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Objective: Hernia recurrence and surgical site infection (SSI) are grave complications in
Abdominal Wall Reconstruction (AWR). This study aimed to develop multicenter deep
learning models (DLMs) developed for predicting surgical complexity, using Component
Separation Technique (CST) as a surrogate, and the risk of surgical site infections (SSI) in
AWR, using preoperative computed tomography (CT) images.

Methods:Multicenter models were created using deidentified CT images from two tertiary
AWR centers. The models were developed with ResNet-18 architecture. Model
performance was reported as accuracy and AUC.

Results: The CST model underperformed with an AUC of 0.569, while the SSI model
exhibited strong performance with an AUC of 0.898.

Conclusion: The study demonstrated the successful development of a multicenter DLM
for SSI prediction in AWR, highlighting the impact of patient factors over surgical practice
variability in predicting SSIs with DLMs. The CSTmodel’s prediction remained challenging,
which we hypothesize reflects the subjective nature of surgical decisions and varying
institutional practices. Our findings underscore the potential of AI-enhanced surgical risk
calculators to risk stratify patients and potentially improve patient outcomes.

Keywords: artificial intelligence, ventral hernia repair, quality improvement, prediction model, component
separation, deep learning model

INTRODUCTION

Recent advances in artificial intelligence (AI) have demonstrated remarkable capabilities in the
diagnosis and characterization of pathologies through computed tomography (CT) images,
underscoring its potential as an indispensable tool in the surgical decision-making process [1–4].
Particularly in abdominal wall reconstruction (AWR), AI’s predictive power promises to enhance
operative planning and patient counseling, thus potentially improving the overall quality of care. In
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prior research on AWR, our team successfully developed and
internally validated image-based deep learning models (DLMs)
designed to anticipate the level of surgical complexity and the risk
of surgical site infections (SSI) [5]. This innovation was the first of
its kind, utilizing preoperative CT imaging to foresee the
likelihood of requiring a component separation technique
(CST), which is a proxy for operative complexity, and
predicting surgical site infection (SSI).

The AI model’s proficiency in drawing from preoperative
imaging to predict intraoperative events and postoperative
outcomes signals a leap toward personalized surgical risk
assessment and precision medicine that has been lacking in
the field [1, 2, 6, 7]. First, AI in AWR will help surgeons
identify patients who are at risk for a complex surgical
operation in addition to postoperative complications.
Successful implementation of such a model will allow
appropriate triage of the patient to the proper surgeon,
whether that is local to them, or at a tertiary hernia center.
Additionally, the surgeon will be able to evaluate each patient’s
preoperative risk of complications, including SSI, and therefore
be better able to counsel patients, obtain preoperative
optimization, and prepare for intraoperative decision making.
Particularly in AWR, this means accomplishing a low recurrence
rate and low rate of postoperative surgical site occurences.
Achieving these outcomes not only benefits the patient but
also the hospital system as a whole [8]. The financial cost of
complications in AWR is staggering, and reducing recurrence
rates by 1% was estimated to save $139.9 million annually [8–10].
Given the annual incidence of around 611,000 AWR cases,
optimization of outcomes has the potential to greatly reduce
hospital resource utilization in the United States [9–12]. As
previously discussed, the push for establishing AWR tertiary
centers is ongoing [13–16], but empowering community
general surgeons and equipping specialists alike with tools to
optimize outcomes will have far reaching benefits.

The true test of any AI-based model’s utility and
generalizability lies in its ability to obtain external validity
[17]. This is the foundation to evaluate the transferability and
reliability of the DLMs predictions to external cohorts and
ensures that the models perform well when confronted with
the variability inherent to different surgical practices and
patient populations [7]. Therefore, the aim of the current
study was to construct a multicenter model and test its
performance.

METHODS

Study Design
Study design and result reporting were based on the Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) reporting guidelines [18].
With institutional review board approval and a joint data
sharing agreement, a multicenter DLM was developed. One
center used the original CST and SSI images employed by
Elhage et al [5] in the development of an internally validated
model. The other center’s images were obtained from a cohort of

75 patients, who were treated by an AWR specialist at a tertiary
center in a different region of the United States. Both patient
groups underwent preoptimization including smoking cessation
for a minimum of 4 weeks, preoperative weight-loss, and
reduction of HgbA1c to less than 7.2 mg/dL [19, 20]. Patients
whose CT scans with scatter (secondary to orthopedic
prosthetics, for example,) that limited the algorithm’s
interpretation of the image were excluded from model
training. Additionally, those who had a chemical component
relaxation with botulinum toxin A injection were excluded, as this
would alter the rate of CST performed on large, loss of domain,
hernias. A CST was either an anterior or poster myofascial release
that was either unilateral or bilateral. CST technique and
algorithm varied between institutions [21, 22]. Both
institutions perform a step-up approach of an anterior or
posterior CST. The patients were reported as having a CST if
any portion of the CST procedure was performed, even if a full
musculofascial release was not performed. SSI was defined as a
deep or superficial wound infection. A deep infection included a
deep space or mesh infection, whereas a superficial infection
included a subcutaneous infection or cellulitis [23].

Development and Validation of DLM
CST and SSI prediction models were built from the original
internal dataset with the established ResNet-18 architecture using
PyTorch software version 1.13.1 [24]. The model architecture is
comprised of 18 unique layers that include the initial
convolutional layer, four sets of four convolutional layers of
similar filter size, and finally a fully connected layer. ResNet-
18 architecture uses the stochastic gradient descent optimizer and
the sparse binary cross-entropy loss function for model training
[25]. Finally, transfer learning was performed using pretrained
model weights for ResNet-18 on the ImageNet database.

Model consistency was assessed using Leave-One-Out Cross-
Validation (LOOCV) and k-fold cross-validation across multiple
training runs, which provides less biased assessment than the
traditional test:train split [26]. Specifically, LOOCV involves a
series of training runs that equals the number of events. The
model sequentially leaves one event out, trains the model on the
other events, and tests the newly trained model on the left-out
event. This is repeated until all events are tested. The results of the
predictions are then averaged. This was performed for the CST
and SSI models separately.

DLM Predictions and Evaluation
Statistical analysis was performed using Python version 3.7.1 by a
data scientist. For internal validation, an 80:20 train:validation
split was used. The models were assessed for discernibility and
compared by training and validation accuracy, as well as the
validation AUC score, across five training runs [27].

RESULTS

Cohort Description
The internal CST sample had 297 patients (97 underwent CST).
The internal SSI sample had 362 patients (77 with an SSI). The
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external cohort had 75 patients. Of which, 48 patients underwent
CST, and 13 patients developed an SSI.

Leave-One-Out Cross-Validation
To build the DLMs with the ResNet-18 Architecture, the patients
were divided into cohorts CST and SSI as described. LOOCV
revealed that both models showed good performance. The CST
model had an overall classification accuracy of 75% of cases. SSI
performed better with 94.65% accuracy across the dataset.

Pooled Multicenter Cross-Validation
The internal and external combined cohort had 297 patients in
the CSTmodel and 362 patients in the SSI model. The CSTmodel
consisted of 237 internal patients and 60 external patients, with
77 and 38 CSTs in each group, respectively. The SSI model
consisted of 300 internal patients and 62 external patients,
with 64 and 11 SSIs in each group, respectively (Table 1).

For internal validation, after an 80:20 train:test split, the CST
pooled cohort had training accuracy of 91.26%, validation
accuracy of 39.53%, and an AUC of 0.569 (Figure 1). the
sensitivity was 41.94% and specificity of 67.77%. The SSI
performed better with training accuracy of 97.92%, validation
accuracy of 88.61%, AUC of 0.898 (Figure 2), sensitivity of
55.56%, and specificity of 95.65%.

DISCUSSION

This study describes the first known efforts to create and validate
multicenter DLMs using AI to predict surgical complexity and
postoperative outcomes. The results show proof of concept for
multicenter development of image-based DLMs. While we have
previously developed and demonstrated DLMs’ ability to predict
intraoperative and postoperative outcomes, external validation
has not been performed [5, 28]. A multicenter model was
developed to evaluate whether pooled training and analysis
would improve the models’ performance. While the CST
model showed poor performance with a validation accuracy of
39.53% and an AUC of 0.568, the SSI model was more promising
with a validation accuracy of 88.61% and an AUC of 0.879.

In general, external validation of predictive models is rarely
described in the literature with only 5% of the approximately
85,000 prediction model publications on PubMed including some
form of external validation [17, 29]. Specifically, many commonly
used AWR risk stratification tools lack external validation [7]. To
temper the recent excitement of using AI in surgical decision-
making, Loftus et al recently called for more rigorous external
validation, especially for AI prediction models [1]. This study was
conducted to help address this evident gap in the literature.

Creating an externally validated DLM has many benefits,
namely, its ability to become an advanced surgical risk
calculator to provide personalized and informed patient
counseling. There are currently several surgical risk calculators
for AWR [7, 30]. The group at Carolinas Medical Center has
previously published work aimed at predicting outcomes and
patient centered care through the Carolinas Equation for
Determining Associated Risk (CeDAR) application, which
identifies patients that are at risk of wound complications after
AWR along with their predicted costs [7, 31]. Unlike DLMs, this
app requires human input to estimate risk [31]. Our group has
also used volumetric assessment of CT scans to estimate surgical
risk [32, 33]. The limitation to this method is the time and labor
involved, as well as the subjectivity in data collection. DLMs can
improve a surgeon’s predictive ability and aid in surgical
planning and patient counseling [1, 3]. The end goal of
DLMs is not to replace a surgeon’s clinical judgment, but
rather augment it [1, 2].

TABLE 1 | Cohort data.

Overal Internal Patients External Patients

CST Sample 297 237 (79.8%) 60 (20.2%)
CST Yesa 115 77 (67.0%) 38 (33.0%)
SSI Sample 362 300 (82.9%) 62 (17.1%)
SSI Yesa 75 64 (85.3%) 11 (14.7%)

aPatients who required CST or developed SSI of the entire cohort of images reviewed.
Note: CST, component separation technique; SSI: surgical site infection. Data are
presented as n(%).

FIGURE 1 | Receiver operating characteristic (ROC) plot for component
separation technique (CST) predictions of pooled validation group.

FIGURE 2 | Receiver operating characteristic (ROC) plot for wound
complications predictions of pooled validation group.
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The CSTmodel performed poorly.While achieving fascial closure
is the goal in AWR, techniques to achieve this vary [21, 34, 35]. The
decision to perform a CST is complex and subjective, and practices
often differ from institution to institution as well as patient to patient
[21, 34]. There is a difference in practice and patient population,
between the institutions, which is evident in the frequency of CST in
each cohort [21]. While the authors attempted to propensity match
the internal and external groups, this further limited the sample size.
Therefore, the decision was made to continue without propensity
matching. As a result though, differences in patient factors, such as
hernia size or BMI, could contribute to the differences in rate of
component separation. Another potential contributor to the poor
performance of the CST model is the inability to predict tissue
compliance. Past medical history and imaging do not capture
compliance, as it is a difficult component to measure, but we
suspect this too played a role in the model’s performance.

Additionally, CST is a broad term that can be used for many
specific procedures. While some surgeons may choose to do a
posterior component separation, or Transversus Abdominus
Release (TAR), others may choose an anterior approach. While
both techniques have their advantages, individual patient
differences may lead a surgeon to perform one technique over
the other [21, 22, 34]. The surgeons of the internal cohort choose to
perform an anterior or posterior CST based on defect size [21]. The
surgeon of the external cohort also performs both anterior and
posterior CST, but typically performs anterior CST for larger
defects. Given the varied practice patterns, it is difficult to train
a reliable and predictive model that will perform on external data
[17, 29]. Even with pooled training and analysis the poor
performance of the model is likely explained by the nuanced
practice difference between AWR centers.

On the other hand, the SSI model was found to have excellent
predictive ability. An explanation for this finding may be that
patient factors such as obesity and predisposing comorbidities,
rather than institutional differences in surgical practice, are more
likely determinants of developing SSIs [8, 9, 20, 36, 37]. Factors
such as the amount of subcutaneous adipose tissue, as a surrogate
for BMI, are evident on the CT scans and may contribute to the
model’s ability to predict outcomes [32, 33, 38–42]. Predicting
and preventing SSIs is vital for successful AWR. SSIs have been
shown to increase a patient’s risk of developing a hernia
recurrence by three to five times [8, 43, 44]. Additionally,
superficial wound complications increase a patient’s likelihood
of a mesh infection, which is a feared complication of AWR, that
will likely lead to further operations in the future [43, 45].

Not only are SSIs responsible for poor patient outcomes, but also
for increased healthcare spending [8, 9, 11]. The cost of
complications has been explored in prior work [9]. The
difference in outpatient charges between patients with and
without a complication is $6,200 ± 13,800 and $1,400 ± 7,900,
respectively, withmore than fourmore office visits [9]. Determining
which patients are at an increased risk for postoperative wound
complications allows surgeons to intervene and decrease the risk of
complications. Optimization of patients’ outcomes could either be
preoperative, in the form of preoptimization, intraoperative, or
postoperative. Intraoperatively, maintaining strict sterility, judicious
handling of the skin and soft tissues, as well as electing to use closing

protocols can decrease the rate of SSI [20, 37, 46]. Postoperative
options include the decision to perform a delayed primary closure
(DPC) or apply a closed incision negative pressure wound therapy
vacuum [19, 47, 48].

This study is not without limitations. A pooled multicenter
analysis was performed, yet again, the CST model did not
perform well. An explanation for the initial model’s poor
performance is the skewed nature of the datasets. The external
cohort was limited with 75 patients. The external cohort also had
different proportions of CST procedures performed. This is due to
different AWR practice models. The internal group often uses
botulinum toxin injections as a means to prevent the need for
CST. This may differ from the practice algorithm of the external
validation group or even other practices thatmay use techniques such
as progressive pneumoperitoneum. This inherently is a limitation
with comparing different medical centers and practices and may
make our study less generalizable. Further, models developed with
ResNet-18 are known to perform better with skewed data sets, like
this study. Knowing the skewed nature of the datasets allows the
model to be scaled appropriately. While training and validating a
model based on pooled data seems promising, it is likely that a multi-
institution model would need to be developed to account for the vast
difference in practice patterns in CST among AWR surgeons.

This study is the first of its kind demonstrating techniques to
externally validate a predictive surgical model. We demonstrated
that while CST is challenging to predict, the SSI model performed
well in a multicenter setting. This study indicates that models can
predict outcomes where patient factors are readily evident in the
data but are limited where there is subjectivity in surgical
management. Future directions for study should look to train
AI models on large multicenter databases to account for
variations in surgical practice.
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