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Excess adiposity can contribute to metabolic complications, such as type

2 diabetes mellitus (T2DM), which poses a significant global health burden.

Traditionally viewed as a chronic and irreversible condition, T2DMmanagement

has evolved and new approaches emphasizing reversal and remission are

emerging. Bariatric surgery demonstrates significant improvements in body

weight and glucose homeostasis. However, its complexity limits widespread

implementation as a population-wide intervention. The identification of

glucagon-like peptide 1 (GLP-1) and the development of GLP-1 receptor

agonists (GLP-1RAs) have improved T2DM management and offer promising

outcomes in terms of weight loss. Innovative treatment approaches combining

GLP-1RA with other gut and pancreatic-derived hormone receptor agonists,

such as glucose-dependant insulinotropic peptide (GIP) and glucagon (GCG)

receptor agonists, or coadministered with amylin analogues, are demonstrating

enhanced efficacy in both weight loss and glycemic control. This review aims to

explore the benefits of bariatric surgery and emerging pharmacological

therapies such as GLP-1RAs, and dual and triple agonists in managing

obesity and T2DM while highlighting the caveats and evolving landscape of

treatment options.
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Introduction

Obesity represents a multifaceted, chronic condition characterized by an

accumulation of excessive body fat, known as adiposity, which can impair health and

decrease lifespan [1]. Epidemiologic studies define obesity using the body mass index

(BMI), which can stratify obesity-related health risks at the population level. Obesity is

clinically defined as a BMI exceeding 30 kg/m2 and is subdivided further into class 1

(30–34.9 kg/m2), class 2 (35–39.9 kg/m2) and class 3 (≥40 kg/m2). At the population level,

complications from obesity rise as BMI increases [2]. At the individual level, the

relationship between health complications and BMI is influenced by diverse factors

such as the extent of adiposity, its distribution throughout the body, and an array of
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environmental, genetic, biological, and socioeconomic influences

[3]. Excessive adiposity can predispose to metabolic

complications, such as type 2 diabetes mellitus (T2DM) [4].

T2DM is defined by hyperglycemia resulting from tissue insulin

resistance and relative insulin deficiency [4]. Estimates indicate

that approximately 537 million individuals worldwide had

T2DM in 2021, a figure that is expected to increase by 46%–

783 million by 2045 [5]. Individuals with T2DM are at high risk

for microvascular complications, including retinopathy,

nephropathy and neuropathy, and macrovascular

complications such as cardiovascular comorbidities [6].

For years, T2DM has been viewed as a chronic, progressive

condition necessitating continual adjustment of pharmacotherapy,

with estimates that 50% of patients will require insulin dependence

within 9–10 years [7]. However, a growing body of research

challenges this timeline by introducing surgical and

pharmacotherapy approaches to managing the disease,

emphasizing reversal and remission [8]. Indeed, sustained weight

loss of at least 15% of body weight has a positive effect on the

progression of T2DM, inducing remission in a large proportion of

patients and markedly improving metabolic status in many others

[9, 10]. The World Health Organization now openly acknowledges

that a window of time exists in which T2DM is metabolically

reversible - which is defined as a normal HbA1c without

glucose-lowering medications for at least 3 months [11].

Pioneering work by Pories et al. [12] laid the foundation for the

notion that bariatric surgery could effectively address T2DM owing

to its substantial impact on weight reduction and significant

improvements in blood glucose levels, fasting insulin, and

HbA1c. Subsequent studies have consistently reaffirmed the

efficacy of bariatric surgery in enhancing glucose homeostasis,

diminishing the requirement for glucose-lowering medications,

and mitigating both microvascular and macrovascular

complications associated with T2DM [13]. Notably, some

patients have experienced complete remission of T2DM

following surgery [13]. Furthermore, evidence suggests that

individuals undergoing bariatric surgery are significantly less

likely to receive a diagnosis of T2DM even 15 years post-surgery

compared to those who do not undergo the procedure [14]. Despite

its considerable benefits, a complex surgical procedure is not feasible

or scalable as the mainstay for a population-wide intervention.

The discovery that glucagon-like peptide-1 (GLP-1)

enhances insulin secretion in a glucose-dependent manner

and suppresses glucagon release while minimizing the risk of

hypoglycemia has led to the development of various structurally

distinct GLP-1 receptor (GLP-1R) agonists (GLP-1RAs) with

longer circulation times for the management of T2DM [15–17].

Beyond their now well-defined role in managing glucose levels,

GLP-1RAs have emerged as important tools in weight

management strategies for individuals living with obesity and

T2DM. This effect on body weight primarily stems from their

ability to reduce food intake and slow gastric emptying [18].

Innovative treatment approaches combining GLP-1RAs with

other gut hormone-derived agonists, such as glucose-

dependent insulinotropic polypeptide (GIP), and pancreatic

hormone-derived agonists, such as glucagon (GCG) and

amylin, are demonstrating promising outcomes, further

enhancing both weight loss and glycemic control [19, 20].

This new line of pharmaceuticals to reduce body weight and

decrease glucose levels could therefore be a more accessible

treatment alternative for individuals living with obesity and

T2DM (Figure 1).

This review aims to explore bariatric surgery, currently

considered the most effective intervention for addressing

obesity and T2DM, and the potential pharmacological

emerging therapies such as GLP-1 receptor agonists (GLP-

1RAs), dual agonists, and tri-agonists in body weight and

T2DM management. Additionally, we will discuss the caveats

and potential future directions in treating patients living with

obesity and T2DM.

Bariatric surgery

Bariatric surgery, also known as metabolic surgery, is an

effective therapy that helps people with severe obesity achieve

significant weight loss while decreasing related cardiometabolic

comorbidities [21, 22]. The termmetabolic surgery acknowledges

the physiological changes caused by the procedure, which leads

to a more favourable metabolic profile beyond the traditional

belief that it is only provided through weight-dependant

mechanisms [23–25]. The most widely performed bariatric

surgeries are vertical sleeve gastrectomy (VSG), which consists

of removing ~80% of the stomach along the greater curvature,

and Roux-en-Y gastric bypass (RYGB), which involves gastric

size restriction with the creation of a small gastric pouch and re-

routing of the intestinal tract, such that ingested nutrients empty

directly into the jejunum and bypass 95% of the stomach,

duodenum and proximal jejunum [26]. Biliopancreatic

diversion with duodenal switch (BPD-DS) is a less-common

procedure consisting of a sleeve gastrectomy followed by re-

routing of the small intestine so that the ileum now connects to

the pylorus of the stomach, bypassing both the jejunum and the

duodenum [27].

Studies have shown that patients living with T2DM

undergoing BDP-DS tend to lose between 36% and 55% of

their initial body weight after 10 and 3 years, respectively [28,

29], compared to 28% with RYBG [30] and 22% with sleeve

gastrectomy after 10 years [30]. Similarly, BPD-DS is the

procedure conferring the highest rate of long-term (2–5 years)

diabetes remission, ranging from 90 to 100% [27, 31] compared

to 50–84% [29, 32] for RYGB and 14–86% for sleeve gastrectomy

[33–35]. The longer duration of diabetes and the type of

antidiabetic therapy used before surgery could influence

postsurgical glycemic outcomes, thus explaining the

heterogeneity in diabetes remission following bariatric surgery
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[36–38]. Despite being recognized for its durability in terms of

weight loss and diabetes remission [29, 39, 40], DPB-DS

constitutes only 2.2% of bariatric surgeries performed

worldwide [41]. The technical complexity and demanding

post-operative monitoring needed to avoid malnutrition due

to the malabsorptive nature of this surgery may explain the

reduced surgeries employing BPD-DS. As it is a more

straightforward procedure that requires a shorter operative

time, VSG is now the most widely performed bariatric surgery

worldwide [21].

The precise mechanisms resulting in improved glucose

control following bariatric surgery remain unclear. The degree

of weight loss achieved is generally associated with the degree of

resolution of T2DM [9, 42, 43], suggesting that those with greater

weight loss after surgery have a greater propensity for improved

management of T2DM and remission than those with less weight

loss [44]. Indeed, weight loss yields a reduction in total, visceral

and pancreatic adipose tissue, reductions in intrahepatic levels of

lipids, and improved insulin sensitivity, all of which are expected

to improve systemic glucose homeostasis [45]. One study

demonstrated that in patients living with obesity and T2DM,

18% weight loss achieved either by RYGB or caloric restriction

resulted in similar improvements in insulin sensitivity and β-cell
function, suggesting that metabolic improvements are weight-

related [44]. Metabolic surgery has also been found to have well-

documented effects on improving blood glucose levels [13] and

even achieving T2DM remission on a faster timeline that is

disassociated from weight loss [21]. These weight-loss-

independent improvements are thought to be in part related

to changes in bile acid dynamics [46] and microbiota

composition [47], a shift in gut physiology, including nutrient

intake, gastric emptying, gastric acid production [48], and

increases in postprandial gut hormone secretion [49]. Other

factors to consider in T2DM remission following bariatric

surgery include disease duration, age, and the level of

glycemic control [9, 50]. These factors, linked to β-cell
functional capacity, suggest that T2DM remission might be

more achievable in patients with shorter disease duration,

younger age, and better glycemic control. Nevertheless, it was

reported in patients with T2DM using insulin before BPD-DS,

97% of patients had cessed insulin therapy after 10 years

postoperatively [51].

Overall, the magnitude of change in body weight and

glycemic control depends on the type of bariatric surgery

performed and the improvements in T2DM management are

related to both weight-loss-dependent and independent

mechanisms.

GLP-1RA-based therapies

GLP-1 and GIP are incretin hormones released from gut

enteroendocrine cells following a meal and potentiate glucose-

dependent insulin secretion from the pancreas [52]. They exert

their incretin actions through two distinct yet structurally related

class B G protein-coupled receptors, the GIPR and the GLP-1R.

These receptors are expressed in several organs tightly

controlling energy homeostasis and metabolism, including the

pancreas, cardiovascular system, and central and peripheral

nervous system [52]. The essential role of incretin receptors in

glucose homeostasis was demonstrated in single and double

incretin receptor knockout mice. Glp1r−/− mice, and, to a

greater extent, Glp1r−/− and Gipr−/− mice, exhibit impaired

glucose tolerance and defective insulin secretion when fed a

FIGURE 1
Weight loss and type 2 diabetes mellitus (T2DM) management with bariatric surgery and Glucagon-like peptide 1 receptor agonist (GLP-1RA)-
based pharmacotherapy. (A)Weight loss (%) and type 2 diabetes mellitus (T2DM) remission (%) were observed following vertical sleeve gastrectomy,
Roux-en-Y Gastric Bypass, or biliopancreatic diversion with duodenal switch. (B) Weight loss (%) and HbA1c targets of 6.5% and 7% reached by
patients following GLP-1RA-based pharmacotherapy.
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high-fat diet [53]. GLP-1 also exerts anorectic effects by

activating GLP-1R + neurons in the hypothalamus and

brainstem, which reduces food intake and promotes weight

loss [54]. The action of GLP-1 to reduce glycemia by

stimulating insulin secretion in a glucose-dependent manner

provided the rationale for exploring incretin-based therapies

and led to the approval of the first GLP-1R agonist in

2005 for treating T2DM [15]. The use of two GLP-1RAs,

liraglutide and semaglutide, for weight loss was later approved

in 2014 [55, 56].

The observed reduction in body weight with the use of the

GLP-1RA liraglutide (1.2 and 1.8 mg once daily) in individuals

living with T2DM prompted the exploration of higher doses of

liraglutide in the treatment of overweight and obesity in the

Satiety and Clinical Adiposity—Liraglutide Evidence (SCALE)

program [55, 57–60]. In the Scale Diabetes trial, an average of 6%

weight loss was achieved over 52 weeks in 623 individuals living

with T2DM treated with 3 mg liraglutide once daily, with 25,2%

of the participants experiencing >10% weight loss. Furthermore,

56.5% of participants receiving 3 mg liraglutide daily achieved a

HbA1c ≤ 6.5%, which is considered prediabetic, compared to

15% in the placebo group, and 69.2% reached the target

HbA1c <7% set by the American Diabetes Association (ADA)

compared to 27.2% in the placebo group [58, 61].

The GLP-1RA semaglutide was also evaluated for the

treatment of obesity in the Semaglutide Treatment Effect in

People with Obesity (STEP) program at a dose of 2.4 mg once

weekly [56, 62–64]. STEP 2 evaluated weight loss in

1,210 individuals living with T2DM and overweight/obesity

not treated with insulin (HbA1c 7–10%). Participants were

randomized to placebo, semaglutide 1 mg or semaglutide

2.4 mg weekly, together with lifestyle interventions over

68 weeks. Those receiving the highest dose lost an average of

9.6% of their body weight, compared to 3.4% with the placebo. At

the highest dose, more than a quarter of the participants lost over

15% of their weight, almost half lost 10%, while two-thirds lost a

minimum of 5%. After 68 weeks, participants receiving 2.4 mg

had an average HbA1c of 6.4%, in the prediabetic range, and

therefore below the threshold to diagnose T2DM, compared to

7.8% in the placebo group. After 68 weeks, 78.5% and 67.5% of

those receiving 2.4 mg semaglutide weekly reached the <7%
HbA1c target and ≤6.5% prediabetic range, respectively,

compared to 26.5% in the placebo group [62].

The efficacy of GLP-1RA in managing body weight and

T2DM has spurred significant efforts toward developing next-

generation therapies that surpass the effectiveness of GLP-1RA

alone. Tirzepatide, a novel dual GLP-1 and GIP analogue, was

investigated at weekly subcutaneous doses of 5mg, 10mg and

15 mg compared to 1 mg semaglutide for 40 weeks in patients

living with T2DM in the SURPASS phase 3 clinical trial program.

The highest tirzepatide dose led to an 11.2 kg (11.9%) weight loss

and decreased HbA1c by 2.3%. A total of 82–96% of the patients

who received tirzepatide and 79% of those who received

semaglutide reached the HbA1c target of <7.0%. Furthermore,

HbA1c ≤ 6.5%%, which is considered prediabetic, was met in

69–80% of patients receiving tirzepatide compared to 64% of

patients receiving semaglutide [65]. These findings are

encouraging, highlighting the promising potential of

tirzepatide in the management of T2DM.

Recently, tri-agonists (GLP-1/GIP/GCG) were shown to

provide even greater improvements in glycemic control and

robust reduction in body weight in individuals living with

T2DM. In a phase 2 clinical trial including 281 participants

with T2DM and a mean HbA1c of 8.3%, weekly administration

of 12 mg retatrutide (starting dose 2 mg) for 36 weeks decreased

HbA1c by 2.16% and participants lost ≥15% of body weight

compared to baseline. Approximately 80% of those receiving the

highest dose of retatrutide reached the <7.0% HbA1c target

established by the ADA and roughly the same percentage

attained the ≤6.5% HbA1c prediabetic level [66]. These

outcomes align with the potential reversal of T2DM [10, 67].

Another study investigating the combination of semaglutide with

the long-acting amylin analogue cagrilintide in patients living

with T2DM also resulted in significant improvements in body

weight and HbA1c in a phase 2 trial. Compared to baseline, once-

weekly 2.4 mg of CagriSema for 32 weeks resulted in a 2.2%

decrease in HbA1c (mean HbA1c of 6.3%) and a 15.6% body

weight loss. Eighty-nine percent of patients achieved the <7%
HbA1c target, and 75% had a HbA1c ≤ 6.5% considered in the

prediabetic range [68].

While additional studies are required to validate the safety

and effectiveness of these newer medications in larger cohorts,

GLP-1RA-based pharmacotherapy represents a very promising

avenue for managing body weight and T2DM.

Discussion

Bariatric surgery induces significant weight loss and T2DM

remission (Figure 1A). However, there are several

contraindications to bariatric surgeries, and not all patients

may be eligible. As with any other medical intervention,

bariatric surgery poses a health risk, such as postoperative

surgical complications, and dumping syndrome, and patients

need to be closely monitored for micronutrient deficiencies after

the intervention [69]. Furthermore, surgical interventions are

difficult to scale to reach everyone who could potentially benefit.

It is therefore worth investigating if GLP-1RA-based

pharmacotherapy could be a more accessible alternative to

bariatric surgery for managing body weight and

T2DM (Figure 1B).

Despite their safety and efficacy, individuals may experience

adverse side effects using GLP-1R agonists, dual and tri-agonists,

such as nausea, vomiting, constipation and diarrhea [70].

Furthermore, GLP-1RAs generally require once-weekly

subcutaneous injections [55–60, 62–64]. Orally administered
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GLP-1RA, such as semaglutide and orforglipron represent

another effective therapeutic strategy for managing body

weight, blood glucose and other cardiometabolic risk factors

[71, 72]. Additionally, an oral formulation for a GLP-1R/GIPR

agonist is currently being tested in a phase 2 trial

(ClinicalTrials.gov ID NCT06068946). One major limitation to

the use of GLP-1RA-based therapies remains its high cost. A

recent study even suggested that sleeve gastrectomy was cost-

saving compared to semaglutide in the treatment of class II

obesity and estimated that a 3-fold decrease in the price of

semaglutide was needed to achieve nondominance [73].

Furthermore, long-term obesity and T2DM pharmacotherapy

may also be required, as cessation of pharmacological treatment

is frequently followed by weight regain, even with continued

lifestyle intervention [64, 74]. Nevertheless, GLP-1RA-based

pharmacotherapy remains a more accessible alternative than

bariatric surgery for managing body weight and T2DM.

While both bariatric surgery and GLP-1RA-based

pharmacotherapy represent promising options, surprisingly, few

studies have directly compared surgery to pharmacotherapy for

glycemic control and glycemic control in patients living with obesity

and T2DM. Three studies have reported that RYGB and VSG

surpass medical therapy in terms of weight loss, glycemic control

and reduction in medical use among patients with T2DM [13, 38,

75]. However, it is important to mention that medical therapy,

including various oral anti-hyperglycemic agents, insulin, GLP-

1RAs and SGLT2 inhibitors, was heterogeneous across

participants. Recent studies using GLP-1/GIP/GCG receptor

agonists have demonstrated very promising results. It would

therefore be interesting to explore whether these findings could

be compared to the outcomes of surgery in regards to both weight

loss and glycemic control.

In conclusion, bariatric surgery stands as a highly effective

option for managing body weight and T2DM, yielding significant

benefits. Yet, its widespread implementation faces scalability

challenges, limiting access for many who could potentially

benefit. In contrast, GLP-1RAs, and more particularly dual

and triple agonists, offer a promising alternative, potentially

extending to a larger patient population. Future research is

imperative to ensure safety, and efficacy, and optimize

treatment options, including decreasing side effects commonly

reported by patients. Nevertheless, this novel pharmacotherapy

could play a pivotal role in managing body weight, and T2DM,

and preventing related micro- and macro-vascular

complications.
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