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Myoclonus is a hyperkinetic movement disorder characterized by sudden, brief,

involuntary jerks of single or multiple muscles. Dystonia is a movement disorder

characterized by sustained or intermittent muscle contractions causing

abnormal, often repetitive, movements, postures, or both. Myoclonus-

dystonia (M-D) or DYT11 dystonia is an early-onset genetic disorder

characterized by subcortical myoclonus and less pronounced dystonia.

DYT11 dystonia is the primary genetic M-D caused by loss of function

mutations in SGCE, which codes for ε-sarcoglycan. Sgce knockout (KO)

mice model DYT11 dystonia and exhibit myoclonus, motor deficits, and

psychiatric-like behaviors. Neuroimaging studies show abnormal cerebellar

activity in DYT11 dystonia patients. Acute small hairpin RNA (shRNA)

knockdown of Sgce mRNA in the adult cerebellum leads to motor deficits,

myoclonic-like jerky movements, and altered Purkinje cell firing. Whether Sgce

KO mice show similar abnormal Purkinje cell firing as the acute shRNA

knockdown mice is unknown. We used acute cerebellar slice recording in

Sgce KO mice to address this issue. The Purkinje cells from Sgce KO mice

showed spontaneous and intrinsic excitability changes compared to the wild-

type (WT) mice. Intrinsic membrane properties were not altered. The female

Sgce KO mice had more profound alterations in Purkinje cell firing than males,

which may correspond to the early onset of the symptoms in female human

patients and more pronounced myoclonus in female KO mice. Our results

suggest that the abnormal Purkinje cell firing in the Sgce KOmice contributes to

the manifestation of the myoclonus and other motor symptoms in

DYT11 dystonia patients.
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Introduction

DYT11 dystonia is a major type of genetic M-D and is caused

by mutations in SGCE, which codes for ε-sarcoglycan [1]. Many

mutations in SGCE, such as nonsense, missense, and frameshift

mutations, have been reported in M-D patients, suggesting that

the loss of ε-sarcoglycan function causes DYT11 dystonia [2, 3].

The primary symptom of DYT11 dystonia is myoclonus;

however, dystonia and psychiatric symptoms, such as

depression, panic, and obsessive-compulsive disorder, have

been reported in some patients [1, 4]. Interestingly, alcohol

consumption in some patients can provide temporal relief of

the symptoms [3, 5]. Treatment has been focused on symptom

relief using various drugs and deep brain stimulation with limited

success [2, 6]. Female individuals outnumbermale individuals for

both adult-onset idiopathic and early-onset monogenic dystonias

[7]. The average age of onset for female DYT11 patients is 5 years

versus 8 years for male patients [8].

Animal models are helpful to investigate the pathophysiology

of genetic diseases and contribute to developing better

treatments. Multiple mouse lines have been generated and

characterized to model DYT11 dystonia [9–15]. Sgce is the

mouse homolog of the human SGCE gene. Sgce is maternally

imprinted and paternally expressed [11, 16, 17]. We generated

paternally-inherited Sgce heterozygous KO mice lacking exon

four and analyzed their behavioral and neurochemical

phenotypes [11, 15, 18]. The Sgce KO mice, on average,

exhibit 28 times more myoclonus than WT littermates and

have deficits in motor learning, anxiety, depression-like

behaviors, and fine motor coordination and balance.

Furthermore, we found that the striatal dopaminergic system

is impaired in the Sgce KO mice. The levels of dopamine and its

metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and 3-

methoxy-4-hydroxyphenylacetic acid (homovanillic acid;

HVA) in the striatum of Sgce KO mice are significantly higher

than those of wild-type (WT) mice [15]. Sgce KO mice exhibit a

significantly low level of striatal dopamine receptor 2 (D2R) and

a significant increase in dopamine release after amphetamine

injection in comparison to WT littermates [18]. Finally, striatal

medium spiny neurons and cerebellar Purkinje cells show

abnormal nuclear envelopes in Sgce KO mice [9, 10].

Cerebellar circuits, especially Purkinje cells, are central

players in movement and posture control, and there are

multiple lines of investigations implicating their involvement

in DYT11 dystonia pathogenesis [19–24]. Several brain imaging

studies show the involvement of the cerebellum in

DYT11 patients [25–32]. DYT11 patients possess abnormal

responses to cerebellar eye-blink classic conditioning [33, 34],

which can be normalized by alcohol intake. Furthermore,

DYT11 patients perform abnormally in a cerebellar saccadic

adaptation task [35] but not in a limb adaptation task involving

symptomatic body regions [36]. However, Purkinje cell-specific

Sgce KO mice exhibit motor learning deficits but no myoclonus

[10]. This suggests that Sgce KO in other cells inside and outside

the cerebellum is needed to produce the myoclonus in mice.

Interestingly, small hairpin RNA (shRNA) knockdown of Sgce

mRNA in the adult cerebellum, but not basal ganglia, leads to

motor deficits, spinning, and myoclonic-like jerky movements,

which can be reduced by alcohol consumption. Moreover, the

awake, head-restrained shRNA-treated mice show aberrant firing

of Purkinje cells and deep cerebellar nuclei neurons in vivo [37].

The abnormal function of cerebellar circuits is likely involved in

the pathogenesis of DYT11 dystonia. However, whether the Sgce

KO mice, which have the Sgce gene inactivated constitutively

throughout the lifespan, show similar aberrant Purkinje cell

firing is unknown. Here, the Purkinje cells in the Sgce KO

mice were characterized by electrophysiological recording of

acute brain slices. The spontaneous firing, intrinsic

excitability, and membrane properties of Purkinje cells were

examined and compared to their myoclonus behavior

published earlier [15].

Materials and methods

Animals

All experiments complied with the United States Public

Health Service Guide for Care and Use of Laboratory Animals

and were approved by the Institutional Animal Care and Use

Committees of the University of Florida. As described previously,

Sgce KO mice and their WT littermates were prepared and

genotyped by PCR [15]. Mice were housed under a 12-hour

light and 12-hour dark cycle with ad libitum access to food and

water. All experiments and initial data analysis were performed

by investigators blind to the genotypes. This study followed the

recommended heterogenization of study samples of various ages,

and the data were analyzed with age as a covariate [38].

Brain slice electrophysiology

We usedmale and female mice to investigate the effects of sex

on the phenotype. As described previously [39–43],

electrophysiological recordings data for spontaneous firing,

intrinsic excitability, and membrane properties of

105 Purkinje cells were obtained from 10 WT mice (5 males

and 5 females) and 6 Sgce KO littermates (3 males and 3 females)

at 80–165 days old. Briefly, the cell-attached recordings of

Abbreviations: CV: coefficient of variation; KO: knockout; M-D:
Myoclonus-dystonia; PCR: polymerase chain reaction; RMP: resting
membrane potential; SEM: standard error of the mean; SGCE: human
gene codes for ε-sarcoglycan; Sgce: mouse gene codes for ε-
sarcoglycan; shRNA: small hairpin RNA; WT: wild-type.
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Purkinje cells were performed in the parasagittal 300 μm-thick

cerebellar brain slices. After recording the spontaneous firing,

whole-cell recordings were made by breaking through the

membrane. Tonic Purkinje cells fire relatively constantly,

while non-tonic Purkinje cells fire intermittently, with pauses

separating the firing periods [44]. We define tonic Purkinje cells

as those cells without pause of the spontaneous firing lasting for

more than 300 msec during the cell-attached recording [45] and

otherwise as non-tonic cells [40]. The intrinsic properties (resting

membrane potential, capacitance, membrane resistance, and

time constant) were measured in the whole-cell recording

mode. Finally, current steps were injected to determine

intrinsic excitability.

Myoclonus

The myoclonus data from 17 KO (9 males and 8 females) and

22 WT littermates (11 males and 11 females), 210–241 days old,

were published previously [15]. The data were reanalyzed here to

determine the effect of sex on the number of myoclonus.

Statistics

Data were tested for normality first using the univariate

procedure of the SAS statistical package. A generalized linear

model (GENMOD) was used to compare the spontaneous firing,

intrinsic excitability, membrane properties, and myoclonus. Age

and body weight were used as continuous variables, and data

from each cell were nested within individual animals and treated

as repeated measurements. A negative binomial distribution was

used for count data, i.e., the number of action potentials in the

current injection andmyoclonus. A gamma distribution was used

for data that was not normally distributed. For tonic/non-tonic

cell distribution analysis, chi-square was used. Significance was

assigned at p < 0.05. A p-value between 0.05 and 0.1 was

considered a trend. Data in the text are presented as “mean ±

standard error of the mean (SEM)” unless specified otherwise.

Results

Altered spontaneous firing frequency and
coefficient of variation (CV) of the Purkinje
cells in Sgce KO mice

Cerebellar Purkinje cells are the sole output of the cerebellar

cortex, projecting into the deep cerebellar nuclei, which are the

sole output of the cerebellum. They play an essential role in

cerebellar function. The Purkinje cells in the Sgce KO mice were

characterized by acute brain slice recording to understand their

role in the pathogenesis of DYT11 dystonia. The spontaneous

firing of the Purkinje cells (WT, 59 cells/10 mice; KO, 45 cells/

6 mice) was recorded by cell-attached recording mode with a

voltage clamp. The representative traces of the Purkinje cells are

FIGURE 1
Spontaneous firing of the Purkinje cells in brain slices. (A) The
representative traces of both the tonic and non-tonic Purkinje
cells. Spontaneous firing frequency (B) and CV (C) were
significantly altered in Sgce KO mice in a sex- and cell-type-
specific manner (SAS GENMOD was used for statistical analysis).
The bars represent means ± SEM. *, p < 0.05; ***, p < 0.001; + in
(B), p = 0.059, in (C), p = 0.061.

Dystonia Published by Frontiers03

Xing et al. 10.3389/dyst.2025.14415

https://doi.org/10.3389/dyst.2025.14415


shown in Figure 1A. Although the firing frequency (WT, 63.8 ±

7.7 Hz; KO, 53.8 ± 3.6; p = 0.22, Figure 1B) was not altered, the

CV (WT, 0.338 ± 0.026; KO, 0.249 ± 0.013; p = 0.0009; Figure 1C)

was significantly decreased in Sgce KO mice compared to WT

mice. CV is an indication of firing regularity. A decreased CV

suggests increased firing regularity. Purkinje cells can be grouped

into tonic and non-tonic types [40, 43, 45]. When analyzed

separately by the cell types, tonic cells showed no change in the

frequency (WT, 35 cells/10 mice; 50.1 ± 5.5 Hz; KO, 22 cells/

6 mice, 62.3 ± 10.2; p = 0.27, Figure 1B) but a significant decrease

in CV (WT, 0.110 ± 0.005; KO, 0.090 ± 0.007; p = 0.026;

Figure 1C), while non-tonic cells showed decreases both in

the frequency (WT, 24 cells/10 mice, 81.5 ± 13.4 Hz; KO,

23 cells/6 mice, 48.3 ± 10.7; p = 0.059, Figure 1B) and CV

(WT, 1.071 ± 0.151; KO, 0.720 ± 0.118; p = 0.061; Figure 1C).

When separated by sex, female Purkinje cells showed a significant

decrease in the frequency (WT, 27 cells/5 mice, 67.2 ± 7.5 Hz;

KO, 20 cells/3 mice, 48.6 ± 5.2; p = 0.036, Figure 1B) but no

change in CV (WT, 0.330 ± 0.024; KO, 0.295 ± 0.037; p = 0.43;

Figure 1C), while male Purkinje cells showed no change in the

frequency (WT, 32 cells/5 mice, 59.8 ± 13.4 Hz; KO, 25 cells/

3 mice, 61.7 ± 7.0; p = 0.90, Figure 1B) but a significant decrease

of CV (WT, 0.344 ± 0.033; KO, 0.212 ± 0.010; p < 0.001;

Figure 1C). When separated by both sex and cell type, there

were significant decreases in frequency of female non-tonic

Purkinje cells (WT, 12 cells/5 mice, 80.0 ± 11.3 Hz; KO,

13 cells/3 mice, 40.1 ± 10.5; p = 0.02, Figure 1B) and in CV

of male non-tonic Purkinje cells (WT, 12 cells/5 mice 1.232 ±

0.244; KO, 10 cells/3 mice, 0.534 ± 0.081; p = 0.0008; Figure 1C),

while the frequency and CV of the rest remained unchanged

(Figures 1B, C).

Finally, the relative ratio of the tonic and non-tonic cells was

analyzed, and there was no significant difference between theWT

and Sgce KO mice (WT: tonic = 35, non-tonic = 24; KO: tonic =

22, non-tonic = 23, p = 0.29). Overall, Sgce KO mice had normal

cell type distribution and sex-specific alteration of spontaneous

firing of Purkinje cells both in frequency and CV, especially in the

non-tonic cell types.

Altered intrinsic excitability of the Purkinje
cells in Sgce KO mice

After recording the spontaneous firing by cell-attached

mode, the intrinsic membrane properties were measured in

whole-cell recording mode. The resting membrane property of

the Purkinje cells was determined from 10 WT (56 cells) and

6 Sgce KO mice (46 cells). There was no significant difference in

the membrane capacitance, membrane resistance, and resting

membrane potential (RMP) between the WT and Sgce KO mice

(Table 1). However, the Sgce KO mice showed increased

membrane constants compared to the WT mice (p = 0.053),

largely derived from females (p = 0.054). Male and female mice

did not differ in the other 3 parameters (Table 1).

The intrinsic excitability of the Purkinje cells in the brain

slices was measured with current step injections. The recorded

neurons showed typical electrophysiological responses of the

Purkinje cells (Figure 2A). The number of action potentials

fired overall (WT, 56 cells/10 mice, 32.9 ± 2.1; KO, 46 cells/

6 mice, 31.7 ± 1.8; p = 0.67, Figure 2B) and at each current step

(Figure 2C) were similar between WT and Sgce KO mice. When

analyzed separately by sex, female Purkinje cells showed a

TABLE 1 Intrinsic properties of Purkinje cells.

RMP (mV) Capacitance (pF) MR (MΩ) Time constant (ms)

WT −61.2 ± 0.6 97.8 ± 7.2 46.6 ± 12.8 1.39 ± 0.05

KO −59.9 ± 0.6 108.0 ± 6.4 46.1 ± 7.8 1.68 ± 0.15

Z value −1.70 −1.07 0.03 −1.94

P 0.09 0.29 0.98 0.053

WT _ −61.5 ± 1.1 99.8 ± 9.5 39.5 ± 8.7 1.40 ± 0.07

KO _ −59.9 ± 0.7 96.5 ± 10.3 44.4 ± 16.6 1.49 ± 0.11

Z value −1.23 0.23 −0.27 −0.72

P 0.22 0.82 0.79 0.47

WT \ −61.1 ± 0.3 100.4 ± 10.5 52.7 ± 22.2 1.38 ± 0.07

KO \ −59.8 ± 0.9 113.3 ± 4.5 48.0 ± 7.3 1.82 ± 0.25

Z value −1.35 −1.05 0.21 −1.92

p 0.18 0.29 0.83 0.054

RMP, resting membrane potential; MR, membrane resistance.
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significant decrease in the number of action potentials (WT,

30 cells/5 mice, 36.9 ± 3.6; KO, 24 cells/3 mice, 27.8 ± 1.4; p =

0.0096, Figure 2B), while male Purkinje cells showed a significant

increase (WT, 26 cells/5 mice, 28.8 ± 1.2; KO, 22 cells/3 mice,

36.2 ± 2.2; p = 0.0019, Figure 2B). When separated by both sex

and current steps, there were significant decreases in the number

of action potentials from steps 2 to 6 in the female KO mice

compared to the WT mice (Figure 2D). In contrast, the male KO

mice had a significant increase at the 8th step and a potential

increase at the 2nd step (Figure 2E). These results suggest that the

intrinsic excitability of the Purkinje cells is altered in the Sgce KO

mice in a sex-specific manner.

Increasedmyoclonus in Sgce KOmice and
sex difference

We previously reported that Sgce KO mice, on average,

exhibit 28 times more myoclonus than WT littermates [15].

Here, we reanalyzed the data separately by each sex or genotype.

Both male and female Sgce KO mice showed significantly

FIGURE 2
Intrinsic excitability of Purkinje cells as measured by current
steps in the brain slices. Representative trace of the action

(Continued )

FIGURE 2 (Continued)
potential firing in response to the current injection (A). The
number of action potentials of all eight steps combined (B) and at
each current step (C–E) were significantly altered in Sgce KO
mice in a sex-specific manner (SAS GENMOD was used for
statistical analysis). Means ± SEM were plotted. *, p < 0.05; **, p <
0.01; ***, p < 0.001.

FIGURE 3
Comparison of the numbers of myoclonus in male and
femaleWT and Sgce KOmice. WhileWTmales and females did not
differ, female Sgce KOmice showed 4 timesmoremyoclonus than
male Sgce KO mice (SAS GENMOD was used for statistical
analysis). Means ± SEM were plotted. *, p < 0.05; **, p < 0.01; ****,
p < 0.0001.
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increased numbers of myoclonus compared to the WT mice

(Females: WT, n = 11, 0.8 ± 0.5; KO, n = 8, 43.4 ± 26.3;

p = <0.0001; Males: WT, n = 11, 0.5 ± 0.4; KO, n = 9, 9.4 ±

6.3; p = 0.014, Figure 3). While WTmales and females showed no

difference (p = 0.29), the KO females showed four times more

myoclonus compared to the KO males (p = 0.0048), suggesting

female KO mice have a more pronounced myoclonus phenotype

compared to male KO mice.

Discussion

We aimed to determine whether there was abnormal

Purkinje cell firing in the Sgce KO mice, a model for

DYT11 dystonia or M-D. For spontaneous firing, the Sgce

KO mice showed a significantly decreased CV and no change

in the frequency. Interestingly, the female Sgce KO mice showed

significantly decreased frequency, especially in non-tonic cells,

while male SgceKOmice had significantly decreased CV, derived

mainly from non-tonic cells. For intrinsic excitability, female

Sgce KO mice showed a significant decrease, consistent with

their decreased spontaneous firing frequency. In contrast, male

Sgce KO mice showed a modest increase that did not lead to

increased spontaneous firing. Membrane properties remained

unchanged except for the membrane constant, which showed an

increasing trend in females. Female Sgce KO mice showed

profound electrophysiological changes in the Purkinje cells

compared to male Sgce KO mice. To correlate myoclonus

behavior with sex-dependent changes in Purkinje cell firing,

we reanalyzed the myoclonus data we published previously [15].

The female Sgce KO mice showed four times more myoclonus

than male Sgce KOmice. These results suggest that the abnormal

Purkinje cell firing in the Sgce KO mice contributes to

myoclonus phenotype.

Our results expand the existing research on Purkinje cell

firing in DYT11 dystonia from the shRNA-mediated knockdown

[37]. The Sgce knockdownmice show a reduced firing rate similar

to Sgce KO female mice and an increased CV opposite to the Sgce

KO mice. It should be noted that the reported Sgce knockdown

mice data are from in vivo recordings, and we used brain slice

recording with both GABAergic and glutamatergic transmission

blocked. Furthermore, shRNA knockdown is introduced in adult

mice, while the Sgce gene was inactivated constitutively

throughout the animals’ lifespan in Sgce KO mice. These

differences could contribute to the discrepancy. Although the

knockdown experiments used both males and females, the effect

of sex on the Purkinje cell firing property was not investigated.

Furthermore, we compared tonic and non-tonic cells in the

current study, which is lacking in the study of Sgce

knockdown mice. We extended their results by showing that

female non-tonic Purkinje cells showed decreased firing

frequency, likely due to decreased intrinsic excitability, and

male non-tonic Purkinje cells showed a reduced CV.

Our results showed sex-specific alternations in Purkinje cell

firing in the Sgce KO mice. Female Sgce KO mice showed greater

changes than male Sgce KO mice. Interestingly, reanalysis of the

myoclonus data showed a similar differential change in the

myoclonus data. Female Sgce KO mice showed 4 times more

myoclonus than male Sgce KO mice. This is consistent with the

finding that the average age of onset for female DYT11 patients is

5 years versus 8 years for male patients [8] and other dystonia

patient databases in general [7].

Past studies have shown that the cerebellum is critically

involved in DYT11 dystonia pathogenesis [19–23]. This is

further supported by brain imaging studies in DYT11 patients

[25–32]. DYT11 patients show abnormal responses to cerebellar

eye-blink classic conditioning [33, 34] and perform abnormally

in a cerebellar saccadic adaptation task [35]. shRNA knockdown

of SgcemRNA in the cerebellum leads tomotor deficits, spinning,

and myoclonic-like jerky movements [37]. Our results here

further support a direct role of cerebellum involvement.

However, Purkinje cell-specific Sgce KO mice have no

myoclonus phenotype and only exhibit motor learning deficits

[10]. This suggests that myoclonus may not originate from the

cerebellum but downstream of the brain network, which leads to

the pathogenesis of DYT11 dystonia.

What might be the upstream brain network abnormality that

drives Purkinje cell abnormality and myoclonus in

DYT11 dystonia? The basal ganglia and the cerebellum are

interconnected at the subcortical level with disynaptic

pathways. The subthalamic nucleus in the basal ganglia

connects to the cerebellar cortex via pontine nuclei [46]. We

previously conditionally knocked out Sgce in the striatal medium

spiny neurons using RGS9-cremice [47, 48], and the mutant mice

failed to exhibit the myoclonus phenotype [9], suggesting

striatum may not be the origin. Future studies should analyze

the conditional Sgce KO mice restricted to the cerebral cortex,

dopaminergic neurons, and striatal cholinergic neurons, to

determine the origin of myoclonus generation in

DYT11 dystonia.

There are limitations associated with the current study. We

used glutamatergic and GABAergic antagonists to block synaptic

transmission in brain slice recording. Synaptic inputs to Purkinje

cells were not measured and compared. Furthermore, we did not

investigate whether altered Purkinje cell firing leads to any

physiological changes elsewhere. Finally, although profound

Purkinje cell firing changes in female Sgce KO mice correlate

with their more pronounced myoclonus phenotype, correlation

does not mean causation. Further direct experimental

manipulations are needed to demonstrate the relationship.
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