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ABSTRACT - Purpose. The early prediction of pharmacokinetic behavior is of paramount importance for 
saving time and resources and for increasing the success of new drug candidates. The steady-state volume of 
distribution (VDss) is one of the key pharmacokinetic parameters required for the design of a suitable dosage 
regimen. The aim of the study is to propose a quantitative structure – pharmacokinetics relationships (QSPkR) 
for VDss of basic drugs. Methods: The data set consists of 216 basic drugs, divided to a modeling (n = 180) and 
external validation set (n = 36). 179 structural and physicochemical descriptors are calculated using validated 
commercial software. Genetic algorithm, stepwise regression and multiple linear regression are applied for 
variable selection and model development. The models are validated by internal and external test sets. 
Results: A number of significant QSPkRs are developed. The most frequently emerged descriptors are used to 
derive the final consensus model for VDss with good explanatory (r2 0.663) and predictive ability (q2

LOO-CV 0.606 
and r2

pred 0.593). The model reveals clear structural features determining VDss of basic drugs which are 
summarized in a short list of criteria for rapid discrimination between drugs with a large and small VDss. 
Conclusions: Descriptors like lipophilicity, fraction ionized as a base at pH 7.4, number of cycles and fused 
aromatic rings, presence of Cl and F atoms contribute positively to VDss, while polarity and presence of strong 
electrophiles have a negative effect. 
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 
Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
  
 
INTRODUCTION 
 
The progress of computer-aided drug design 
techniques has led to an extensively increasing 
number of structures with drug-like properties and 
activities. Unfortunately, only few of them pass 
successfully though all stages of drug development 
and become drugs. In the past, one of the main 
reasons for drug failure was the unfavorable 
pharmacokinetic behavior (absorption, distribution, 
metabolism or excretion – ADME) (1). The 
understanding for the importance of 
pharmacokinetics inspired an intense research 
focused on the early prediction of the ADME 
properties of drug candidates before the expensive 
preclinical and clinical studies. As a result, the drug 
failure due to pharmacokinetics and bioavailability 
problems has fallen markedly from 40% in 1991 to 
10% in 2000 (2). 
 One of the most reliable and widely used 
approaches for ADME prediction is the 
computational (in silico) modeling. It enables 

construction of quantitative structure – pharmaco-
kinetics relationships (QSPkRs) based on molecular 
descriptors. The QSPkR models allow prediction of 
ADME properties even of virtual compounds, 
accelerate the identification of new drug candidates 
and reduce the cost of drug development process.  
 The volume of distribution VD is important 
pharmacokinetic parameter relating the amount of 
the drug in the body A to its plasma concentration, 
C: 

C
AV 

 (1) 
 
It has been defined as a hypothetical volume of 
body fluid that would be required to dissolve the 
total amount of drug at the same concentration as 
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that found in plasma (3).  Three types of volume of 
distribution are classically reported in the literature: 
VD of the central compartment (VDc), VD during 
the terminal phase (VD or VDarea) and VD at 
steady state (VDss). They differ in the times of 
sampling: just after iv administration, during the 
terminal phase of drug disposition, or after reaching 
of steady state, respectively (4). VDss is considered 
as the most reliable indicator for drug distribution in 
the body (5). It determines the half-life of the drug 
and serves as a key parameter for setting up a 
suitable dosage regimen (4, 6).  
 VDss is the most frequently predicted ADME 
parameter and a good number of QSPkR models 
have been published in the last two decades. They 
differ in the size and in the content of the datasets, 
the descriptors used, and the methods for model 
derivation and validation. A few studies concern 
congeneric series of drugs (7 – 10). In general, the 
QSPkRs proposed on congeneric series have a 
higher predictive power as a similar distribution 
behavior is expected. However, these models are 
local models, valid only within the studied series, 
while construction of a global model requires a 
large dataset encompassing diverse chemical 
spaces. The earlier models on diverse datasets are 
based on inconsistent data collected from literature, 
including different types of distribution volume 
(VDc, VD or VDss), following different routes of 
administration (11 – 17). In 2008 Obach et al. (5) 
published the largest and best curated database so 
far containing the major pharmacokinetic 
parameters of 670 drugs, including VDss after iv 
administration. This database was used for the 
development of several successful models for VDss 
prediction (18 – 20).  
 A wide diversity of descriptors is used in the 
models for VD prediction, like lipophilicity of 
drugs, ionization state parameters, constitutional, 
topological, electrotopological, chemical, 
geometrical, quantum chemical descriptors (8 – 20), 
fraction bound to plasma proteins (7, 14, 15, 17), 
VDss in rat and dog (12). The models are derived by 
different statistical and machine learning methods 
as artificial neural networks (ANN) (7, 9, 13), 
multiple linear regression (MLR) (8, 10, 12, 14, 15, 
18, 19), partial least squares (PLS) (10 – 12, 16, 18, 
20), Bayesian neural networks (BNN) (16), 
classification and regression trees (CART) (16), 
mixed determinant analysis – random forest (MDA 
– RF) (17), recursive partitioning classification 

(RPC) (20). 
 Despite of the huge number of descriptors 
used in the QSPkR models for VD prediction, most 
of them contain mainly parameters, characterizing 
drugs lipophilicity (logP, logD and water solubility 
at different pH values, etc.) and the ionization state 
of the molecules (pKa of the base, fraction ionized 
or non-ionized as base or as acid, etc.). A good 
agreement exists on the fact that more lipophilic 
drugs have larger VDsss (7, 11, 14, 15, 17, 18). The 
fraction ionized as a base at pH 7.4 also increases 
VDss, while the fraction ionized as an acid has a 
negative impact (14, 15, 17). All considered 
descriptors discriminate between acids and bases 
however there is no information about the structural 
features affecting VDss. Аccording to the models, 
acids are expected to have small VDss and bases – 
large ones, which is consistent with the 
observations. VDss reflects the drug ability to cross 
membranes and to bind in tissues. The bases have 
high affinity to membrane phospholipids due to 
interactions between the drug cationic centers and 
the phospholipid acidic groups. The basic drugs 
bind to plasma alpha-1-acid glycoprotein and 
albumin with moderate to strong affinity depending 
on lipophilicity and also are accumulated by ion-
trapping into lysosomes. Therefore, bases indeed 
have extensive VDsss (21). Acids have high affinity 
for albumin and the high albumin concentration in 
plasma results in a high plasma protein binding. 
The ionization at physiological pH 7.4 prevents 
their distribution in tissues and in general, acids 
have small VDsss. 
 Obviously, acids and bases follow different 
distribution patterns and it is reasonably to 
construct separate QSPkR models for acids and 
bases in order to identify the main structural 
features governing the value of VDss. There are 
only few reports on separate QSPkR modeling of 
VDss of bases and acids (14, 15, 19). In the studies 
of Ghafourian et al. (14, 15) the separate models 
show lower predictive ability as compared to the 
model on the whole dataset – mainly due to the 
limited number of drugs involved in the study. 
Recently, we developed robust, predictive and easy 
interpretable models for VDss of 132 acidic drugs 
from Obach’s database (5), which revealed the main 
structural features affecting the distribution of 
acidic drugs in the body (19). The present study is 
focused on the relationship between the structure of 
basic drugs and their VDsss.   
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METHODS 
 
Datasets 
The whole dataset used in the present study 
comprised of 216 basic drugs belonging to different 
chemical and therapeutic classes. It was collected 
from Obach’s database presenting data for the main 
pharmacokinetic parameters of 670 drugs following 
iv administration in human (5). In our previous 
study (19) we classified the molecules as acids, 
bases, neutral and zwitterions on the basis of their 
extent of ionization at the physiological pH 7.4. The 
fractions of a drug ionized as an acid (fA) and as a 
base (fB) were calculated according to the 
equations:  

)4.7pK(A a101

1
f 


 (2) 

)pK4.7(B a101

1
f 


 (3) 
 

 The mol-files of the drugs were derived and 
verified from several public databases (DrugBank 

(22), Chemical Book (23), Japan Chemical 
Substance Dictionary (24) and ChEBI (25). The pKa 
values were calculated by ACD/LogD version 9.08 
software (Advanced Chemistry Development Inc., 
Ontario, Canada). In case of multiple acidic/basic 
centers, the pKa of the strongest one was 
considered. A drug was defined as a base, if fB > 
0.02 and fA = 0. 
 The whole dataset was divided randomly into 
modeling and external validation set. To this end 
the molecules were arranged in an ascending order 
according to their VDss and one of every six drugs 
was allocated to a different subset. Thus, six 
subsets, each comprising 36 drugs, were generated. 
One of the subsets (randomly) was excluded as an 
external validation set and later was used for 
assessment of the predictive ability of the final 
model. The remaining five subsets composed the 
modeling set. In turn, each subset in the modeling 
set was used once as a test set for the model, 
developed on the training set, consisting of the 
remaining 4 subsets (leave-group-out validation). In 
summary, five training sets, five test sets and one 
external validation set were used in the study (Table 
1). The experimental VDss values were 
logarithmically transformed in order to get close to 
a normal distribution. 
 

Table 1. Training, test and external validation sets 
used in the study. 
 
Training set Subsets included Test set 
A 2 + 4 + 5 + 6 1 
B 1 + 4 + 5 + 6 2 
C 1 + 2 +  5 + 6 4 
D 1 + 2 +  4 + 6 5 
E 1 + 2 +  4 + 5 6 
External validation 
set 

3 - 

 
 
Molecular Descriptors and Variable Selection 
The chemical structures were described by 179 
molecular descriptors calculated by ACD/LogD 
version 9.08 (Advanced Chemical Development, 
Inc.) and MDL QSAR version 2.2 (MDL 
Information Systems Inc, San Leandro, CA). The 
descriptors included electrotopological, molecular 
connectivity and kappa shape indices (26, 27), 

descriptive properties (number of specific atoms 
and groups, rings, circles, hydrogen-bond donors 
and acceptors, etc.), molecular 2D (molecular 
weight, logP, logD7.4, PSA, etc.) and 3D properties 
(dipole moment, volume, surface, etc.).  
 A three-step variable selection procedure was 
applied to identify the most significant predictors. 
Initially, for every training set, descriptors with 
non-zero values for less than three molecules were 
eliminated. Next, descriptors were selected by 
genetic algorithm (GA) (28). Finally, the selected 
descriptors (usually less than 15) entered a forward 
stepwise linear regression with F-to-enter 4.00 and 
F-to-remove 3.99. Both genetic and stepwise 
regression algorithms were used as implemented in 
the MDL QSAR package. 
 
Generation of QSPkR Models 
The QSPkR models were developed by multiple 
linear regression (MLR) technique. Using different 
combinations of descriptors, a number of QSPkR 
models were constructed for each training set. 
Drugs which logVDss values were predicted with 
residuals not obeying the normal distribution law 
were considered as outliers. They were removed 
from the training sets and the models were rebuilt. 
The models were primarily assessed by explained 
variance r2 given by the equation: 
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where 
iobsssVD

,
 and 

icalcssVD
,

are the observed and 

the calculated by the model values of VDss for the 
ith drug and 

meanobsssVD
,

log – the mean observed 

logVDss value for the set. Only models with r2 > 0.6 
were subjected to validation. The most significant 
descriptors involved in the best models were further 
used for development of a consensus QSPkR model 
for logVDss prediction.  
 
Validation of the Models 
The generated QSPkR models were validated by 
randomization test, leave-one-out cross-validation 
(LOO-CV) and leave-group-out validation. The 
model performance was assessed by cross-validated 

coefficient q2
LOO-CV, prediction coefficient 2

predr  for 

the test set, mean fold error of prediction MFEP and 
accuracy: 
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Where 

i,obsssVD  and
i,predssVD are the observed and 

the predicted by the model values of VDss for the ith 
drug in the training set or in the test set, and 

mean,obsssVDlog – the mean observed logVDss value. 

n

10
MFEP

i,predssi,obsss VDlogVDlog 


  (7) 

 
 Accuracy of prediction was assessed as a 
percent of drugs with VDss predicted with less than 
two- or three-fold error.   
RESULTS 

 
Analysis of the Datasets 
The dataset used in the present study consisted of 
216 basic drugs with diverse chemical structure and 
therapeutic usage. The structures covered a broad 
chemical space: the molecular weight was in the 
range 129 – 1431 g/mol (mean 360, median 324), 
logP varied between -5.8 and 8.9 (mean 2.53, 
median 2.83), and logD7.4 – between -8.7 and 6.9 
(mean 1.0, median 1.28). The fraction ionized as a 
base at the physiological pH 7.4 fB ranged between 
0.015 and 1.00 with 60% of the drugs almost 
completely ionized (with fB > 0.95). The VDsss 
covered a wide interval from 0.073 to 140 L/kg 
(mean 6.08, median 2.5) and logVDsss showed a 
normal distribution (mean 0.41, median 0.40). The 
unbound fractions fu were available for 182 drugs 
and suggested moderate to high plasma protein 
binding with fu  0.1 (plasma protein binding 
exceeding 90%) for 32% of the drugs, and fu  0.9 
(negligible plasma protein binding) for 8% of the 
drugs. 
 In order to develop robust and predictive 
QSPkR models, the whole dataset was divided into 
two subsets – an external validation set (36 drugs) 
and a modeling set (180 drugs). In turn, the 
modeling set was divided into five training and five 
test sets as described in Methods. The logVDsss had 
normal distribution for all subsets (Figure 1). 
 
QSPkR Models for LogVDss  
Numerous significant models were generated on the 
five training sets using different initial 
combinations of descriptors. The models were 
validated as described in Methods. The best models 
for every training set in terms of explained variance 
r2, cross-validation coefficient on the training set 
q2

LOO-CV, prediction coefficient for the test set r2
pred, 

mean fold error of prediction MFEP, and accuracy 
are given in Table 2. 
 Although the training sets differed of each 
other by 20% of the included drugs, the generated 
QSPkR models were very similar in terms of 
selected variables, statistics and outliers. The 
explained variance of the best models r2 varied 
between 0.635 and 0.700 (mean 0.666).  The values 
of q2

LOO-CV and r2
pred ranging from 0.578 to 0.664 

(mean 0.604) and from 0.444 to 0.602 (mean 
0.538), respectively, were indicative for the good 
predictive ability of the models. The values of r2

rand
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a. b. 

Figure 1. Histogram of logVDss values: a. for the training sets; b. for the test and external validation sets  
 
 
Тable 2. QSPkR models developed on the five training sets and validated by the corresponding test sets 
Training 
set 

Model r2 2
CVLOOq 

2
predr

 
MFEP Accuracy 

% 
A 

556.0)007.0(027.0

min)031.0(175.0)004.0(021.0

)036.0(081.0)012.0(056.0

)102.0(627.0log)014.0(117.0log







ncirc

GSsF

SaaaCSsCl

fPVD B
ss

 
0.652 0.578 0.505 2.41 64 

outliers from the training set: azythromycin, chloroquine, mibefradil, topixantrone, triamterene  

B 

292.0SdsN)012.0(070.0minG)029.0(150.0

acnt_SsF)045.0(241.0SsCl)012.0(058.0

ncirc)006.0(033.0f)097.0(523.0

Dipole)011.0(034.0Plog)013.0(113.0VDlog

B

ss





 0.667 0.594 0.564 2.26 50 

outliers from the training set: azythromycin, cloroquine, netilmicin, procyclidine, pyrimethamine, topixantrone, 
triamterene 
C 

589.0SaaaC)035.0(077.0

SsCl)013.0(041.0acnt_SsF)052.0(248.0

f)111.0(648.09xp)022.0(098.0

minG)034.0(208.0Plog)015.0(129.0VDlog

B

ss





 0.635 0.588 0.574 2.12 53 

outliers from the training set: azythromycin, chloroquine, fentanyl, maprotiline, mibefradil, netilmicin, 
tolterodine;  
outliers from the test set: topixantrone, triamterene 
D 

126.0acnt_SaaN)029.0(085.0SssssC)025.0(071.0

f)094.0(494.0SsCl)011.0(053.010xch)53.3(06.19

Volume)0003.0(002.0Plog)013.0(157.0VDlog

B

ss




 0.700 0.664 0.444 2.25 58 

outliers from the training set: azimilide, azythromycin, chloroquine, disopyramide, oxybutynin, procyclidine, 
tamsulosin, topixantrone, triamterene; outliers from the test set: pyrimethamine, repinotan, vinblastine 
E 

317.08xvp)035.0(145.0

acnt_SsssCH)011.0(040.0SddssS)045.0(139.0

acnt_SaaaC)035.0(079.0Dipole)013.0(052.0

acnt_SsCl)084.0(387.0f)109.0(677.0

10xvch)26.14(78.34Plog)016.0(098.0VDlog

B

ss







 0.656 0.594 0.602 1.93 71 

outliers from the training set: melperone, oxybutynin, procyclidine, topixantrone, triamterene, vinblastine;  
outliers from the test set: azythromycin, chloroquine  
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Table 3. The most frequently emerging descriptors in the QSPkR models for logVDss 

Descriptor Encoded structural information Effect on VDss Frequency,% 
logP, logD7.4 Lipophilicity parameter Positive 100 
fB Fraction of the drug ionized as a base at pH 7.4 Positive 100 
SsCl  
SsCl_acnt 

Sum of all Cl E-state values, or  
count of all Cl atoms in the molecule  

Positive 
100 

SaaaC  
SaaaC_acnt 

Sum of all aaaC (aromatic C in fused rings) E-state 
values, or count of all aaaC groups in the molecule 

Positive 
59 

SsF 
SsF_acnt 

Sum of all F E-state values, 
or count of all F atoms in the molecule  

Positive 
53 

xch10 
xvch10 

Simple or valence 10-order chain connectivity index 
(presence of 10-member ring system) 

Positive 
53 

Dipole Dipole moment of the molecule Negative 53 
SddssS 
SddssS_acnt 

Sum of all ddssS (sulphonyl) E-state values, 
or count of all ddssS groups in the molecule  

Negative 
 

47 

Gmin  
Gmax 

Minimum E-state value in the molecule  
Maximum E-state value in the molecule  

Positive 
Negative 

47 

ncirc Number of cycles Positive 29 
SssssC 
SssssC_acnt  

Sum of all ssssC (quaternary C) E-state values,  
or count of all ssssC atoms in the molecule 

Positive 
23 

Surface, 
Volume 

 Negative 
18 

SdsN Sum of all =N-  E-state values Negative 18 
SaaN_acnt Count of all aaN (aromatic N) groups Positive 18 
SsssCH_acnt Count of all sssCH (tertiary C) groups in the molecule Negative 12 
xp9 Simple 9th order path connectivity index Positive 12 
SdssC Sum of all dssC E-state values in the molecule  Positive 6 
xvp8 Valence 8th order path connectivity  index Positive 6 
 
 
(between 0.051 and 0.072, mean 0.057) suggested 
that no chance correlations were developed. No 
intercorrelation between the descriptors in the 
models was observed (r < 0.65). Several drugs were 
identified as outliers by almost all of the models 
(azythromycin, chloroquine, pyrimethamine, 
topixantrone, triamterene. The most frequently 
emerged descriptors in the best three models for 
each training set are listed in Table 3. For sets D 

and E four best models were taken as they had very 
close statistics. 
 The 27 most frequently emerging descriptors 
were used for development of the final QSPkR 
model on the whole modeling dataset comprising 
180 basic drugs. Eight drugs were identified as 
outliers, and their removal resulted in the following 
consensus model: 

 
Consensus model  

366.0SdssC)032.0(071.0acnt_SaaaC)031.0(079.0minG)029.0(155.0

acnt_SsF)046.0(254.0acnt_SsCl)065.0(333.0f)090.0(565.0

ncirc)006.0(026.0Dipole)011.0(040.0Plog)013.0(124.0VDlog

B

яя






 
n = 172;  r2 = 0.663;  2

CVLOOq  = 0.606;  F = 35.43;  2
randr = 0.048 

 
Outliers: azythromycin, chloroquine, mibefradil, netilmicin, procyclidine, pyrimethamine, 
topixantrone, triamterene 
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Evaluation of the Predictive Ability of the 
QSPkR Models 
The predictive ability of the best proposed QSPkR 
models for logVDss of basic drugs was assessed 
using the external validation set. The predictive 
statistics of the models is summarized in Table 4. 
The plot of predicted by the consensus model 
versus the experimental values of logVDss for the 
external validation set is presented in Figure 2. 
The values of r2

pred ranged from 0.529 to 0.593 
(mean 0.555) and MFEP was between 2.24 and 
2.38 (mean 2.31). The predicted values for VDss 
were within the two fold error for 53% of the drugs 
(on average). As expected, the consensus model 
showed the best performance. 

 
 
Figure 2. Predicted by the consensus model vs. 
experimental logVDss values for the external validation 
set. The four outliers are shown as blank circles. The 
lines and the dotted lines represent the twofold and three 
fold error limits. 

 
Table 4 Predictive statistics of the best QSPkR models for logVDss of basic drugs evaluated by the external 
validation set (n = 36) 
Model 2

predr
 

MFEP Accuracy, % Outliers in the external validation set 

FEP < 2 
FEP < 

3 
Model 1 0.536 2.38 53 78 cetrorelix, pentamidine, sildenafil, ziprasidone 
Model 2 0.579 2.24 44 88 cetrorelix, pentamidine, sildenafil, ziprasidone 
Model 3 0.540 2.30 59 75 cetrorelix, pentamidine, sildenafil, ziprasidone 
Model 4 0.551 2.35 57 74 pentamidine 
Model 5 0.529 2.37 52 76 cetrorelix, pentamidine, ziprasidone 
Consensus 
model  

0.593 2.25 
50 88 

cetrorelix, pentamidine, sildenafil, ziprasidone 

 
 
Criteria for VDss Prediction of Basic Drugs 
The descriptors involved in the consensus model 
were used to propose a number of criteria for 
prediction of VDss of basic drugs. To this end the 
drugs were classified into three groups: with small 
(< 0.7L/kg), moderate (between 0.7 and 2L/kg), and 
large VDss (> 2L/kg). A cutoff value for each 
descriptor could be defined in order to distinguish 
between drugs with small and large VDss. The 
cutoffs for large VDss are listed in Table 5.   
 For most descriptors, the number of 
molecules meeting these criteria in each group 
increased as VDss increased (Figure 3). However, 
this was not true for fB and SdssC.  Drugs with 
small and large VDss had high values for fB. 

According to the consensus model, the descriptor 
SdssC had a negative contribution in VDss, i.e. it 
was expected that drugs with negative values for 
SdssC would have large VDss. However, the 

distribution of the molecules with SdssC < 0 
followed the opposite trend.   
 The remaining seven criteria were applied to 
the studied dataset. The small VDss group 
comprised 27 drugs with low lipophilicity (56% 
with  logP < 0),  small  number of cycles,  negative 
 
   Table 5. Criteria for a large VDss of basic drugs 

Descriptor Cutoff for VDss > 2 L/kg 
logP > 3 
fB  > 0.95 
Dipole  < 4 
ncirc  > 4 
Gmin  > 0 
SdssC  < 0 
aaaC_acnt > 0 
Cl_acnt > 0 
F_acnt > 0 
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Figure 3. Percentage of drugs with small (blank), average (shaded) and large (black) 
VDss meeting the proposed criteria for VDss prediction 

 
Gmin for 93% of the drugs, high polarity (high 
Dipole), negligible content of Cl, F or aaaC atoms. 
The large VDss group consisted of 120 drugs. Most 
of them showed high lipophilicity (with average 
logP = 3.31), 44% of the structures contained more 
than 4 cycles, 40% of drugs had positive value of 
Gmin, 68% were fairly polar with Dipole < 4, and 
almost the half contained one or more Cl, F or aaaC 
atoms. The distribution of the drugs with small, 
moderate and large VDss (in %) according to the 
number of met criteria is shown in Figure 4. None 
drug met all seven criteria. 

 It is evident that the criteria for large VDss 
defined in the present study are good enough to 
distinguish between drugs with small and large 
VDss. Sixty three percent of the drugs with small 
VDss meet neither criterion for large VDss. At the 
other extreme, 52% of the drugs with large VDss 

fulfill at least three criteria. Therefore, basic drugs 
meeting at least three of the following criteria: logP 
> 3, ncirc > 4, Gmin > 0, Dipole < 4, presence of Cl, 
F or/and aaaC atom are expected to have VDss > 2 
L/kg. Oppositely, molecules which meet neither 
criterion should have VDss < 0.7 L/kg. 

 
 

 
 
Figure 4. Distribution of the drugs (in %) according to the number of met criteria 
for high VDss 
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DISCUSSION 
 
In general, the QSPkR models differ from the 
classical QSAR models in many aspects (29 – 32). 
First, the QSPkR models operate with in vivo data, 
collected from different labs, often using a wide 
variety of assay conditions. Next, the sets of 
compounds used in ADME prediction consist of 
structurally diverse molecules, having diverse 
pharmacokinetic and pharmacodynamic behavior. 
Finally, there is a trade-off between simple, ease to 
interpret models with lower predictivity and more 
complex “black box” models with better predictive 
ability. Despite these challenges, there has been no 
respite in the development of newer and better in 
silico models for ADME prediction. 
 The present study is focused on the 
development of QSPkR models for VDss of basic 
drugs. A dataset consisted of 216 molecules 
covering a wide chemical and biological space. The 
chemical structures were described with 179 
descriptors. The VDsss were transformed to logVDss 
in order to approach a normal distribution. A three-
step variable selection was applied and a number of 
QSPkR models were proposed using MLR. In order 
to obtain robust models with high predictive ability, 
a rigorous validation procedure was applied, as 
recommended by Tropsha et al. (33). To this end 
the dataset was separated into six subsets of 36 
drugs each. One of the subset was defined as an 
external validation set, the remaining five – as a 
modeling set. In turn, the modeling set was divided 
into training and test sets in a ratio 4:1 in five 
different combinations. The QSPkR models were 
developed on the training sets and validated by the 
test sets. The most frequently emerged descriptors 
entered a step-wise selection and a consensus 
QSPkR model was developed. All models were 
evaluated by the external validation set and showed 
very good predictive ability (r2

pred in the range 0.529 
– 0.579; MFEP between 2.24 and 2.38). As 
expected, the consensus model performed best: r2 
0.663, q2

LOO-CV 0.606, r2
pred 0.593, MFEP 2.25. The 

values of both q2
LOO-CV and r2

pred exceeded the value 
of 0.5 accepted as a threshold for predictive models 
in QSAR (34).  
  The final consensus model contains 
descriptors with clear physical sense. It reveals the 
most important structural features determining the 
value of VDss for basic drugs. The descriptor logP, 
encoding the lipophilicity of the molecule, appears 

to be the most significant determinant of VDss. It is 
responsible for about 50% of the explained 
variance. There are 20 drugs with negative logP in 
the dataset. Seventeen of them have small VDss (< 
0.7L/kg). Oppositely, 10 of the 14 most lipophilic 
drugs (with logP > 5) have large VDss (> 2L/kg). 
The positive effect of logP on VDss has long been 
recognized (35). This is not surprising as a good 
lipophilicity is required for many processes 
involved in drug distribution: membrane 
permeability, binding to tissue components, 
accumulation in mast cells, etc.  
 The descriptor fB indicates the fraction 
ionized as a base at pH 7.4. Drugs with high fB 
values have large VDss. The presence of a strong 
basic center enables the ion-pair interactions with 
the charged acidic head groups of membrane 
phospholipids, the binding to phosphatidylserine in 
the cell membranes in several tissues and the ion 
trapping in lysosomes (21). The descriptor Dipole 
represents the dipole moment of the molecule – a 
measure of polarity. According to the consensus 
model, it has a negative contribution in VDss. This 
means that polar drugs should have small VDsss, as 
it is observed.  
 The molecular descriptor ncirc is equal to the 
total number of cycles in the molecular graph. Оne 
cycle can be counted several times if it is fused with 
another cycles. For example, for biphenyl ncirc = 2, 
while for naphthalene ncirc = 3 (two cycles with 6 
edges and one common cycle with 10 edges). At 
equal composition, molecules with higher value of 
ncirc have lower volume and surface. Obviously, 
ncirc reflects the compactness of the molecule – 
higher compactness is favorable for both membrane 
permeation and tissue binding. The positive 
contribution to VDss, according to the consensus 
model, means that the more compact drugs should 
have larger VDss.  
 Gmin coincides with the lowest E-state value 
in the molecule. The E-state value provides 
information about the electron accessibility to the 
atom. Terminal electronegative atoms are easily 
accessible and have higher E-state values, while 
atoms connected with electronegative ones (strong 
electrophiles) have lower values (26). The positive 
correlation between Gmin and VDss means that drugs 
containing electrophile groups (CF3, SO2, CO, etc.) 
have small VDss.  
 The descriptor SdssC encodes the presence 
and electronic state of a carbon atom type –C= 
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(represented in the dataset as >C=O, >C=C< or 
>C=N–). Depending on the substituent, it can take 
positive as well as negative values. Molecules with 
many electronegative atoms and groups have 
negative values, while the prevalence of aromatic 
and aliphatic moieties results in positive ones. 
According to the consensus model, drugs with 
negative SdssC have large VDss.  
 The presence of Cl and F atoms contributes to 
the lipophilicity of the molecule, and also they 
might serve as hydrogen-bond acceptors. The atom 
type aaaC represents an aromatic C-atom connected 
with three aromatic C-atoms, i.e. belonging to two 
fused aromatic rings. The presence of such atoms 
increases the VDss.  
 The clear physical sense of the descriptors 
involved in the consensus model allowed us to 
define a list of criteria for discrimination between 
drugs with small and large VDsss. Values for logP 

higher than 3, more than 4 circles in the molecule, 
positive Gmin values, dipole moments up to 4 D and 
the presence of  Cl, F or/and fused aromatic rings 
are prerequisites for large VDss. Drugs which meet 
neither criterion are expected to have small VDss (< 
0.7L/kg), while those meeting three or more criteria 
have VDss > 2L/kg. Applying these criteria to drugs 
with small (27 drugs) and large VDss (120 drugs) 
from the tested dataset, only six of them were 
mispredicted: two were overestimated and four 
were underestimated.  
 Eight drugs were identified as outliers of the 
consensus model from the modeling set and another 
four – from the external evaluation set (Table 6). 
Their incompatibility with the model could be due 
to several reasons: unique structural features, 
unusual distribution patterns, errors in molecule 
presentation or in the VDss values. 

 
 
Table 6 Outliers from the consensus model.  
Outlier logP VDss,obs, L/kg VDss,pred, L/kg Number of met 

criteria 
netilmicin -1.9 0.073 0.42  0 
cetrorelix 2.62 0.39 19.2  3 
pyrimethamine 2.75 0.43 2.67  2 
procyclidine 3.93 0.74 4.26  2 
ziprasidone 4 1 15.5  6 
sildenafil 2.28 1.4 0.20   1 
mibefradil 6.29 3.1 16.5  4 
triamterene 0.18 13 0.64  3 
azithromycin 3.33 33 2.14  2 
pentamidine 2.47 53 4.52  1 
topixantrone 1.31 57 4.51  3 
chloroquine 3.69 140 9.5  4 
 
 
 The search in the literature showed that 
netilmicin and pyrimethamine are not real outliers. 
The VDss value of netilmicin in the Obach’s 
database (5) is 0.073 L/kg. However, the value in 
the original reference is 0.2 – 0.3 L/kg (36) which is 
close to our prediction of 0.42 L/kg. An even higher 
value of 0.68 L/kg was announced by Wenk et al. 
(37). Similarly, the VDss value of pyrimethamine in 
the Obach’s database is 0.43 L/kg, while others 
report for VDss ranging between 2.12 and 3.06 L/kg 
(38). Our predicted value of 2.67 L/kg falls in this 
range. Cetrorelix is highly overpredicted by the 

model, due to the presence of three positive criteria 
(a large number of cycles, presence of Cl and aaaC 
atoms). This drug has an extremely high molecular 
weight of 1431 g/mol which embarrasses the 
membrane permeability and localizes the drug in 
plasma where it is 86% bound to plasma proteins 
(5). The experimental VDss

 value of procyclidine is 
0.74 L/kg (39) and seems unlikely small 
considering drug’s high lipophilicity (logP 3.93). 
Ziprasidone meets all 6 criteria for large VDss, but 
its observed value is only 1 L/kg. It is extensively 
metabolized in liver (40) and is almost completely 
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bound to plasma proteins (fu 0.0012) (5), which 
locate it mainly in the central compartment. The 
presence of a sulfonyl group in the molecule of 
sildenafil results in a high negative value of Gmin, 
which in combination with the small ionized 
fraction (fB = 0.04) predicts 0.2 L/kg VDss instead 
of the observed 1.4 L/kg. Mibefradil is correctly 
predicted as a drug with large VDss, and the large 
difference between the observed and predicted 
values could be explained by the extremely high 
lipophilicity (logP 6.29). The last five outliers have 
extremely large VDss

 (> 10 L/kg) implying 
considerable tissue accumulation and unique 
distribution patterns not captured by the models. 
Triamterene meets three criteria for large VDss but 
its low lipophilicity (logP 0.18) results in a small 
predicted value. An extensive binding to tissues in 
the central compartment was observed in rat leading 
to very slow elimination (41). This is consistent 
with the extensive hepatic metabolism and biliary 
excretion of the drug (42). Azythromycin meets 
only two criteria for large VDss and is 
underpredicted by the model. The presence of two 
basic centers in the molecule was considered as the 
main factor for its extremely large VDss (21). 
Additionally, there is a plenty of hydrogen-bond 
donors and acceptors in the molecule involved in 
tissue binding. Extensive uptake and slow release 
from tissues was suggested as the main reasons for 
the long half-life of the drug (43). High 
concentrations were observed in prostate, tonsils 
and other tissues (44). Pentamidine meets only one 
criterion; however it is moderately lipophilic and 
also has two equivalent basic centers. A high 
accumulation of the in rat liver lysosomes was 
reported for this drug (45). As a diamine substance, 
pentamidine is a substrate of the organic cation 
transporters facilitating the high distribution in 
kidneys, liver and bile (46). Topixantrone meets 
three criteria but is also underpredicted – probably 
due to the unfavorable low logP. The presence of 
two basic centers presupposes specific interactions 
in the cell membranes or tissues. A prominent 
affinity of the drug for DNA has been also 
suggested (47). Chloroquine is the drug with the 
largest VDss in the dataset and it is predicted as a 
large VDss drug. The great difference between the 
observed and predicted values makes it outlier. Ion 
trapping was suggested as the main factor for 
chloroquine accumulation in tissues (48). Very high 
concentrations were observed in rat kidneys, liver, 

spleen and lung with a tissue to blood ratio close to 
300 (49). A remarkable affinity for melanin in skin 
and eye (mediated through a charge transfer 
process) and slow release from the pigmented 
tissues was suggested (50). 
 
CONCLUSIONS 
 
The present study presents a set of statistically 
significant, predictive and interpretable QSPkR 
models for VDss of basic drugs. The best of them, 
the consensus model, allows the prediction of 50% 
of the drugs in an external test set with less than 2-
fold error, and 88% – with   less than 3-fold error. 
The descriptors involved in the model reveal clear 
structural features determining the distribution of 
basic drugs.  The lipophilicity, the ionization at pH 
7.4, the presence of fused rings, Cl and F atoms 
contribute positively to VDss, while the polarity of 
the molecule and the presence of strong 
electrophiles have a negative effect. A list of 
criteria is proposed for discrimination between 
drugs with small and large VDss. 
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