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DYT1 dystonia is an inherited early-onset generalized dystonia characterized by

sustained muscle contractions causing abnormal, repetitive movements or

postures. Most DYT1 patients have a heterozygous trinucleotide GAG

deletion (ΔGAG) in DYT1/TOR1A, coding for torsinA. Dyt1 heterozygous

ΔGAG knock-in (KI) mice or global KI mice show motor deficits and

abnormal Purkinje cell firing. However, Purkinje cell-specific heterozygous

ΔGAG conditional KI mice (Pcp2-KI) show improved motor performance,

reduced sensory-evoked brain activation in the striatum and midbrain, and

reduced functional connectivity of the striatum with the anterior medulla.

Whether Pcp2-KI mice show similar abnormal Purkinje cell firing as the

global KI mice, suggesting a cell-autonomous effect causes the abnormal

Purkinje cell firing in the global KI mice, is unknown. We used acute

cerebellar slice recording in Pcp2-KI mice to address this issue. The Pcp2-KI

mice exhibited no changes in spontaneous firing and intrinsic excitability

compared to the control mice. While membrane properties were largely

unchanged, the resting membrane potential was slightly hyperpolarized,

which was associated with decreased baseline excitability. Our results

suggest that the abnormal Purkinje cell firing in the global KI mice was not

cell-autonomous and was caused by physiological changes elsewhere in the

brain circuits. Our results also contribute to the ongoing research of how basal

ganglia and cerebellum interact to influencemotor control in normal states and

movement disorders.
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Introduction

Dystonia is a movement disorder characterized by sustained

or intermittent muscle contractions causing abnormal, often

repetitive, movements or postures [1]. Dystonia can be caused

by genetic mutations, brain injury, or the side effects of drugs.

DYT1 dystonia is the most common type of early-onset

generalized dystonia [2] with symptom onset from 5 to

28 years old. The majority of the individuals affected by

DYT1 dystonia share a trinucleotide deletion (ΔGAG) located

in the exon 5 of DYT1 or TOR1A gene, leading to a loss of a

glutamate amino acid residue for torsinA (torsinAΔE) [3]. It is

transmitted as an autosomal dominant disorder with a 30%–40%

penetrance. Affected individuals could be seriously disabled and

need to use a wheelchair. There are other types of isolated

mutations found in DYT1 dystonia patients with missense

changes at E121K, V129L, D194V, F205I, and R288Q [4–8],

and three other deletions of an 18 bp DNA fragment deletion, a

frame-shift mutation caused by 4 bp deletion, and a 6 bp deletion

[8–10]. The latest epidemiology data indicate between 54,366 and

80,891 ΔGAG mutation carriers in the United States, including

16,475-24,513 DYT1 patients due to the reduced penetrance [11].

Animal models have been used to investigate the

pathophysiology of genetic diseases and contribute to

developing effective treatments. Multiple animal models have

been generated for DYT1 dystonia [12–18]. Dyt1 KI mice have

the corresponding in-frame trinucleotide ΔGAG deletion

mutation in the endogenous Dyt1 or Tor1a and model DYT1

ΔGAG patients [19, 20]. TheDyt1KImouse also shows dystonia-

like phenotypes, including motor and sensory deficits, abnormal

gait, and muscle co-contraction of the hind limbs [20–23]. A new

conditional knock-in locus of Dyt1 or Tor1a (referred to as

SWAP) was developed, possessing loxP sites flanking exon

5 of the Tor1a gene, along with an additional downstream

mutant exon 5 containing a ΔGAG knock-in mutation [24].

When crossed with Pcp2-cre mice [25], the WT exon five was

deleted, and the mutant ΔGAG was expressed specifically in

Purkinje cells. The resulting conditional knock-in mice, referred

to as Pcp2-KI mice, show improved motor performance, reduced

sensory-evoked brain activation in the striatum and midbrain,

and reduced striatum functional connectivity with the

anterior medulla [26].

Cerebellar circuits, especially Purkinje cells, are essential

players in movement and posture control, and there are

multiple lines of investigations implicating their involvement

in dystonia pathogenesis [16, 27–37]. The shRNA-mediated

knockdown of torsinA in wild-type mice leads to overt

dystonic-like movements with cell death in the deep cerebellar

nuclei [38]. Dyt1 KI mice show altered Purkinje cell morphology

[39, 40] and firing, with increased large-conductance calcium-

activated potassium (BK) current and the BK channel protein

levels [41]. The abnormal function of cerebellar circuits is likely

involved in the pathogenesis of DYT1 and other dystonias.

However, whether the Pcp2-KI mice show similar altered

Purkinje cell firing is unknown. Furthermore, the relative

contribution of the striatum and cerebellum in the

pathogenesis of DYT1 dystonia is unclear. Here, the Purkinje

cells in the Pcp2-KI mice were characterized by

electrophysiological recording of acute brain slices. The

spontaneous firing, intrinsic excitability, and membrane

properties of Purkinje cells were examined.

Materials and methods

Animals

All experiments complied with the United States Public

Health Service Guide for Care and Use of Laboratory Animals

and approved by the Institutional Animal Care and Use

Committees of the University of Florida. Pcp2-KI mice and

their littermate control mice were prepared and genotyped by

PCR as described previously [26]. Pcp2-cre heterozygous mice

[25] (The Jackson Laboratory strain #: 010536) were mated with

Tor1aswap heterozygous mice [24] (The Jackson Laboratory strain

#: 028099) to produce Pcp2-KI (Pcp2-cre+/−Tor1aswap+/−) and

control mice (Pcp2-cre+/−). The presence of cre was detected

with primers creF: 5′-CAGCTAAACATGCTTCATCGTC and

creR: 5′-GTTATTCGGATCATCAGCTACACC. Tor1aswap allele
was determined by primers 27427: 5′-TCCTCCCCCAAGTAC
ATCAG and 27428: 5′-CATAGCTCAGCCGTCCAGTC [24].

Mice were housed under a 12-h light and 12-h dark cycle with ad

libitum access to food and water. All experiments and initial data

analysis were performed by investigators blind to the genotypes.

This study followed the recommended heterogenization of study

samples of various ages, and the data were analyzed with age as a

covariate [42].

Brain slice electrophysiology

Electrophysiological recordings and data analysis for

spontaneous firing, intrinsic excitability, and membrane

properties of 128 Purkinje cells were obtained from 9 control

and 7 Pcp2-KI littermate male mice (212–385 days old), as

described previously [41, 43–45]. Since the onset of motor

deficits is about 6.5 months old in the case of Dyt1 KI mice

[20, 46], mice older than the onset age were used in the present

study. Briefly, the cell-attached recordings of Purkinje cells were

performed in the parasagittal 300 μm-thick cerebellar brain

slices. After recording the spontaneous firing, whole-cell

recordings were made by breaking through the membrane.

The electrophysiological intrinsic membrane properties

(resting membrane potential, capacitance, membrane

resistance, and time constant) were measured in the whole-

cell recording mode. The current steps were injected, and the
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evoked-action potentials were recorded. We used male mice to

minimize the variation due to the estrous cycle and to match the

sex we used in our previous study for direct comparison [41].

Statistics

Data were tested for normality first using the univariate

procedure of the SAS statistical package. A generalized linear

model (GENMOD) was used to compare the spontaneous firing,

intrinsic excitability, and membrane properties. Age was used as

a continuous variable, and data from each cell were nested within

animals and treated as repeated measurements. A negative

binomial distribution was used for count data, i.e., the

number of action potentials in the current injection. A

gamma distribution was used for data that was not normally

distributed. For tonic/non-tonic cell distribution analysis, chi-

square was used. Significance was assigned at p < 0.05. Data in the

text are presented as “mean ± standard error of the mean (SEM)”

unless specified otherwise.

Results

Normal spontaneous firing frequency,
coefficient of variation (CV), and cell type
distribution of the Purkinje cells in Pcp2-
KI mice

Cerebellar Purkinje cells are the sole output of the cerebellum

and play an essential role in cerebellar function. The Purkinje

cells in the Pcp2-KI mice were characterized by acute brain slice

recording. The spontaneous firing of the Purkinje cells was

recorded by cell-attached recording mode with a voltage

clamp (control, 61 cells/9 mice; Pcp2-KI, 35 cells/7 mice). The

representative traces of the Purkinje cells were shown in

Figure 1A. Neither the firing frequency (control, 39.6 ±

7.5 Hz; Pcp2-KI, 32.1 ± 2.0; p = 0.30, Figure 1B) nor CV

(control, 0.254 ± 0.012; Pcp2-KI, 0.261 ± 0.021; p = 0.77;

Figure 1C) was significantly altered in Pcp2-KI mice

compared to control mice. Purkinje cells can be grouped into

tonic and non-tonic types [41, 44, 47]. When analyzed separately

by the cell types, neither the firing frequency nor CV was altered

in both cell types (Table 1). Finally, the relative ratio of the tonic

and non-tonic cells was analyzed, and there was no significant

difference between the control and Pcp2-KI mice (control:

tonic = 35, non-tonic = 26; Pcp2-KI: tonic = 19, non-tonic =

16, p = 0.77). Overall, Pcp2-KI mice had normal spontaneous

firing frequency, CV, and cell type distribution of Purkinje cells.

Intrinsic excitability and membrane
properties of the Purkinje cells in Pcp2-
KI mice

After recording the spontaneous firing by cell-attached

mode, the intrinsic membrane properties were measured in

whole-cell recording mode. The resting membrane property of

the Purkinje cells was determined from 9 control (73 cells) and

7 Pcp2-KI mice (55 cells). There was no significant difference in

the membrane capacitance, the membrane resistance, or the time

constant between the control and Pcp2-KI mice (Table 2).

However, the resting membrane potential (RMP) of the Pcp2-

KI mice was significantly hyperpolarized than that of the control

mice, suggesting slightly decreased baseline excitability.

The intrinsic excitability of the Purkinje cells in the brain

slices was measured with current step injections. The recorded

neurons showed typical electrophysiological responses of the

Purkinje cells (Figure 2A). The number of action potentials

fired overall (control, 25.4 ± 2.3; Pcp2-KI, 26.1 ± 1.3; p =

0.78, Figure 2B) and at each current step (Figure 2C) were

similar between control and Pcp2-KI mice. This indicates that

while the neurons were less excitable at rest, their ability to

respond to depolarizing stimuli was preserved, potentially

reflecting compensatory mechanisms that maintained

functional responsiveness despite altered baseline properties.

FIGURE 1
Spontaneous firing of the Purkinje cells in brain slices. (A) The representative traces of the Purkinje cells. Spontaneous firing frequency (B) and
CV (C) were comparable between the control (Ctl) and Pcp2-KI mice. The bars represent means ± SEM.
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Discussion

The current study aimed to determine whether abnormal

Purkinje cell firing in the global KI mice is cell-autonomous using

Pcp2-KI mice. The Pcp2-KI mice showed no changes in

spontaneous firing, intrinsic excitability, and most membrane

properties. The only subtle change we found was a slightly

hyperpolarized resting membrane potential. These results

suggest that the abnormal Purkinje cell firing in the global KI

mice is not cell-autonomous and is driven by changes elsewhere

in the brain circuits. The results are reminiscent of the mouse

models of DYT11 dystonia. The Sgce global knockout mice

showed nuclear envelope deficits, while Purkinje cell- or

striatum-specific Sgce KO mice have no such deficits [48, 49].

Past studies have provided strong evidence that the cerebellum

is actively involved in the pathogenesis of dystonia [16, 27–37].

However, it is unknown whether the dystonia originates from the

basal ganglia, cerebellum, or both [32]. The overwhelming

majority of the DYT1 patients have the ΔGAG mutation in the

DYT1/TOR1A gene. Mutant torsinA could lead to both a loss of

function and a toxic gain of function [50, 51]. Conditional

knockout of torsinA in the striatum, the cerebral cortex,

cholinergic interneurons, and dopamine receptor 1 or 2-positive

neurons leads to motor deficits or overt dystonia [52–60].

Conditional knockin of mutant torsinA in dopamine receptor

2-positive neurons (D2-KI) leads to similar motor deficits [26].

These genetic experiments in animals suggest that mutations

introduced in the basal ganglia circuit alone are sufficient to

induce motor deficits or overt dystonia and support a basal

ganglia origin for DYT1 dystonia.

On the other hand, it is remarkable that both conditional

knockouts of torsinA (pKO) and conditional knockin of mutant

torsinA (Pcp2-KI) in Purkinje cells show better motor

performance in mice [26, 61]. The motor phenotype in pKO

and Pcp2-KI mice suggests that torsinA mutations in Purkinje

cells are insufficient to produce motor deficits. The normal

Purkinje cell firing in Pcp2-KI mice extends these findings. It

indicates mutant torsinA in Purkinje cells alone cannot induce

TABLE 1 Spontaneous firing properties of Purkinje cells by cell types.

Tonic CV Tonic frequency (Hz) Non-tonic CV Non-tonic frequency (Hz)

Control 0.123 ± 0.006 50.6 ± 7.6 0.530 ± 0.049 24.7 ± 5.5

Pcp2-KI 0.119 ± 0.012 39.1 ± 5.7 0.558 ± 0.061 23.8 ± 2.4

Z value 0.32 1.23 −0.36 0.15

p-value 0.75 0.22 0.72 0.88

CV, coefficient of variation.

TABLE 2 Intrinsic properties of Purkinje cells.

RMP (mV) Capacitance (pF) MR (MΩ) Time constant (ms)

Control −63.3 ± 0.2 127.4 ± 5.1 23.4 ± 0.7 1.36 ± 0.02

Pcp2-KI −63.8 ± 0.2 128.8 ± 5.1 22.4 ± 0.6 1.39 ± 0.04

Z value 2.24 −0.20 1.11 −0.70

p 0.025 0.84 0.27 0.48

RMP, resting membrane potential; MR, membrane resistance.

FIGURE 2
Intrinsic excitability of Purkinje cells as measured by current
steps in the brain slices. Representative trace of the action
potential firing in response to the current injection (A). The number
of action potentials of all eight steps combined (B) and at
each current step (C) was not significantly altered in Pcp2-KI mice
compared to control (Ctl) mice. Means ± SEM were plotted.
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abnormal Purkinje cell firing observed in the global KI mice. The

behavioral and electrophysiological phenotypes in pKO and

Pcp2-KI mice argue against a cerebellum origin for

DYT1 dystonia. However, we can not rule out the possibility

that in the global KI mice and DYT1 patients, the dystonia may

still originate from Purkinje cells or other cerebellar neurons.

This can be addressed with lines of Dyt1 conditional knockin

mice that express wild-type torsinA in the Purkinje cells, other

cerebellar neurons, or both.

Interestingly, acute shRNA-mediated torsinA knockdown in

adult mice shows overt dystonic-like movements [38]. We

generated an acute torsinA cerebellar knockdown mouse

model by bilateral stereotaxic injections of AAV5-CMV-Cre-

GFP into the cerebellum of Dyt1 loxP/loxP mice [57]. Expression

of cre led to cre-loxP-mediated recombination and eliminated the

expression of torsinA in AAV-infected cells. These mice showed

overt dystonia similar to the shRNA-mediated torsinA

knockdown mice (unpublished data). In addition, Purkinje

cells in global KI mice show altered dendritic structure [39,

40] and altered spontaneous firing in vitro [41]. These results

align with a cerebellum origin for DYT1 dystonia. Alternatively,

the results could be interpreted as the cerebellum not acting as

the origin but as a node downstream of the brain network

abnormality that leads to the pathogenesis of DYT1 dystonia.

What might be the upstream brain network abnormality that

drives Purkinje cell abnormality in DYT1 dystonia and global KI

mice? The basal ganglia and the cerebellum are interconnected at

the subcortical level with disynaptic pathways. The subthalamic

nucleus in the basal ganglia connects to the cerebellar cortex via

pontine nuclei [62]. Imaging studies in DYT1 mouse models

indicate striatum alterations can influence cerebellar circuits.

Forebrain torsinA knockout increases functional connectivity

of the left striatum with the cerebellum [63]. Compared to

controls, there is increased functional connectivity between

the right dorsomedial striatum and the right cerebellar cortex

in Dyt1 Ch2KO mice, with torsinA selectively knocked out in

cholinergic neurons [59]. The Purkinje cell abnormality in Dyt1

KI mice [39–41] likely originated from the striatum. Future

studies should analyze the Purkinje cell activity in the

striatum-specific Dyt1 conditional knockout [56] or knockin

mice to explore such a possibility.

The cerebellum can modulate the activity of the basal ganglia,

especially the striatum. The dentate nucleus in the cerebellum

connects to the striatum via the thalamus [62] or directly forms

monosynaptic glutamatergic connections with the dopaminergic

neurons in the substantia nigra (SN), which in turn, modulate the

striatal activity [64, 65]. The current study uncovered normal

Purkinje cell firing in Pcp2-KI mice, except for the slightly

hyperpolarized RMP. There are limitations associated with the

current study. We used glutamatergic and GABAergic antagonists

to block synaptic transmission in brain slice recording. Synaptic

inputs to Purkinje cells were not measured. Furthermore, we did

not investigate whether altered RMP leads to any physiological

changes elsewhere. However, brain imaging studies of Pcp2-KI

mice show reduced sensory-evoked brain activation in the striatum

and midbrain and reduced striatum functional connectivity with

the anterior medulla [26]. These functional changes in the basal

ganglia circuitmay result from the Purkinje cell-specific knockin of

themutant torsinA. Although details are unclear, these changes are

likely key to understanding improvedmotor performance in Pcp2-

KImice and, by extension, the pKOmice.We demonstrated earlier

that Purkinje cell-specific knockout of torsinA in global Dyt1 KI

mice (pKGmice) could alleviate the motor deficits associated with

the Dyt1 KI mice [61]. Future studies focusing on the

electrophysiological analysis of Purkinje cells, striatal medium

spiny neurons, and SN dopaminergic neurons in pKO, pKG,

and Pcp2-KI will clarify the roles of cerebellum and striatum in

the pathogenesis of DYT1 dystonia and how to target these

connections for novel treatments. These studies will have

implications in basic neuroscience research beyond the

dystonia field.
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