalcitrant polyalkyl material could consist 
of pre-existent plant or microbial lipids, which 
could concentrate by heat-induced molecular 
entrapment into condensed three-dimensional 

black-carbon intergrades, or derive from cracking 
and re-condensation reactions of long-chain 
polymethylene wax constituents including lipid 
polymers. The release of additional amounts 
of waxes from rye-grass biomass heated for 90 
sec at 350 oC supports the suggestion that bio-
genic polyalkyl compounds can stabilize in the 
charred residuals when the carbohydrate has 
been completely transformed by the effect of fire 
(González-Vila et al. 2001). 

8. Molecular proxies of the impact of fire in the 
molecular signature of soil organic matter

Due to the complex simultaneous reactions oc-
curring during forest fires, where the cleavage 
of macromolecules is simultaneous with the 
condensation of new C–C linked structures 
probably initiated by free-radical reactions, the 
study of fire dynamics is practically focused on 
the analysis of  ‘snapshots’ at selected stages 
of transformation (Almendros et al. 2003b). 
Within these limitations, most of the studies on 
the changes in the C-and N-forms have been 

Figure 7. Solid-state CPMAS 15N-NMR spectra of peat samples subjected to progres-
sive thermal oxidation at 350 °C for different periods up to 150 s. The chemical shift 
scale is normalised  to nitromethane (0 ppm).
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restricted to establishing valid proxies of the im-
pact of fires in SOM (González-Vila et al. 2006b; 
Piedra-Buena et al. 2009a, 2009b). These fire-
impact surrogates could be useful in assessing 
damage levels, as well as providing evidence 
of the impact of fire in the past, and explaining 
peculiar features in ‘highly-matured’ humic 
substances (Hernández and Almendros 2012).

From this point of view, changes in the N-con-
taining structures have a greater diagnostic 
value than the changes in the C-backbone of 
the SOM. This criterion arises from the fact that 
most of the post-fire humic substances show 
features that are also typical of the advanced 
stages of diagenetic alteration and microbial re-
working in fire-unaffected ecosystems. 

Monitoring the changes in N-containing SOM 
structures is probably the most promising 
source of analytical proxies of the impact of fire. 
However, investigations aiming to isolate or con-
centrate heterocyclic N-containing structures in 
SOM by means of physical and chemical labora-
tory treatments have had little success in obtaining 
heterocyclic N-structures in amounts suitable for 
analysis by 15N NMR. Nevertheless, in samples 
subjected to severe heating (e.g. after 150 sec 
at 350 oC) the amount of newly-formed heterocy-
clic N-compounds (Figure 7) may dominate the 
concentration of peptide structures (Almendros 
et al. 2008), although laboratory heating experi-
ments have demonstrated that not all peptide-
structures of the biomass are transformed by 
fire, and substantial amounts of amide-N may 
remain even when total weight loss of heated 
samples reaches ca. 30%. Some portion of 
these resistant amides forms could consist of 
melanoidins (or Maillard-like products), typically 
arising from thermal treatment of mixtures con-
taining sugars and aminoacids. The fact that 
before thermal treatment, the concentration of 
pyrrole-type N-forms in SOM biomass lay under 
the detection limits of 15N NMR spectroscopy 
clearly supports their pyrogenic origin (Knicker 
et al. 2010). 

Complementary research on the changes to the 
pyrolytic assemblages of SOM in organic soils 
(sapric peat) after progressive heating (Piedra-

Buena et al. 2009a, 2009b, 2010; Kiersch et 
al. 2012) has also been successful in showing 
that N-structures that did not exist in unheated 
samples, formed after fire. When the experiment 
is carried out with sufficient a number of inter-
mediate stages, it is also possible to observe 
the evolution of the Shannon’s diversity index 
for all families of pyrolysis compounds (including 
lignin-derived methoxyphenols, alkanes, alkenes, 
and N-compounds). The number and concentra-
tion of N-compounds show significant increases 
after the thermal impact, mainly at the stages 
in which heterocyclic compounds are newly-
formed (up to 120 sec at 350 oC). After this initial 
increase in molecular diversity, the assemblages 
of N-compounds are progressively simplified 
with the progress of heating, with a drastic re-
duction in the amounts of compounds prevailing 
at previous stages, mainly pyrazine, methylpyrroline 
and pyrrole. 

This is also the case with the increase in aro-
maticity, the depletion of aliphatic structures and 
the loss of hydrophilic properties, typically re-
flected by increased optical density of the humic 
acids and the changes in its H/C and O/C atomic 
ratios (Tinoco et al. 2006; Shindo et al. 2003). 
Additional descriptors that betray the influence 
of fire on SOM have been postulated after the 
use of multianalytical approaches, such as the 
systematic increase in benzenecarboxylic ac-
ids (Figure 8) after alkaline degradation of the 
humic acids (Almendros et al. 1990; Glaser et 
al. 1998), or the increased yields after analyti-
cal pyrolysis of polycyclic aromatic structures 
(naphthalenes, phenanthrenes, etc.). The de-
creased intensity in post-fire samples of typical 
dihydroxyperylenequinone units frequent in most 
humic acids and ascribed to the metabolism of 
some pigmented deuteromycetes (Kumada and 
Hurst 1967), suggest the instability of quinone 
chromophors against thermal impact.

Concerning the biological properties of the SOM, 
laboratory incubation of fire-affected and unaf-
fected soil samples confirm the comparatively 
low biodegradability (decreased mineraliza-
tion coefficient and total CO2 release) of the 
post-fire soils despite the frequent increase in its 
pH and concentrations of bioavailable cations 
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(Almendros et al. 1984a, 1984b; Hernández et 
al. 1997; Tinoco et al. 2006; Marcos et al. 2007). 

9. The debatable long-term recalcitrance of 
pyrogenic organic matter 

Both the analysis of fire-affected natural organic 
matter as well as simulation experiments suggest 
a continuum of black carbon intergrades where 
only a limited portion should really be considered 
as a C–C-linked three-dimensional polyaro-
matic network with some domains of multilayer 
of graphite-like structures (González-Vila et al. 
2009). In fact, most fire-affected organic matter 
still includes a heterogeneous mixture of ther-
mally altered biomacromolecules (Knicker et al. 
2007). 

Laboratory analyses based on chemical degra-
dations and 13C NMR of plant chars showed the 
presence of discrete proportions of the original 
lignin backbone, associated with furans and an-
hydrosugars, suggesting residual or diageneti-
cally-altered hemicelluloses and celluloses. In 
general chars also include substantial content 
of N-heteroaromatic carbon structures mainly 
derived from peptides (Knicker et al. 2003a, 
2003b), as well as condensed structures with 
frequent O- and S-substitutions (Knicker at al. 
2006c).

According to this conception, most of the char 
would be perfectly amenable to biological and 
chemical oxidation, compatible with the con-
centration in soil of a minor recalcitrant black-
carbon fraction (material with more than 90% C) 

Figure 8. Fire-induced changes in the relative amounts of degradation products obtained after 
alkaline permanganate oxidation of humic acid: HA-C humic acid from the control soil, HA= IV 
after 150 seconds of heating at 350 oC. The line plot shows changes in the relative abundances 
of the main families of permanganate degradation products from humic acids (HA) and fulvic 
acids (FA) subjected to progressive heating: Labels on the peaks indicate the main families of 
compounds and C range numbers:  F= fatty acid methyl ester, D= α,ω-alkanedioic acid methyl 
ester, BnC= benzene-n-carboxylic acid n-methyl ester, M= methoxy.
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which would represent subfossil organic matter 
from the viewpoint that its C is not readily inter-
changed with that in the atmosphere. This heavily 
condensed, high C-range black carbon could 
represent the characteristic C-form in some 
black-colored soils (Ponomarenko and Ander-
son 2001). This is supported by laboratory ex-
periments on extreme reference materials such 
as activated charcoal with negligible amounts of 
O, H and N (unpublished results), where weight 
losses and yields of oxidative degradation products 
other than CO2 and H2O are little significant even 
under pH, temperature and pressure conditions 
not existing in environmental conditions.

Reduced biodegradation rates in post fire-soils 
have been justified by invoking the argument 
that high fire intensity creates recalcitrant ma-
terials (Hatten and Zabowski 2010), and which 
are in line with studies suggesting that black 
C-type SOM could represent a significant sink 
of atmospheric CO2 (Kuhlbusch and Crutzen 
1995). Other studies (Hockaday et al. 2006) 
supplied experimental data that was interpreted 
to show that pyrogenic C-forms were more bio-
degradable than previously believed. However, 
the divergent experimental results reported by 
different authors (Steiner et al. 2007) are based 
on substantially different pyrogenic materials. In 
any case, it seems clear that in soils subjected 
to repeated burnings, substantial amounts of the 
pre-existent black carbon are destroyed in the 
successive fire events (Dai et al. 2005; Rovira 
et al. 2009).

10. Changes to surface properties of soil organic 
matter resulting in water repellency 

Although significant enhancement in soil water 
repellency is a classic result of wildfires and 
controlled heatings (e.g. Viro 1974; Doerr et al. 
2000; Mataix-Solera et al. 2012), no exhaustive 
studies have been done on the factors involved 
in this soil property, their effect on SOM biode-
gradability, and its bearing on the C-cycle.

The role of soil hydrophobic substances and its 
speciation status (its occurrence as free extractable 
compounds, or bonded to organic matter in the 
surfaces or the inner voids of aggregates) was 

typically considered to be of prime importance in 
the water repellency (De Blas et al. 2010), which 
in extreme cases takes several minutes to be 
estimated with the classical WDPT (water drop 
penetration time) test. 

Molecular characterization of the SOM in water-
repellent soils suggested interactions between 
fire-induced intrinsic and extrinsic effects. For 
instance, thermal distillation of lipid fractions in 
the course of fires and its further translocation 
and fixation of soil organic and mineral surfaces 
was considered by many authors to produce hy-
drophobicity (Savage et al. 1972; Savage 1974; 
DeBano et al. 1970). Comparison of samples 
from the same soil after wildfire and laboratory 
heating indicated that water repellency increases 
in both cases. The amount of free lipids in-
creased after natural fires due to probable ex-
ternal inputs from epicuticular waxes and resins, 
but decreased progressively in the laboratory 
closed system (Almendros et al. 1988). This 
suggested that changes in surface properties 
of the post-fire SOM (mainly the removal of car-
boxyl, phenolic and alcoholic hydrophilic func-
tional groups) and further changes in the col-
loidal properties (mainly condensation of fulvic 
acid-type fractions) enhanced by intramolecular 
bridging in humic acids and humin, may play a 
substantial synergistic role in changing organic 
matter to heavily hydrophobic (Almendros et 
al. 2010b). Additional enhancement in water 
repellency is probably due to surface exposi-
tion of polymethylene constituents, or even 
polycyclic aromatics in the case of heavily 
condensed black carbon intergrades. 

Further studies on extremely hydrophobic soils 
revealed inter-related factors involved in soil wa-
ter repellency, in particular suggesting that lipid 
compounds should not necessarily be the key 
agents. The early fire-induced transformation in 
macromolecular SOM, with drastic dehydration 
and decarboxylation reactions, should not be 
neglected during the interpretation of the origin 
of hydrophobicity in fire-affected soils.

In the case of extremely water-repellent soils, 
the removal of free hydrophobic compounds 
(solvent extraction) only leads to some decrease 
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in water repellency. Further removal of particu-
late organic fractions (free organic matter) in 
addition to the successive extraction of humic 
and fulvic acids (with the concomitant effect of 
the polar extractants used in cleaving polyvalent 
cation bridges) was required for a total disap-
pearance of the hydrophobicity (De Blas et al. 
2010). 

Molecular characterisation of the lipid com-
pounds sequentially removed from the soil after 
these chemical treatments removing organo-
mineral cements in soil aggregates, suggests 
that the total amount and the molecular com-
position of soil lipids, by itself, only explains a 
small portion of the severe water repellency 
(Almendros et al. 2012). Apart from this, in the 
soils studied (pine and eucalypt forests) the lipid 
molecules more related with the repellency were 
characteristic compounds synthesized by higher 
plants, not by microorganisms, i.e., mono- and 
sesquiterpenes and oxygenated terpenes, as 
well as long-chain (> C20) alkanes (De Blas et 
al. 2011, 2012).

To large extent, water repellency in these forest soils 
would be explained by changes in the properties 
of the soil matrix, i.e., the removal or occlusion 
of free oxygen-containing groups and the asso-
ciation of non-extractable alkyl constituents—
mainly alkanes—onto humic acids. According 
to this conception, water repellency would be an 
emergent soil property not primarily dependant on 
hydrophobic coatings at microaggregate levels, 
but dependant instead on hydrophobic cements 
tightly fixed in the stable humus-clay matrix (De 
Blas et al. 2012). In the case of fire-affected 
soils, this would depend on the fires’ intensity 
and duration, and has been shown to have a 
significant effect on other soil physical proper-
ties important to soil health such as aggregate 
stability. Although high-intensity fires may lead 
to a severe decrease in organic matter associated 
with the loss of structural stability, in some cases 
an increase has been reported and attributed to 
increased water repellency (Mataix-Solera et al. 
2011).

7. Final considerations on 
hypothetical effects of fire 
on the soil C-sequestration, 
its effects on the humification 
pathways and the fate of 
pyrogenic organic matter 
The complex dynamics induced by fire in the 
accumulation mechanisms of soil organic C is 
hypothesized in Figure 9. The scheme differen-
tiates between mechanisms in which the origi-
nally biodegradable SOM becomes stabilized 
in soil for extended periods (selective preserva-
tion, ‘inherited organic matter’…) and specific 
processes of formation of humic-like substances 
including newly-formed soil C-forms in soil (Al-
mendros 2008a). Depending on the intensity of 
the mechanisms involved, fire effects may result 
in changes in SOM functional groups leading 
either to hydrophobicity or water repellency pro-
cesses, but may also increase the stability of the 
links between SOM and minerals through the 
formation of e.g., irreversible H-bridges which 
remain after rewetting the soil. As stated before, 
intense fires may also determine the formation of 
new cyclic or condensed organic components, 
and the polymerization of soluble precursors. In 
general, fire causes structural changes of bio-
macromolecules (cellulose, lignin, etc.) causing 
their structures to be less biodegradable and not 
easily recognizable by specific soil enzymes. 
There are also very stable SOM forms which 
are rapidly generated by the effect of the fire, 
e.g., pseudomelanoidins from thermal dehy-
dration of carbohydrates (charred material), or 
Maillard products (melanoidins), from nitrogen 
compounds and carbohydrates. Some recent 
studies have shown even the accumulation of 
stable aliphatic C-forms from the condensation 
of lipid compounds (mainly unsaturated), which 
turn into resins or become attached to pre-ex-
isting humic substances in soil (Almendros et 
al. 1991b). Finally, severe heating leads to the 
accumulation of a continuum of charcoal inter-
grades from lignocellulosic biomass generically 
referred to as 'black carbon'. 

From the experimental viewpoint, it is extremely 
difficult to observe any microbial assimilation 
of charcoal, either because it did not occur, or 
because the methods frequently used were 
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Figure 9. Analysis of the effect of fire (pentagonal boxes) on the soil carbon cycle, showing its effect on the various mechanisms 
responsible for the formation of humic substances and C sequestration (rectangular boxes).
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not sufficiently sensitive (Bruun et al. 2008). 
Although black carbon has been considered to 
be biodegradable in a reasonable period of time 
in tropical conditions (Poirier et al. 2002) mainly 
when finely divided, it is in general considered 
highly recalcitrant. Black carbon may represent a 
significant proportion of soil C in some gray soils, 
but is very difficult to quantify by conventional 
spectroscopic or wet analytical techniques. In 
any case, the secondary transformation of this 
recalcitrant C-form into humic-type substances 
should not be neglected: Laird et al. (2008) con-
sidered black carbon particles aged in soil to be 
oxidized, incorporating carboxylic groups as well 
as a series of aliphatic compounds, either by ad-
sorption of dissolved biogenic compounds from 
the soil solution, or by direct deposition of mi-
crobial materials from microbes. At this point, 
some authors have suggested that abiotic 
processes were more important for oxidation of 
black carbon than the biotic processes, at least 
during short-term (4-month) incubations (Cheng 
et al. 2006).

Oxidation of black carbon in soil results in the 
export of a wide variety of polycyclic aromatic 
compounds to the dissolved organic matter 
pool (Hockaday et al. 2006). Nevertheless, 
since black carbon may frequently occur as 
an extremely fine, particulate soil fraction, it 
is probable that its progressive depletion from 
soil surface horizons is to large extent due to 
horizontal and vertical migration (Guggenberger 
et al. 2008; Rumpel et al. 2009) rather than to 
chemical or biological in situ transformations.

Finally, analyzing the current state of the 
knowledge about the impact of fire in the SOM 
in recent literature, the topics of recurring inter-
est to research workers in many countries have 
been the unraveling of the complex molecular 
structure of pyrogenic SOM forms (by using 
non-destructive spectroscopies, specific wet 
chemical degradation, chemotaxonomic and 
metabolomic approaches, etc.), and the dis-
crimination of the selective effects of fire from 
the biogeochemical pathways which contribute 
to the natural stabilization of C forms in soil.
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