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Introduction: When developing phenotype algorithms for observational

research, there is usually a trade-off between definitions that are sensitive or

specific. The objective of this study was to estimate the performance

characteristics of phenotype algorithms designed for increasing specificity

and to estimate the immortal time associated with each algorithm.

Materials and methods: We examined algorithms for 11 chronic health

conditions. The analyses were from data from five databases. For each

health condition, we created five algorithms to examine performance

(sensitivity and positive predictive value (PPV)) differences: one broad

algorithm using a single code for the health condition and four narrow

algorithms where a second diagnosis code was required 1–30 days,

1–90 days, 1–365 days, or 1- all days in a subject’s continuous observation

period after the first code. We also examined the proportion of immortal time

relative to time-at-risk (TAR) for four outcomes. The TAR’s were: 0–30 days

after the first condition occurrence (the index date), 0–90 days post-index,

0–365 days post-index, and 0–1,095 days post-index. Performance of

algorithms for chronic health conditions was estimated using PheValuator

(V2.1.4) from the OHDSI toolstack. Immortal time was calculated as the time

from the index date until the first of the following: 1) the outcome; 2) the end of

the outcome TAR; 3) the occurrence of the second code for the chronic

health condition.

Results: In the first analysis, the narrow phenotype algorithms, i.e., those

requiring a second condition code, produced higher estimates for PPV and

lower estimates for sensitivity compared to the single code algorithm. In all

conditions, increasing the time to the required second code increased the

sensitivity of the algorithm. In the second analysis, the amount of immortal time

increased as the window used to identify the second diagnosis code increased.

The proportion of TAR that was immortal was highest in the 30 days TAR

analyses compared to the 1,095 days TAR analyses.
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Conclusion: Attempting to increase the specificity of a health condition

algorithm by adding a second code is a potentially valid approach to

increase specificity, albeit at the cost of incurring immortal time.
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Introduction

Phenotype algorithms are often the first component needed

to conduct observational research studies. When developing

these algorithms, there is usually a trade-off between

definitions that are broad, prioritizing a lower number of false

negative subjects, and narrow, prioritizing a lower number of

false positive subjects. Narrow phenotypes for health conditions

ensure that the cohorts selected by the algorithm are more likely

to have the health conditions of interest.

A common method for developing narrow phenotypes and

thereby increasing the specificity of an algorithm for a health

condition is to require a second occurrence of the condition after

the initial occurrence, which is the defined date of cohort entry.

The required timing of the second code relative to the first is

often inconsistent across studies. There are many examples of

using this approach. For example, a literature search for

algorithms for atrial fibrillation produced 39 research studies

using computable phenotype algorithms. Of these, 16 used

algorithms that required two or more diagnosis codes for

atrial fibrillation. While requiring a second diagnosis code is a

common practice, the time between the first and second codes

varies widely. For example, O’Neal et al. required a second code

between 7 days and 1 year after the first code [1]. Wilson et al.

required a second code any time within 1 year from the initial

diagnosis code [2]. Willey et al. required two diagnosis codes

within the 3 years of their study period [3].

Algorithms requiring a second code always introduce

immortal time into any study utilizing the algorithm. Suissa

defines immortal time as “a span of cohort follow-up during

which, because of exposure definition, the outcome under study

could not occur.” [4] Studies that inadvertently or deliberately

require immortal time prior to the outcome have been long

criticized. These studies commonly begin follow-up after the

initiation of treatment, which cannot be confirmed until

subsequent events occur after initiation (e.g., a second

prescription, an additional therapy or procedure, etc.).

Immortal time occurs when the subjects who die, disenroll

from the database, or experience the outcome before the

second requirement can be satisfied are not included in the

analysis. Agarwal et al. discuss the immortal time incurred

between a mastectomy and radiation therapy on patient

survival [5]. The time between the surgery and the radiation

treatment is considered immortal and must be accounted for in

the treatment effect analysis.

Studies that require a second diagnosis code in a phenotype

algorithm incur similar immortal time. These studies pose the

potential for incorporating immortal time bias into analyses in

cases where the data window used to determine inclusion in the

cohort overlaps the data window used to assess outcome

incidence. When using these algorithms, non-fatal outcomes

of interest may occur between the time from the first

diagnosis code to the second diagnosis code, as the first code

is considered the cohort index date. The principal concern using

these algorithms is the occurrence of death, which prevents a

second code as required by the algorithm. The bias in this case is

due to the possible loss of sicker subjects from the cohort. While

these studies are similar to other forms of immortal time incurred

in observational research, the effect of requiring a second

diagnosis code has not been well studied.

A trade-off exists between the need to increase the likelihood

of a research subject having the condition of interest,

i.e., increasing specificity, when using the known errors in

administrative claims data and the incorporation of immortal

time. The objectives of this study were to 1) estimate the

performance characteristics of phenotype algorithms that

require a second code to increase specificity; 2) to estimate

the immortal time associated with each algorithm; and 3)

quantify the impact on incidence rate estimates for various

outcomes across various time-at-risk definitions.

Materials and methods

We examined algorithms for the following 11 chronic health

conditions: atrial fibrillation, chronic kidney disease, chronic

heart failure, coronary artery disease, migraine, multiple

myeloma, multiple sclerosis, overactive bladder, plaque

psoriasis, psoriatic arthritis, and ulcerative colitis. In this

study, these 11 conditions are used as exposures or

indications (i.e., the index event that represents entry into the

study and the beginning of follow-up time). The analyses were

from data from five databases: Merative® MarketScan®

Commercial Database (CCAE), Multi-State Medicaid Database

(MDCD), and Medicare Supplemental Database (MDCR),

Optum®’s Clinformatics® Data Mart (DOD), and IQVIA®

Adjudicated Health Plan Claims Data (formerly PharMetrics

Plus)—US database (PharMetrics). The results presented in this

study are the mean values from the databases used in the analysis.

For each health condition, we created five algorithms to examine
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performance [sensitivity and positive predictive value (PPV)]

differences. We created a broad algorithm with a single code for

the health condition, which incorporates no immortal time and

would potentially have high sensitivity and low specificity. We

also created four narrow algorithms with potentially higher

specificity (and lower sensitivity) where a second diagnosis

code was required at one of four time periods after the first

diagnosis code: 1–30 days, 1–90 days, 1–365 days, and 1- all days

in a subject’s observed data after the first code. In these cohorts,

subjects may have the outcome prior to the occurrence of the

second code. For these algorithm definitions, the principal

concern with immortal time is death or disenrollment rather

than missed outcome occurrence. As disenrollment is likely to be

health status agnostic, we will focus on death as the main effect of

immortal time.

For each algorithm requiring a second code, the time between

cohort entry (the first diagnosis) and the required second

diagnosis is immortal. We examined the proportion of

immortal time relative to time-at-risk (TAR) for four

outcomes: death, myocardial infarction, Bell’s palsy, and

ingrown toenails. For these analyses, we only included data

from DOD and MDCD, as these were more reliable for

accurately recording death. For each outcome, we used four

possible TARs for each chronic health condition: 0–30 days after

the first condition occurrence (the index date), 0–90 days post-

index, 0–365 days post-index, and 0–1,095 days post-index.

Performance characteristics of algorithms for chronic health

conditions were estimated using PheValuator (V2.1.4) from

the Observational Health Data Sciences and Informatics

(OHDSI) toolstack (for a complete description of this tool).1

This method uses diagnostic predictive modeling to estimate the

probability of subjects being cases of the condition of interest. It

provides the complete set of performance characteristics,

i.e., sensitivity, specificity, and positive and negative predictive

value. Using the semi-automated phenotype algorithm

evaluation method PheValuator, we eliminated the need for

obtaining and reviewing subject’s records. While algorithm

validation results from chart review are considered the “gold

standard,” we have compared the results from PheValuator with

prior studies using chart review and found excellent agreement

between the two methods [6]. Immortal time was calculated as

the time from the index date until the first of the following: 1) the

outcome; 2) the end of the outcome TAR; or 3) the occurrence of

the second code for the chronic health condition. Total TAR was

calculated as the total time across subjects from the index date

until the end of TAR. We calculated the proportion of immortal

time relative to the total TAR as total immortal time/total TAR.

Incidence rates were calculated as the count of the first

occurrence of the event for each subject during the TAR

divided by the total TAR for all subjects. We used a lookback

period (“clean window”) of a minimum of 365 days to designate

an incident event.

All phenotype algorithms used in this study were developed

using the OHDSI open-source ATLAS tool.2 Each algorithm is

available in a JSON format.3 The JSON format may be converted

into executable SQL using either the ATLAS or CirceR4 packages.

The preliminary results from this study were originally

presented at the Observational Health Data Sciences and

Informatics (OHDSI) symposium in 2022 [7].

Results

In the first analysis, we estimated the sensitivity and PPV for

the single-code algorithm and the four algorithms requiring a

second condition code for each of the 11 chronic conditions

across five databases. The results are shown in Figure 1.

In each of these conditions, the narrow phenotype

algorithms, i.e., those requiring a second condition code,

produced higher estimates for PPV and lower estimates for

sensitivity compared to the single code algorithm. For all

conditions studied, PPV was highest in the algorithm

requiring a second code 1–365 days after index, with

moderate decreases in PPV when the second code was

allowed to occur any other time after the first. Adding a

second code had more of an impact on PPV in some

conditions than in others. For example, adding the

requirement of a second code 1–365 days after the index for

multiple myeloma produced a 25% increase in PPV (0.71, single

code, 0.89, two codes). For chronic kidney disease, adding a

second code produced a 3% increase in PPV (0.96, single code,

0.99, two codes). The differences in PPV with any of the four

versions of the two-coded algorithms were generally small. The

largest difference was observed in psoriatic arthritis, where

requiring a second code 1–30 days after index produced an

estimated PPV of 0.85 which increased to 0.93 with the

1–365 days algorithm (~9%).

The improvements in PPV came at the cost of decreased

sensitivity. In all conditions, increasing the time to the required

second code increased the sensitivity of the algorithm. However,

in all conditions, the sensitivity of the two-code algorithms was

lower than that of the single-code algorithms, regardless of the

required time for the second code. There was substantial

variation in the decrease in sensitivity depending on the time

required for the second code and the condition type. For

conditions with more serious and immediate clinical

1 See: https://github.com/OHDSI/PheValuator

2 https://atlas.ohdsi.org/#/home

3 https://github.com/OHDSI/PheValuator/tree/develop/extras/
ImmortalTimeBias

4 https://github.com/OHDSI/CirceR
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consequences, there was a smaller drop in sensitivity from the

single code algorithm compared to the two-code algorithms for

conditions with less critical immediate clinical consequences. For

example, for atrial fibrillation, the sensitivity decreased from

0.95 to 0.50 when requiring a code 1–30 days after index (−47%),

while for overactive bladder the sensitivity decreased from 0.82 to

FIGURE 1
Performance characteristics of 11 chronic conditions by phenotype algorithm aggregated across five databases using PheValuator.

FIGURE 2
Proportion of immortal time relative to total TAR for atrial fibrillation, migraine, and multiple myeloma with an outcome of death for multiple
outcome times-at-risk (TAR) by phenotype algorithm aggregated across five databases using PheValuator.
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0.14 (−83%). For the algorithms requiring a second code at 1-all

days after index, atrial fibrillation sensitivity decreased from

0.95 to 0.84 (−9%); for overactive bladder sensitivity decreased

from 0.82 to 0.50 (−39%).

In the second analysis, we calculated the proportion of TAR

that would be immortal (i.e., time where subjects cannot die or

leave the database) for four outcomes and four TARs, with the

results for the outcome of death shown in Figure 2.

The amount of immortal time in the analysis increased as the

window used to identify the second diagnosis code increased. For

example, in a 30 days TAR incidence rate analysis conducted on

cohorts where the second diagnosis code was allowed any time

after the first (i.e., 1-ALL), 49%, 75%, and 44% of TAR was

immortal for the atrial fibrillation, migraine, and multiple

myeloma cohorts, respectively, compared to 23%, 36%, and

27% when the second code was required to occur within

30 days of the first. Furthermore, the proportion of TAR that

was immortal was highest when the maximum-allowable TAR in

the incidence rate analysis was short and decreased as the

maximum-allowable TAR increased. The proportion of

immortal time was substantially lower for the 1,095 days TAR

analyses. For migraine cohorts requiring 2 codes, which had the

highest proportions of immortal time among our four outcomes,

we found the 1,095 days TAR analysis had 25% of TAR immortal

for cohorts requiring the second code any time after the first code

and 2% of TAR immortal for cohorts requiring the second code

within 30 days of the first code. We found similar results for this

analysis in the other three outcomes.

We found different trends for changes in incidence rates for

death and ingrown toenail in chronic diseases, depending on the

time to second occurrence of condition codes and the outcome

TAR. For all target cohorts and both outcomes, we observed

higher incidence rate estimates when a second code was required

within 30 days of the original, which opposes the direction of the

bias expected due to immortal person time (which deflates

incidence rates). This increase most likely reflects genuinely

higher incidence rates of death or ingrown toenail among

subjects who have two related codes within 30 days of each

other. This may be due to subjects who have more frequent

encounters with the health system being at higher risk of death

and also being more likely to have outcomes captured in the data.

For the mortality analysis (Figure 3), as we extended the time

period used to allow for the second code, we observed two

phenomena working in the same direction: 1) a reduction in

the incidence rate of death due to including subjects who are less

intensely medicalized (who didn’t have two diagnosis codes in

very close proximity to each other) and 2) a false reduction in the

incidence rate due to immortal time representing an increasing

share of the total TAR. It is impossible to entirely parse these two

drivers of change in estimates; however, we can observe that the

variation in estimates across algorithms requiring the second

code at different intervals was largest for the incidence rate

FIGURE 3
Effect of requiring a second code in phenotype algorithms for atrial fibrillation, migraine, and multiple myeloma on incidence rates of death for
multiple outcome times-at-risk (TAR) by phenotype algorithm aggregated across five databases using PheValuator.
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analyses that included the largest proportion of TAR that

was immortal.

For ingrown toenail (Figure 4), an outcome that we expected

to be much less susceptible to immortal time bias due to its

limited association with mortality, we saw much less variation in

the incidence rate estimates across the various algorithms

requiring a second code within different time windows. This

provides some evidence that immortal time is not meaningfully

biasing these estimates. Indeed, we still saw an increase in the

incidence rate comparing the single-code algorithm to the

algorithm requiring a second code within 30 days, which

indicates that the aforementioned effects of having frequent

encounters with the health system are still affecting incidence

rate estimates to some degree for ingrown toenails (particularly

for the migraine cohorts). However, extending the period used to

observe the second code, which we found increased immortal

time in the analysis, did not appear to have a meaningful impact

on incidence rate estimates. This provides some insight that

immortal time should only be of concern for high-mortality

cohorts where outcomes are meaningfully associated with the

risk of mortality.

Discussion

In this study, we examined the effect of creating narrow

phenotype algorithms by varying the time to require a second

condition code in the algorithm compared to broad algorithms,

i.e., those requiring a single code. We found that requiring a

second code at any time after the index event (i.e., the occurrence

of a condition code for the first time in a subject’s history) always

increased the positive predictive value and decreased the

sensitivity compared to single-code algorithms. Requiring a

second code 1–365 days post-index produced the highest

estimates for positive predictive value. Requiring a second

code 1–30 days post-index produced the lowest estimates for

sensitivity. In the 11 health conditions we examined, the trade-off

of positive predictive value gain to sensitivity loss was lower for

certain conditions, particularly those where the single-code

algorithm had a high positive predictive value. We also found

that requiring a second code invariably adds immortal time to the

subjects in these cohorts. The proportion of immortal time

relative to the outcome time-at-risk was highest for short

outcome times-at-risk and lower for long times-at-risk.

Attempting to increase the specificity of a health condition

algorithm by adding a second code is a potentially valid

approach for the five US databases we tested. However,

caution should be observed in analyses where the outcome is

death or outcomes highly associated with death due to the

necessary incorporation of immortal time, especially in

analyses assessing short periods of follow-up.

Bias due to immortal time for incidence rate estimates is a

complex function depending on several factors, including the

distribution of TAR in the analysis, the background risk of

FIGURE 4
Effect of requiring a second code in phenotype algorithms for atrial fibrillation, migraine, and multiple myeloma on incidence rates of ingrown
toenail for multiple outcome times-at-risk (TAR) by phenotype algorithm aggregated across five databases using PheValuator.
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mortality in the target population, the association of the outcome

with mortality, and the shape of the hazard function over follow-

up [4, 8]. The impact of using various algorithms requiring a

second code on incidence rates of death and ingrown toenails is

shown in Figures 3, 4, respectively. A priori, we expected that the

ingrown toenail outcome would likely show limited bias due to

immortal time as there should be almost no increased risk of

death among people diagnosed with ingrown toenails.

Researchers should always consider applying quantitative bias

analysis (QBA) to understand the degree of bias incurred using

any phenotype algorithm in a study. Many authors have provided

guidelines for assessing bias due to immortal time [9, 10]. Liang

et al. provide a useful guide for performing QBA specifically to

inform bias incurred by immortal time for non-fatal outcomes

[11]. The work of Lash et al. provides a useful guide for QBA in

general [12]. PheValuator is a useful tool to determine the

performance characteristics of phenotype algorithms to be

used in QBA calculations.

There are several strengths in the present study. First, this

study developed phenotypes using data from five large datasets

that reflect subjects of a wide range of ages and from various

socioeconomic backgrounds. The approach we used for the

development of the phenotypes in this study uses publicly

available, open-source software, providing the capability for

full result replication. Included in the supplemental

information are the JSON files, which provide fully

reproducible phenotype algorithms. There were also several

limitations to our study, which included the use of

administrative datasets primarily maintained for insurance

billing that are well-known to have significant deficits,

including coding inaccuracies [13]. In addition, the estimation

of performance characteristics using the PheValuator

methodology is dependent on the quality of the data in the

dataset, which can vary substantially [14]. Incomplete signs and

symptoms documentation in the data could affect the accuracy of

the index date. The algorithm validation was performed using a

method, PheValuator, involving predictive modeling rather than

case review. This method does have the advantage of providing

performance characteristics for multiple databases. It also

provides the full set of performance metrics, including

sensitivity and specificity which are rarely provided in

validation studies using case reviews [15]. The results from

PheValuator have also been compared to the results from

previously published validation studies and have demonstrated

excellent agreement [6]. In the algorithms defined with only one

diagnostic code, it was not possible to determine if any of these

were rule-out diagnoses. Lastly, our study observed data from

those subjects who presented for medical attention; those who

did not seek medical attention but had the disease were not

included and may affect the metrics in this study. Those with less

severe disease may also not have sought medical attention.

Conclusion

The work presented here provides evidence for the cost and

benefits of using narrow and broad phenotype algorithms in

epidemiological research. The benefits of a narrow phenotype are

shown in higher positive predictive values for the health

condition of interest, assuring researchers that they are

studying the correct condition. The cost comes from incurring

immortal time into the study design. We have shown this to be a

significant issue when examining severe outcomes such as death

but of minor impact when examining outcomes with low

mortality rates. Researchers with study designs where a

narrow phenotype algorithm is needed might consider

alternative approaches to using a second code, such as

requiring a specific procedure or other treatment within a

very short period following the diagnosis code.
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