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Dystonia-PRKRA (DYT-PRKRA), previously termed dystonia 16 (DYT16), is a

movement disorder which currently has very limited treatments available

and no cure. To develop effective therapeutic options, it is essential to

characterize the underlying pathophysiology and identify potential drug

targets. This review summarizes the recent studies that shed light on the

molecular mechanisms involved in DYT-PRKRA pathogenesis. PRKRA gene

encodes for the protein PACT (Protein Activator of the Protein Kinase R) and

individuals with DYT-PRKRA mutations develop early-onset generalized

dystonia. While the precise mechanisms linking PRKRA mutations to

neuronal etiology of dystonia remain incompletely understood, recent

research indicates that such mutations cause dysregulation of signaling

pathways involved in cellular stress response as well as in production of

antiviral cytokines interferons (IFNs). This review focuses on the effect of

DYT-PRKRA mutations on the known cellular functions of PACT.
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Introduction

Dystonia is a neurological movement disorder characterized by involuntary and

intermittent or sustained muscle contractions leading to abnormal, repetitive twisting

movements and/or abnormal postures [1]. This condition can have diverse

manifestations, affecting specific muscle groups or the entire body, leading to a loss of

coordinated movements [2]. It is a highly heterogeneous neurological movement disorder

both clinically and genetically and in recent years many important genetic as well as

molecular insights have suggested several therapeutic drug targets [3]. However, the

translation of such knowledge into new therapies is yet to emerge as developing effective

drugs involves in-depth research on identified genes, requiring significant resources and

time. The genetically inherited monogenic dystonia manifests in various forms; each one

characterized by distinct features [2]. Focal Dystonia targets specific body regions, such as

the neck (cervical dystonia), eyelids (blepharospasm), hand (writer’s cramp), or vocal

cords (spasmodic dysphonia). In contrast, segmental dystonia impacts adjacent body

parts, potentially combining areas like cervical and oromandibular dystonia. Generalized

dystonia extends its reach across multiple or all body parts, exerting a notable influence on

both upper and lower extremities, thereby affecting mobility and posture. Hemidystonia
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TABLE 1 Clinical findings of patients with PRKRA variants.

Publication PRKRA
variant

Ancestry Onset/
Sex

Developmental
delay

Fever-related
deterioration

First
symptoms

Overall
clinical
features

T2 changes
on MRI

Camargos 2008 c.665C>T
p.Pro222Leu
homozygous

Brazil 11y/M Unk Unk Lower limbs
dystonia, pain

Generalized
dystonia

None noted

c.665C>T
p.Pro222Leu
homozygous

Brazil 12y/M Delayed speech Unk Lower limbs
dystonia, pain

Generalized
dystonia with
parkinsonism
and pyramidal
signs

None noted

c.665C>T
p.Pro222Leu
homozygous

Brazil 2y/M Delayed motor
cognitive milestones

Unk Lower limbs
dystonia, pain

Generalized
dystonia with
parkinsonism
and pyramidal
signs

Unk

c.665C>T
p.Pro222Leu
homozygous

Brazil 11y/M Late walking and no
speech till 5

UnK Upper limb
dystonia

Generalized
dystonia

Unk

c.665C>T
p.Pro222Leu
homozygous

Brazil 2y/F Delayed speech No Spasmodic
dysphonia

Generalized
dystonia with
parkinsonism

Unk

c.665C>T
p.Pro222Leu
homozygous

Brazil 18y/M None UnK Lower limb
dystonia

Generalized
dystonia with
parkinsonism

UnK

c.665C>T
p.Pro222Leu
homozygous

Brazil 7y/F UnK UnK Upper limb
dystonia

Generalized
dystonia with
pyramidal
signs

UnK

Seibler 2011 c.266_267delAT
p.H89fsX20)
Heterzygous

German <9y/M UnK UnK Lower limb
dystonia

Generalized
dystonia

No

Zech 2014 c.100A>T
p.Thr34Ser
heterozygous

German 68y/F UnK Yes Meige’s
syndrome

Segmental
dystonia with
parkinsonism

UnK

Zech 2014 c.305A>G
p.Asn102Ser
heterozygous

German 63y/F UnK Yes Meige’s
syndrome

Isolated
segmental
dystonia

UnK

Zech 2014 c.-14A>G
heterozygous

German 39y/F Yes Yes Laryngeal
dystonia

Isolated focal
dystonia

UnK

de Carvalho
Aguiar 2015

c.G230C
p.Cys77Ser
heterozygous
c.G638T
p.Cys213Phe
heterozygous

Brazil,
Portugese
descent

4y/F Speech delay No Upper limb
dystonia

Generalized
dystonia,
severe mild
dysarthria and
dysphonia

No

Costantini 2016 c.665C>T
p.Pro222Leu
homozygous

Italian <16y/M UnK UnK Speech, neck,
chin, gait, upper
limbs, trunk

Generalized
dystonia

UnK

Quadri 2016 c.665C>T
p.Pro222Leu
homozygous

Italy 3-8y/M Delayed walking Yes Speech
difficulty, slow
movements,
problem
walking, short
steps

Mild cognitive
deficit

None noted

(Continued on following page)
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uniquely affects one side of the body, inducing muscle

contractions and abnormal movements. Multifocal dystonia

involves multiple non-contiguous body parts, presenting a

diverse clinical picture. Task-Specific dystonia emerges during

specific activities, such as musician’s dystonia or writer’s cramp

and paroxysmal dystonia is marked by intermittent episodes of

dystonia. This spectrum highlights the complex nature of

dystonia and the various ways it can manifest in affected

individuals.

DYT-PRKRA is caused by mutations in the PRKRA gene

(OMIM: 612067), which encodes the protein activator (PACT) of

the interferon-induced protein kinase PKR [4]. The

characteristics of DYT-PRKRA patients have been summarized

in a recent review [2] and in Table 1. The vast majority of PRKRA

mutation carriers show generalized dystonia, but some patients

with segmental/multifocal dystonia or focal dystonia have been

noted. DYT-PRKRA most often starts in the limbs (upper >
lower), sometimes cervical or laryngeal, and rarely in the neck.

TABLE 1 (Continued) Clinical findings of patients with PRKRA variants.

Publication PRKRA
variant

Ancestry Onset/
Sex

Developmental
delay

Fever-related
deterioration

First
symptoms

Overall
clinical
features

T2 changes
on MRI

Kolbel 2017 c.266A>G
p.His89Arg
heterozygous
c.904G>A
p. Ala302Thr
heterozygous

Germany 1.5y/M Loss of motor skill,
not regained

Yes Limb dystonia,
bradykinesia
and
oromandibular
dyskinesia

UnK Bilateral striatal
degeneration

Dos Santos 2018 c.C665T
p.Pro222Leu
heterozygous
c.C795A
p.Ser265Arg
heterozygous

Brazil 15y/M UnK No Lower limb
dystonia

generalized UnK

Dos Santos 2018 c.665C>T
p.Pro222Leu
heterozygous
c.C795A
p.Ser265Arg
heterozygous

Brazil 8y/F UnK UnK Lower limb
dystonia

Generalized
dystonia

UnK

Pinto 2020 c.665C>T
p.Pro222Leu
homozygous

Portugal 4y/F No No Stuttering
speech,
unsleady gait,
slow
movements

Masnada 2021 c.127G>A
p.Gly43Ser
heterozygous
c.665C>T
p.Pro222Leu
heterozygous

Spain 1-2y/M Cognitive
impairment

Yes Ccmbined
dystonia after
fever-induced
encephalopathy

Cognitive
impairment,
generalized
dystonia with
pyramidal
signs

Bilateral striatal
degeneration,
cerebellar
atrophy

c214G>T
p.Val72Phe
heterozygous
c.698G>T
p.Cys213Phe
heterozygous

Spain 1.5Y/M Cognitive
impairment

Yes Ccmbined
dystonia after
fever-induced
encephalopathy

Cognitive
impairment,
generalized
dystonia with
pyramidal
signs

Bilateral striatal
degeneration,
cerebellar
atrophy

Bhowmick 2022 c.127G>T
p.Gly43Cys
homozygous

India 3y/M,F
(siblings)

No Yes Difficulty
speaking,
walking,
posturing limbs

Gneneralized
dystonia

Yes, striatal
degeneration

Atasu 2024 c.665C>T:
p.Pro222Leu
heterozygous
c.202T>C:
p.Phe68Leu
heterozygous

Turkey 17y/M UnK Unk UnK Rapidly
progressive
generalized
dystonia

UnK
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Tremor was reported in some patients, myoclonus in none of

them, and Parkinsonism was described in about half the patients.

Information on psychiatric signs and other nonmotor symptoms

is rarely indicated but cognitive impairment and global

developmental delay especially after a childhood febrile illness

has been noted [5–9]. The age of onset was reported to be early

during childhood in most cases but later onset during adulthood

has been observed indicating environmental or other modifying

genetic factors. Abnormalities and degeneration in striatal region

have been noted in a few patients but this information was not

available for most patients [6–8]. Investigations into structural

brain changes in DYT-PRKRA patients remain ongoing and a

possible neurodegenerative classification of DYT-PRKRA can be

considered after such analysis in additional DYT-PRKRA

patients. The globus pallidus internus (GPi) region has

evolved as a potential target for deep brain stimulation (DBS)

and GPi-DBS is used as a therapeutic intervention for several

types of dystonia [10]. However, GPi-DBS has not shown much

benefit in several DYT-PRKRA patients and other established

treatments including botulinum toxin injections, baclofen, and

benzodiazepines were shown not to be beneficial [2]. In one case,

DYT-PRKRA was reported to improve after thiamine therapy

[11], but this has not been reported in other cases. Thus,

understanding the molecular mechanisms responsible for

DYT-PRKRA is a priority of significant importance for

developing novel and effective treatment options.

Functional domains of PACT and
DYT-PRKRA mutations

The most studied function of PACT is its role in catalytic

activation of the interferon-induced protein kinase PKR (protein

kinase, RNA activated) via a direct interaction. PKR (aka EIF2AK2)

is a serine threonine protein kinase that was originally discovered in

the context of antiviral innate immune response [12]. PKR is

ubiquitously expressed at low constitutive levels and its kinase

activity stays latent until bound by an activator. Upon binding to

one of its two activators: i) double-stranded (ds) RNA [13], or ii)

protein activator PACT [4] PKR undergoes autophosphorylation

and enzymatic activation. The dsRNA-dependent PKR activation

occurs mainly during viral infections [14], and in uninfected cells

PACT activates PKR in response to oxidative stress, endoplasmic

reticulum (ER) stress, and serum deprivation [15, 16]. Patel and Sen

cloned and identified PACT as a stress-modulated protein activator

of PKR in 1998 [4]. Since then, the functional involvement of PACT-

mediated PKR activation in regulating cellular response to diverse

types of stress signals has been studied extensively [15, 17–19]. The

functional domains of PKR and PACT have been characterized in

detail and both PACT and PKR have the evolutionarily conserved

dsRNA binding motifs (dsRBMs) [20–22] that also mediate the

dsRNA independent protein-protein interactions between them and

with other proteins that contain dsRBMs [23–25] (Figure 1). Upon

binding dsRNA or PACT via the dsRBMs, PKR undergoes a

conformational change which results in the autophosphorylation

and activation of PKR [26, 27]. PACT is a stress-modulated activator

of PKR that acts via a dsRNA-independent interaction in response

to ER stress, oxidative stress, and serum deprivation [15, 16, 28]. Of

the three dsRBMs present in PACT, the two amino terminal motifs

dsRBM1 and 2, are critical for dsRNA binding and PACT-PKR

interaction and a carboxy terminal dsRBM3motif that does not bind

dsRNA is essential for PKR activation [4, 23, 24]. Within dsRBM3,

serines 246 and 287 serve as phosphorylation sites to enhance

PACT-PACT homomeric interaction and the heteromeric

interaction of PACT’s dsRBM3 with PKR’s catalytic domain that

takes place only after PACT undergoes a stress-induced

phosphorylation of serine 287 [19, 29] (Figure 2). In the absence

of stress, PACT is constitutively phosphorylated on S246 [29],

associates with PKR weakly [30] and is unable to activate PKR.

Once phosphorylated on serine 287 in response to cellular stress,

PACT’s affinity tor PACT-PACT and PACT-PKR interactions

increases, thereby leading to efficient PKR association and

catalytic activation [17, 30].

In last few years, several mutations have been identified

(Figure 3) in PRKRA gene (OMIM: DYT16, 612067) leading

to DYT-PRKRA [5–9, 31–40]. Although DYT-PRKRA was

originally described to have an autosomal recessive

inheritance pattern [31] but dominantly inherited variants of

DYT-PRKRA have also been reported [32, 38]. Most mutations

reported in DYT-PRKRA are substitution mutations that map

within either the dsRBM1 and 2 or in the linker region between

dsRBM2 and dsRBM3. One frameshift mutation reported in a

single patient produces an early stop codon and truncates the

PACT protein within dsRBM1 [32]. It is unclear if such a

truncated protein would be present in the patient as no study

has been conducted on patient cells. However, this truncated

protein if present, will be unable to activate PKR via a direct

interaction as dsRBM3 is essential for PKR activation. It is

important to note that in several of DYT-PRKRA cases,

developmental regression and dystonia was first noted after a

febrile illness in the childhood [5–9]. This detail becomes

relevant in the context of the cellular functions of PACT

discussed in this review. The effects of one frameshift and

several substitution mutations on PACT’s functional

contribution to various cellular pathways has been studied

and is discussed in the next section of this review [41–44].

The effect of DYT-PRKRA mutations
on the known cellular functions
of PACT

PACT impacts cellular regulation via its participation in

several pathways relevant to dystonia and Figure 4

summarizes these pathways as well as how they are altered in

DYT-PRKRA to affect cellular responses and function.
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FIGURE 1
Functional domains of PACT (aka PRKRA) and PKR (aka EIF2AK2). The conserved dsRBMs are depicted as grey boxes and the third dsRBM in
PACT is depicted as a blue box. The dsRBM3 lacks essential basic amino acids and cannot bind dsRNA but mediates interaction with PKR like
dsRBM1 and 2. The numbers indicate the amino acid positions and the locations of constitutive (S246) and stress-induced phosphorylation (S287) of
PACT are indicated by blue arrows.

FIGURE 2
PACT activates PKR in response to non-viral cellular stress. In the absence of stress, PKR exists in an inactive conformation primarily as a
monomer. The dsRNA produced during viral infections binds to PKR via its dsRBMs (grey ovals) to induce a conformational change and dimerization
that opens PKR’s catalytic domain (blue oval) to cause its autophosphorylation (red circles). In the absence of any cellular stress, PACT exists primarily
as a monomer with serine 246 phosphorylation (blue circle). In the presence of non-viral cellular stress, PACT is phosphorylated on serine 287
(red circle), which promotes its dimerization and association with PKR. When The dsRBMs 1 and 2 of PACT (purple ovals) interact with PKR’s two
dsRBMs and dsRBM3 of PACT (green oval) interacts with the PACT-binding motif (PBM, black triangle) in PKR’s catalytic domain to bring about the
conformational change in PKR to activate it via dimerization and autophosphorylation.
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PKR activation and integrated stress
response (ISR)

PACT-mediated PKR activation occurs in response to diverse

types of stress signals [15, 17–19]. Once activated, PKR

phosphorylates the α subunit of eukaryotic initiation factor 2

(eIF2α) on serine 51 and inactivates it thereby causing a general

block in protein synthesis [45]. Phosphorylation of eIF2α is a central
regulatory event for the ISR [46, 47], which helps cells recover

appropriately from a variety of biological stresses (Figure 5).

Although phosphorylation of eIF2α causes a general block in

protein synthesis, it stimulates the translation of a selected few

mRNAs that have upstream, short upstream open reading frames

(uORFs) in their 5′ untranslated regions (5′UTRs) [48–51]. These
preferentially translated mRNAs encode various stress response

regulators such as the transcription factors activating

transcription factor 4 (ATF4) and C/EBP-homologous protein

(CHOP) that reprogram the transcriptome for adaption to stress,

and trigger eIF2α dephosphorylation to promote ISR termination

[52–54]. The duration and extent of the stress response is regulated

FIGURE 3
DYT-PRKRA mutations. Locations of various substitution mutations and one frameshift mutation are indicated in the context of PACT’s
functional motifs. Grey boxes: dsRBM1 and 2, Blue box: dsRBM3. The phosphorylated serines 246 and 287 shown as blue lines.

FIGURE 4
PACT is part of several cellular pathways. PACT’s normal function in ISR, innate immunity, and RNAi pathways is shown and how the normal
functioning is affected in dystonia (if known) is also depicted. ISR: integrated stress response, IFN: interferon, SiRNA: small interfering RNA, miRNA:
microRNA. Created in BioRender. Patel, R. (2025) https://BioRender.com/j98s943.
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FIGURE 5
Integrated stress response (ISR) and PACT. Heme deprivation, amino acid starvation, ER stress, viral infection, and other cellular stress signals
activate Heme regulated inhibitor (HRI), general control nonderepressible (GCN2), PKR-like endoplasmic resident kinase (PERK), and Protein kinase,
RNA activated (PKR) kinases that phosphorylate eIF2α, the central event of ISR. PKR is activated by dsRNA during viral infections and by PACT in
response to non-viral stress signals. This leads to global attenuation of cap-dependent translation while simultaneously promoting preferential
translation of specificmRNAs, such as activating transcription factor 4 (ATF4). ATF4 is themain effector transcription factor of the ISR. It regulates the
expression of genes involved in cellular adaptation. ISR is terminated by the constitutively expressed constitutive repressor of eIF2α phosphorylation
(CReP) and stress-induced growth arrest and DNA damage-inducible 34 (GADD34), both of which are regulatory subunits of protein phosphatase 1
(PP1) that dephosphorylates eIF2α. DYT-PRKRA mutations cause a dysregulation of ISR to cause enhanced apoptosis in response to ER stress.
Created in BioRender. Patel, R. (2025) https://BioRender.com/w13b787.
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by several mechanisms. For instance, ATF4 regulates the

transcription of growth arrest DNA damage-inducible 34

(GADD34), which is essential for translational recovery towards

survival [55, 56], and of CHOP, whose accumulation plays a pivotal

role in converting the stress response from an adaptive phase to

apoptosis when the ISR is overwhelmed [57–59]. The intensity,

duration and kinetics of eIF2α phosphorylation as well as the nature
of the downstream activated cascades determine whether a cell

adapts and survives, or instead dies, in response to stress. Thus,

activation of PKR by PACT if not regulated appropriately can be

associated with a prolonged shutdown of protein translation,

activation of caspase-8, poly ADP ribose polymerase 1(PARP1)

cleavage and apoptosis [45, 60, 61].

ManyDYT-PRKRAmutations have been characterized for their

effects on PKR activation and ISR (Figure 6). A recessively inherited

P222L mutation increases cell susceptibility to endoplasmic

reticulum (ER) stress through the dysregulation of ISR signaling

in patient derived lymphoblasts [42]. Furthermore, using an in vitro

approach it was demonstrated that a dominantly inherited

frameshift mutation expresses a truncated PACT protein that

increases PACT mediated PKR activation causing an enhanced

sensitivity to ER stress via dysregulation of the eIF2α signaling

pathway [43]. Three recessively inherited (C77S, C213F, C213R) and

two dominantly inherited DYT16 point mutations (N102S and

T34S) also demonstrated a heightened capacity to form PACT-

PACT homodimers in the absence of stress [44] and the

lymphoblasts derived from DYT-PRKRA patients carrying C77S

and C213R mutations showed a stronger binding affinity between

PACT and PKR and a dysregulation of the ISR pathway.

Consequently, these DYT-PRKRA patient lymphoblasts

demonstrated an increase in cell susceptibility to ER stress that

could be rescued in the presence of luteolin, which disrupts PACT-

PKR interactions [62].

Innate immunity and inflammation

Interferons (IFNs) are antiviral cytokines that constitute a

pivotal component of the body’s innate immune response against

viral infections [63]. Virally infected cells produce and secrete

IFNs, which prime the neighboring cells by inducing expression

of hundreds of antiviral proteins even before they are infected

with the virus, thus arming them with necessary defenses against

a possible infection [64, 65]. The pathogen-associated molecular

FIGURE 6
DYT-PRKRAmutations affect ISR to cause enhanced apoptosis. Normal stress response and altered stress response in DYT-PRKRA is shown. (A)
ISR in wt cells. In the absence of stress, PKR is not activated as PACT is not associated with PKR. After stress, phosphorylation of PACT promotes
PACT-PACT and PACT-PKR interactions causing a transient PKR activation and eIF2α phosphorylation. This transient response restores cellular
homeostasis promoting survival by inducing limited amounts of activating transcription factor 4 (ATF4) and C/EBP-homologous protein
(CHOP). (B) ISR in DYT-PRKRA cells. In the absence of stress, mutant PACT forms strong PACT-PACT as well as PACT-PKR interactions and PKR is
activated. After stress, PACT is phosphorylated, and PACT-PACT and PACT-PKR interactions are enhanced further causing a persistent PKR activation
and eIF2α phosphorylation thus promoting apoptosis.
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patterns (PAMPs) present in infected cells are sensed by pattern-

recognition receptors (PRRs) of the host cells [66]. The viral non-

self RNAs are sensed by host PRRs such as Retinoic acid

inducible gene I (RIG-I) in the cytoplasm [67], and this is a

central step to induce proinflammatory and immunoregulatory

response to protect the host. PACT aids RIG-I ( ) in ligand

recognition and is essential to activate a robust IFN production

by binding to RIG-I’s carboxy-terminal domain and stimulating

its ATPase activity to expose a caspase activation and recruitment

domain (CARD) motif [68]. This activated form of RIG-I

interacts with the mitochondrial antiviral signaling protein

(MAVS), initiating a signaling cascade that culminates in the

activation of transcription factor IRF3 to cause a robust

transcriptional induction of type I interferons. Additionally,

PACT also functions as a coactivator of another PRR,

melanoma differentiation-associated gene 5 (MDA5) by

promoting MDA5 oligomerization after dsRNA-induced

activation [69] to augment IFN production (Figure 7).

Laboratory of genetics and physiology 2 (LGP2) is the third

and least well-understood member of this PRR family.

LGP2 modulates the function of RIG-I and MDA5 during

viral infection in a PACT dependent manner [70].

There has been a single study examining the effect of the

DYT-PRKRA mutations on PACT’s ability to induce IFNs.

Lymphoblasts from homozygous P222L patient as well as

compound heterozygous C77S and C213R patient produced

higher levels of IFN β and IFN induced genes in response to

dsRNA as compared to wild type lymphoblasts [41]. Because

FIGURE 7
PACT is involved in the interferon (IFN) production in response to dsRNA. PACT interacts with two pattern recognition receptors RIG-I (retinoic
acid-inducible gene I) and MDA5 (melanoma differentiation-associated gene 5), both of which are involved in detecting dsRNA. LGP2 (laboratory of
genetics and physiology 2), which inhibits RIG-I mediated IFN induction and activates MDA5 mediated IFN induction also interacts with PACT. PACT
augments IFN induction via both RIG-I andMDA5 pathways but all themechanistic details are not yet clear. SomeDYT-PRKRAmutations further
enhance PACT’s actions to result in higher levels of IFN production and response. Created in BioRender. Patel, R. (2025) https://BioRender.
com/p51h883.
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dystonia is reported as a side effect during IFN therapy for

treatment of viral infections or multiple sclerosis, it raises a

possibility that DYT-PRKRA may arise from elevated levels of

circulating IFNs [71, 72].Some DYT-PRKRA patients were

reported to develop dystonia after a childhood febrile illness

[5–9], which could have been a viral infection that may have

triggered excessive or prolonged IFN production. In future, it can

be tested if DYT-PRKRA patients have elevated levels of IFNs in

their blood. It is relevant to also note that dystonia is one of the

many symptoms Aicardi Gouetieres Syndrome (AGS), which is a

rare genetic disorder classified as an interferonopathy in which a

constitutive upregulation of IFN activity directly causes the

disease pathology [73, 74].

RNA interference

The RNA interference (RNAi) pathway is a conserved

cellular mechanism crucial for gene regulation and antiviral

defense [75, 76]. Triggered by double-stranded RNA (dsRNA),

the pathway involves degradation or translational repression of

target messenger RNA (mRNA) with the aid of small RNA

molecules like microRNAs (miRNAs) and short interfering

RNAs (siRNAs). These small RNA molecules guide the large,

multi-subunit RNA-induced silencing complex (RISC) to the

complementary mRNA sequence/s, leading to a precise control

of gene expression at a post-transcriptional level in most

situations. The RNAi pathway is either initiated by miRNA

biogenesis [77] that leads to expression of miRNAs or

processing of long dsRNAs into siRNA duplexes by the RNase

Dicer [78]. The steps downstream of generation of these small

RNAmolecules sequentially involve loading of miRNA or siRNA

guide strand into the RISC complex containing Argonaute

proteins, mRNA target recognition, and cleavage of the target

mRNA by Argonaute’s endo-nucleolytic activity or a block of its

translation (Figure 8) [79]. Dicer, human Argonaute 2 (hAgo2),

and either human immunodeficiency virus (HIV) trans-

activating RNA (TAR)-binding protein (TRBP) or PACT

constitute the RISC in human cells but the exact functional

role of PACT in RNAi pathway is not yet clear. Recent studies

suggest that although PACT is not required for the mRNA

cleavage step, it is essential for the recruitment of miRNA and

siRNA to the RISC [80–85]. Dicer has two Ribonuclease III

(RNase III) binding domains and one dsRBM, via which it

interacts with PACT’s dsRBM3 [80]. Although TRBP has

been shown to affect dicer’s cleavage activity in miRNA

biogenesis pathway, PACT does not directly affect Dicer

activity. Dicer, PACT and TRBP form a multimeric complex

and assemble even without the involvement of pre-miRNA [80].

As there has been limited research focused on elucidating

PACT’s exact functional contribution to the RNAi pathway,

there remains a significant scope for investigations. There

have been no studies addressing the contribution of RNAi

pathway to dystonia, and it remains to be determined if the

dystonia causing mutations in PACT affect either a) the

generation of miRNAs that are relevant in neurons or b) the

function of miRNAs to modulate gene expression important for

regulation of movement coordination.

Murine Prkra gene and dystonia

Soon after cloning and characterization of human PACT as a

PKR activator [4], the murine homolog of PACT was identified and

termed RAX [16]. Human and murine proteins are highly

homologous differing only in 6 amino acids, 4 of which are

conservative changes [4, 16]. Like human PACT, murine PACT

activates PKR by a direct interaction in response to cellular stress

and regulates cellular fate [16, 28, 86]. A targeted disruption of

murine Prkra gene demonstrated its functional contribution to

craniofacial and postnatal pituitary development [87]. PACT null

mouse had reduced size, severe microtia, hearing loss, reproductive

issues, and diminished pituitary function. Surprisingly, these effects

on the pituitary growth and function were dependent on activation

of PKR and revealed that PACT functions as a PKR inhibitor in

pituitary cells [88]. Such a role reversal of PACT’s function has also

been observed in the context of human immunodeficiency virus

(HIV) replication [89, 90]. Amissensemutation S130P in the second

dsRBM of murine PACT resulted in defects in ear development,

growth, craniofacial development, and ovarian structure [91].

Another study reported that deletion of the entire Prkra gene in

mice is embryonic lethal at a preimplantation stage of development

[92]. Interestingly, the same study also reported that Drosophila

carrying a mutation in loquacious, a Prkra homolog, have a severe

defect in nervous system coordination or neuromuscular function

resulting in significantly reduced locomotion.

The most relevant for the topic of dystonia is a recent study of a

recessively inherited spontaneously arisen frameshift mutation

(Figure 9), Prkralear-5J [93]. Mice homozygous for this mutation

exhibit craniofacial developmental abnormalities, reduced body size,

kinked tails, and progressive dystonia with altered gait beginning at

2 weeks of age and continuing until death at about 3 weeks of age.

Some neurons in the dorsal root ganglia and the trigeminal ganglion

were apoptotic, consistent with the observed neurodegenerative

phenotype. Basic neurological testing on mutant mice showed

that the mutant mice had an elongated step/push gait, no

grasping reflex with the hind paws, a weak grasping reflex with

the forepaws, kinked tails and gnarled wrists. The kinked tail and

gnarled wrist phenotypes were determined to result fromdystonia as

the bone structure of the tail and wrists was normal. The

biochemical and developmental consequences of the Prkralear-5J

mutation were investigated recently [94]. The truncated PACT

protein produced due to the frameshift mutation retained its

ability to interact with PKR, however as it lacked the

dsRBM3 required for PKR activation, it inhibited PKR activation.

Furthermore, mice homozygous for the mutation had abnormalities
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in the cerebellar development as well as a severe lack of dendritic

arborization of Purkinje neurons. Reduced eIF2α phosphorylation

was noted in the cerebellums and Purkinje neurons of the

homozygous Prkralear-5J mice indicating that PACT mediated

regulation of PKR activity and eIF2α phosphorylation plays a

role in cerebellar development and may contribute to the

dystonia phenotype resulting from this Prkra mutation.

Dysregulation of ISR and eIF2α
phosphorylation in dystonia

Cellular stress response and dysregulated eIF2α phosphorylation
has emerged as a major area of functional convergence [3] among

various monogenic dystonia types (Figure 10). Research on DYT-

PRKRA established that enhanced PKR activation and dysregulated

eIF2α signaling caused increased sensitivity to apoptosis in DYT-

PRKRA patient cells after endoplasmic reticulum (ER) stress

[42–44]. Following this initial report for DYT-PRKRA, several

other dystonia types also reported dysregulated eIF2α pathway as

a possible pathomechanism. DYT-TOR1A is a childhood-onset

autosomal-dominant disease caused by a single amino acid

deletion in the ER-resident torsinA protein. DYT-TOR1A patient

cells exhibit activated ER stress response and eIF2α signaling is

dysregulated [95]. Remarkably, in case of DYT-TOR1A when the

eIF2α phosphorylation status was restored to normal levels, the

dystonia symptoms were alleviated [96]. DYT-THAP1 is caused by

mutations in THAP1 [97] and a transcriptomic analysis in neonatal

mouse striatum and cerebellum indicated eIF2α signaling pathway

dysregulation and the neuronal plasticity defects could be partially

FIGURE 8
PACT is involved in RNA interference (RNAi) pathway. PACT enhances the efficiency of SiRNA mediated RNAi and is also involved in miRNA
biogenesis. PACT augments dicer activity in SiRNA generation from long dsRNAs as well as during miRNA biogenesis but the exact molecular
mechanism is yet to be worked out in detail. Created in BioRender. Patel, R. (2025) https://BioRender.com/h26o315.

FIGURE 9
The lear-5J frameshift mutation in the murine Prkra gene. Grey boxes: conserved dsRBM1 and dsRBM2 that facilitate high affinity dsRNA as well
as protein-protein interactions. Blue box: dsRBM3 that does not bind dsRNA but has weak binding affinity to the PACT-bindingmotif (PBM) within the
catalytic domain of PKR. The frameshift mutation from a one nucleotide insertion results in the addition of 7 novel amino acid represented in red
before the stop codon.
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corrected by salubrinal, which inhibits eIF2α dephosphorylation

[98]. DYT-SGCE is caused by mutations in ε-sarcoglycan (ε-SG),
and PKR is upregulated in a DYT-SGCE mouse model [99].

Sporadic cervical dystonia patients have several mutations in

ATF4, a downstream effector protein of the ISR response

pathway [95]. Additionally, traumatic brain and spinal-cord

injuries lead to injury-induced dystonia and activation of ISR

and eIF2α signaling is noted in response to the injuries in animal

models [100]. Finally, a growing list of dystonia genes are related to

calcium physiology and may also have altered ISR and eIF2α
signaling [101].

In view of the dysregulated eIF2α phosphorylation emerging as a

convergent mechanism for several dystonia types, it is crucial to

characterize the changes in eIF2α phosphorylation status and

ultimately the regulation of ISR in each individual form of

dystonia. Both increased as well as decreased eIF2α
phosphorylation has been reported in various forms of

monogenic dystonia. In case of DYT-PRKRA, there is a

reduction in the basal eIF2α phosphorylation levels in Prkralear-5J

mice [94], which is in contrast to the increased phosphorylation of

eIF2α, heightened PKR kinase activity and enhanced sensitivity to

ER stress in DYT-PRKRA patient cells [42, 44]. Additionally,

increase in PKR activity and eIF2α phosphorylation is reported

in DYT-EIF2AK2 (DYT33) patients carrying PKRmissense variants

with early onset generalized dystonia [102]. For DYT-EIF2AK2

(DYT33), PKR inactivating mutations were reported in some

patients [103], thereby suggesting that a reduction in PKR

activity and consequently reduced eIF2α phosphorylation may

also lead to dystonia pathophysiology. The most compelling

evidence of reduced eIF2α phosphorylation in dystonia comes

from studies on DYT-TOR1A (DYT1), where a genome-wide

RNAi screen suggested a pathogenic role of deficient eIF2α
signaling [95]. The HIV protease inhibitor ritonavir, which

boosts eIF2α phosphorylation corrected the mutant TOR1A

protein mislocalization in vitro and when administered during an

early postnatal period, showed therapeutic effects in a mouse model

of DYT-TOR1A, restoring brain abnormalities and ameliorating the

dystonia phenotype [96]. Additionally, there is similar eIF2α

FIGURE 10
ER stress and eIF2α signaling dysfunction in various forms of dystonia. ER stress activates both PERK and PKR kinases that phosphorylate eIF2α,
which is the central signaling hub for activating downstream pathways that can either lead to cellular recovery and homeostasis via the transcription
factor ATF4 or trigger apoptosis via the transcription factor CHOP. Yellow boxes indicate various forms of dystonia that are known to affect this
pathway at distinct steps. Created in BioRender. Patel, R. (2025) https://BioRender.com/y15s536.
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pathway impairment in patients with sporadic cervical dystonia, due

to rare inactivating mutations in ATF4 [95]. There are no current or

past clinical trials for drugs targeting the eIF2α pathway to treat

dystonia patients and in future, a few important points should be

considered for conducting such trials. Although the studies on eIF2α
and dystonia are encouraging for therapeutic interventions, such

manipulations must be controlled carefully. Based on the available

evidence, a precise regulation of the extent and duration of eIF2α
phosphorylationmay be essential for optimal neuronal regulation of

motor control and either a reduction or elevation of the ISR response

both could lead to lack of motor coordination. Thus, any future

treatments that target eIF2α phosphorylation would need to be

developed with caution keeping in mind not to overcorrect the

underlying pathology using drugs to either boost or inhibit eIF2α
phosphorylation throughout the body under all physiological

scenarios. For example, it was recently reported that the

cholinergic neurons constitutively engage the ISR for dopamine

modulation and skill learning [104]. Such specific use of transient

eIF2α phosphorylation to regulate neuronal functions will be

disturbed by drugs globally targeting eIF2α pathway and thus

can have detrimental off target effects.

Discussion

Although phosphorylation of eIF2α has classically been viewed

as a stress response, eIF2α phosphorylation mediated regulation of

protein synthesis is utilized by neurons for mechanisms besides

stress response that include behavior, memory consolidation,

neuronal development, and motor control [105]. Future research

using targeted mutations in specific neuronal subtypes to test the

exact contribution of ISR and specifically eIF2α phosphorylation for
neuronal control of muscle movement will be valuable.

In addition to the characterization of molecular pathways, it is

also crucial to explore the specific regions of the brain affected by

dystonia.Althoughdystonia is considered traditionally as a disorder of

the basal ganglia [106], increasing evidence suggests that other brain

areas may also play a role [107–112]. In this regard, mouse models

could provide important clues to understand how alterations in the

eIF2α signaling can affect neuronal function in specific regions of the

brain to ultimately influence coordinated muscle movements. The

dysfunction of cholinergic neurons which engage the eIF2α pathway

for constitutive neuronal functionality [96] is one of the convergent

mechanisms in dystonia etiology [113, 114]. Future studies can

address the effects of manipulating the eIF2α pathway using

several drugs currently available [98, 115–118]. It is possible to

either measure physiologic dynamic changes in eIF2α
phosphorylation or manipulate eIF2α signaling using genetic tools

in a specific subset of neurons to understand how it influences

muscle movement.

Given the functional role of PACT in the RNAi pathway, it

would also be valuable to examine if there are any changes in

miRNA profiles in DYT-PRKRA patient cells. Although it would be

most meaningful to investigate the changes in miRNA expression

profiles in induced pluripotent stem cell (iPSC) derived neurons

from DYT-PRKRA patients, the miRNA profiles of patient

lymphoblasts or fibroblasts can offer initial assessment if the

DYT-PRKRA mutations can affect the miRNA biogenesis.

Additionally, based on initial studies indicating the role of IFNs

in DYT-PRKRA, it remains to be investigated if additional DYT-

PRKRA mutations also enhance IFN production in response to

dsRNA. Several DYT-PRKRA and DYT-EIF2AK2 patients

developed dystonia symptoms after a febrile illness [5–9, 119],

thus If DYT-PRKRA mutations lead to IFN production at higher

levels or for a longer duration during viral infections, it can explain

the neurologic regression and motor problems arising after a

childhood illness. Based on such future studies the treatment for

DYT-PRKRA can be significantly different based on the specific

effects seen with various mutations, underscoring the urgency and

importance of undertaking such basic mechanistic studies.
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Glossary
DYT dystonia

PRKRA protein activator of interferon induced protein kinase EIF2AK2

EIF2AK2 eIF2 alpha kinase 2

EIF2A alpha subunit of eukaryotic initiation factor 2

PKR protein kinase, RNA activated

PACT protein activator of PKR

dsRNA double-stranded RNA

dsRBM dsRNA-binding motif

PBM PACT-binding motif

GPi globus pallidus internus

DBS deep brain stimulation

ER endoplasmic reticulum

ISR integrated stress response

uORF upstream open reding frame

UTR untranslated region

ATF4 activating transcription factor 4

CHOP CEBP homologous protein

GADD34 growth arrest DNA damage-inducible 34

PARP1 poly ADP ribose polymerase 1

IFN interferon

PAMPs pathogen-associated molecular patterns

PRRs pattern-recognition receptors

RIG-I retinoic acid inducible gene I

CARD caspase activation and recruitment domain

MAVS mitochondrial antiviral signaling protein

IRF3 interferon regulated factor 3

MDA5 melanoma differentiation-associated gene 5

LGP2 laboratory of genetics and physiology 2

AGS Aicardi Gouetieres Syndrome

RNAi RNA interference

miRNA micoRNA

siRNA short interfering RNA

RISC RNA-induced silencing complex

hAgo2 Human Argonaute 2

TRBP human immunodeficiency virus (HIV) trans-activating RNA (TAR)-
binding protein

RNase III Ribonuclease III

iPSC induced pluripotent stem cell
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