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Dystonia is a neurodevelopmental disorder characterized by severe involuntary

twistingmovements, hypothesized to arise from a dysfunctional motor network

involving the cortex, basal ganglia, and cerebellum. Within this network, striatal

cholinergic interneurons have been identified as possible contributors to

dystonia pathophysiology. However, little is known about striatal cholinergic

interneuron development in the mammalian brain, limiting our understanding

of its role in dystonia and therapeutic potential. Here, I review striatal cholinergic

interneuron development in the context of early-onset DYT1 (or “DYT-TOR1A”)

dystonia. I discuss clinical and laboratory research findings that support

cholinergic dysfunction in DYT1 dystonia and the implications of abnormal

cholinergic cell development on disease penetrance and striatal connectivity.
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Introduction

Dystonia is the third most common movement disorder in the United States,

manifesting as abnormal, disabling postures in children, adolescents, and adults [1].

Dystonia is classified as either isolated (“primary”) or acquired (“secondary”) and can be

inherited (e.g., DYT1) or caused by injury (e.g., stroke). A dominantly inherited mutation

(ΔGAG or ΔE) in the ubiquitously expressed TOR1A gene causes DYT1 dystonia, the

most prevalent form of inherited dystonia. TorsinA, the protein encoded by TOR1A, is

highly expressed in postnatal brain development, with prominent levels detected between

8 and 35 weeks in the cerebellum, midbrain, basal ganglia, and hippocampus [2]. TorsinA

continues to be expressed in the human striatum from 3 to 7 years of age, corresponding

to a time of increased myelination, synaptic densities, and structural maturation [3]. Due

to the location and timing of its expression, torsinA is hypothesized to play an important

role in synaptogenesis [2, 4, 5]. However, incomplete disease penetrance (~30%) and a

variable age-of-onset (3–70 years) complicates studying the consequences of torsinA loss

in DYT1 dystonia [6, 7].

One way to overcome this challenge is by identifying cell types directly involved in

DYT1 dystonia pathophysiology. The oral medications prescribed to patients following initial

diagnoses—anticholinergics, benzodiazepines, levodopa, and antiepileptics—broadly alter

cholinergic, GABAergic, dopaminergic, and glutamatergic cell activity and hint at possible
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contributors [8]. Trihexyphenidyl, an anticholinergic drug, is

among the most effective treatments for DYT1 dystonia,

especially in pediatric patients who exhibit greater tolerance

to higher doses [8, 9]. Considered in conjunction with

human neuroimaging studies that show an age-dependent

disruption of striatal vesicular acetylcholine transporter

(VAChT) expression in DYT1 patients [10], cholinergic

neurons appear important early in dystonia

pathophysiology. Whether these two phenotypes are

physiologically connected is unclear but altered VAChT

expression and cholinergic hyperactivity are not mutually

exclusive given the functional redundancy of vesicular

proteins in striatal cholinergic cells and co-expression of

neurotransmitters [11–13]. Comprising 1%–3% of the cell

population, cholinergic interneurons use acetylcholine (or

glutamate) to modulate striatal circuit functions and motor

control. Acetylcholine is loaded into pre-synaptic vesicles by

VAChT and VGLUT3 and its release counterbalances the

effects of dopamine on neuronal excitability and plasticity

[11, 14]. During striatal development, acetylcholine

modulates dopamine release to direct medium spiny

neuron maturation and glutamatergic receptor expression

[15, 16]. Early dopamine loss stunts medium spiny neuron

growth, increases excitability, and impairs behavior [15, 17].

While the direct impact of cholinergic dysfunction on

behavior has not been investigated in the juvenile

striatum, it is likely that motor functions are

compromised because cholinergic maturation overlaps

with the development of locomotor-related movements

and their loss or misfiring contributes to the motor

deficits found in Parkinson’s disease, Huntington’s

disease, and Tourette Syndrome patients [18–20].

A more thorough understanding of striatal cholinergic

interneuron development may inform DYT1 origins and

targeted therapies. In this mini review, I focus on the

neurodevelopmental disorder of DYT1 dystonia, where I

examine the evidence supporting cholinergic dysfunction in its

pathophysiology. I then discuss what is known about striatal

cholinergic interneuron development and compare its timeline to

that of striatal maturation, with the intention of highlighting

periods of motor circuit vulnerability applicable to dystonia. I

will end considering maladaptation and implications of

abnormal cholinergic cell development on DYT1 penetrance

and treatments.

DYT1 dystonia as a
neurodevelopmental disorder

Human patients and clinical observations have historically

been used to characterize DYT1 dystonia etiology [21, 22]. Now,

preclinical models support more in-depth investigations into

DYT1 pathophysiology, including the identification of

developmental alterations. Genetically engineered DYT1 mice

generated through overexpressing human ΔE-torsinA (“hMT”),

conditionally deleting torsinA from forebrain GABAergic and

cholinergic neurons (“Dlx-CKO”) or the entire central nervous

system (“N-SKI”), and knocking in inducible (“Tor1ai-ΔGAG/+”) or

non-inducible (“Tor1aΔGAG/+”) ΔGAG-torsinA mutations are a

few models that have provided opportunities to probe dystonia

circuitry during development [23–27]. While Dlx-CKO, N-SKI, and

Tor1ai-ΔGAG/+ models display early-onset motor and postural deficits

at postnatal (P) days 15 and P21, Tor1aΔGAG/+ reports synaptic

plasticity defects from P15 to P26 [24, 26–28]. P14 hMT mice

exhibit imbalanced striatal dopaminergic and cholinergic signaling

and potentially behavioral deficits, although quantification of

the visualized motor changes are needed for corroboration

[23, 29]. Complementary studies in cell culture furthermore

identified perinuclear ubiquitin accumulation, nuclear pore

defects, and nuclear membrane abnormalities in developing

torsinA-deficient (Dlx-CKO, Tor1a−/−, Tor1aΔGAG/ΔGAG)

neurons [25–27, 30–32]. Interestingly, nuclear pore

clustering and membrane abnormalities, but not

perinuclear aggregation, persist with neuronal maturation

[25, 30, 32]. The contributions each molecular event makes

to DYT1 pathogenesis is unclear but are hypothesized to

interfere with synaptic efficacy through affecting the

organization and stabilization of synaptic proteins or the

maturation of spines and dendritic trees [33–35].

Anatomical and behavioral analyses support

neurodevelopmental synaptic dysfunction, with

morphological and plasticity changes being observed in

torsinA-deficient medium spiny neurons as early as

P14 and behavioral alterations resolving with torsinA

restoration by P21 [28, 36, 37]. Understanding the

developmental events and key players in circuit formation

may be vital to advancing our knowledge and treatment of

DYT1 dystonia.

Cholinergic dysfunction and
DYT1 development

The plasticity alterations—enhanced long-term potentiation

(LTP) and absent long-term depression (LTD)—previously

discovered in postnatal DYT1 mice are restricted to the striatum,

occurring specifically at corticostriatal synapses [28, 38].

Accompanying impaired plasticity is reduced dopamine binding

to D1 andD2 receptors, which is critical for LTP and LTD induction

[39, 40]. Not all DYT1 model mice exhibit impaired D1 and

D2 receptor activity [41], lending support to the idea that input

from other cells, such as striatal cholinergic interneurons, may be

responsible for altering plasticity. The striatal cholinergic

interneuron pathology that has been reported in DYT1 models

with altered plasticity are cell degeneration, increased firing, and

enhanced acetylcholine tone [29, 38, 42–47]. To determine whether
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hypercholinergic phenotypes contribute to DYT1 pathophysiology,

antimuscarinics were administered before measuring plasticity and

behavior [24, 38, 48]. Drugs, such as trihexyphenidyl, subdue

cholinergic activity, improved motor symptoms, and normalized

medium spiny neuron LTP and LTD in different DYT1 mouse

models [24, 49]. These data call attention to the important role

cholinergic neurons may play in DYT1 pathogenesis and unveil

possible pharmacological mechanisms (i.e., plasticity restoration) for

antimuscarinics in dystonia patients [50, 51].

From the above pharmacological and electrophysiological

studies, it remains unclear whether the functional alterations

found in striatal cholinergic cells are a cause of dystonia or

consequence of torsinA mutations. Chemogenetic and transgenic

mouse studies more directly test cholinergic interneuron

involvement. Using Designer Receptors Exclusively Activated by

Designer Drugs (DREADDs) under the choline acetyltransferase

(ChAT) promoter, Gemperli et al., (2022) found that chronic

striatal cholinergic excitation incited dystonic behavior [52].

Abnormal motor behavior and responses to dopamine (D2/

D3) receptor activation in the striatum also developed after

deleting exons 3-4 of torsinA only in cholinergic cells using

mice expressing Cre recombinase under the ChAT promoter

[53]. Together, these cell-specific manipulations hint at a causal

role of cholinergic interneurons in DYT1 dystonia, as do early

intervention studies. Given that trihexyphenidyl is effective in a

subset of children and that altered synaptic plasticity is found in

some mouse models within 3 weeks of life, striatal cholinergic

interneurons may contribute to DYT1 behavioral onset [8, 23].

Evidence suggesting early cholinergic involvement include: 1)

striatal cholinergic interneurons degenerate just prior to motor

symptoms manifesting in juvenile Dlx-CKO mice [24], 2)

developing striatal Dlx-CKO cholinergic interneurons exhibit

altered synaptic gene expression [37], and 3) striatal cholinergic

interneurons demonstrate abnormal excitatory dopamine receptor

responses in juvenile hMT mice [29]. Interestingly, these findings

occur at P14-15, ages corresponding to neural and behavioral

maturation in mice and approximately early adolescence and the

average age-of-DYT1-onset in humans [8, 54, 55]. While

fundamental developmental events in the striatum—including,

rostral-to-caudal organization, cell identity, and striosome and

matrix compartmentalization—have been extensively

characterized from embryogenesis through P14 [56–60], the

developmental trajectories of individual cholinergic neurons are

less clear. One reason being the presumption of a structurally

normal nervous system in DYT1 dystonia had stalled efforts to

track anatomic changes [61–65]. Now, with advances in

neuroimaging, microstructural changes throughout the adult

nervous system have been identified [66, 67]. Detailed

morphometric analyses in mature DYT1 tissue reveal enlarged

striatal cholinergic cell bodies, postulated to result from altered

connectivity [24, 68]. Repeating these experiments in developing

DYT1 tissue will contribute to making a timeline of changes

in dystonia.

Striatal cholinergic interneuron
development and connectivity

Nearly all striatal cholinergic neurons are Gbx2-expressing cells

born in the medial ganglionic eminence and preoptic area, that then

undergo tangential migration [69]. A small proportion of striatal

cholinergic neurons co-expressing Nkx2.1 and Zic4 are born in and

have migrated from the septum [70]. Cholinergic interneurons are

among thefirst striatal cell types to be born, between embryonic days

(E) 12 and E17 in rat (E11.5-E14.5 in mouse; [57, 58]). In contrast,

striatal medium spiny neurons are born as late as P0-P5 in rat

[71–74]. By the end of the first postnatal week (P0-P6), striatal

cholinergic neurons are postmitotic, express acetylcholinesterase

(AChE), release acetylcholine, and start maturing morphologically

[69–71, 75–78], raising the possibility of these cells playing a crucial

role in circuit assembly. Providing further support for this

hypothesis are the concurrent timelines for striatal cholinergic

synaptogenesis, morphogenesis, and locomotor maturation [54,

79]. Excitatory afferents enter the striatum starting at E12, then

significantly increase in density through the second postnatal week

(Figures 1A, B; [80, 82]). Intrastriatal GABAergic connections form

later, starting at P0-P4, with a density that remains constant

throughout postnatal development (Figures 1A, B; [80]). The

fluctuation in density of striatal excitatory inputs coincides

cholinergic morphogenesis and developing locomotor behavior

(Figures 1C, D). In rodents, excitatory innervation onto striatal

cholinergic interneurons increases as locomotion increases and the

dendritic arbor grows in size and complexity (Figures 1C, D; P7-13

[81, 83]) More specifically, movement begins at P8, when all striatal

cell types are present and cell densities are comparable to that of

adults [72]. Although circuit components are present and

operational by P8, neuronal maturation is incomplete and

locomotion is unrefined (Figures 1B, C; [54, 72, 74]). At P15,

this changes when medium spiny and cholinergic neuronal

counts and morphology become adult-like [72, 75, 81, 84].

Simultaneous excitatory synapse pruning and dendritic

remodeling in the third postnatal week (P14-P20) overlaps with

the acquisition of activity-dependent synaptic plasticity properties

and the transformation of gait into that of adult rodents (Figures 1C,

D; [79, 85, 86]). During the fourth postnatal week (P21-P27), gait

maturation is complete, while striatal cholinergic morphology and

connectivity undergoes fine-tuning (Figures 1C, D; [54, 85, 86]).

The final striatal circuit is achieved in mice approximately

1 month after birth (P28+), when medium spiny neuron spine

density and excitability normalizes and cholinergic interneurons

lose their globose shape, larger somata, and complex branching

in favor of irregular shapes, fewer bifurcations, and dendrites

spanning up to 1 mm (Figure 1D; [75, 79, 81, 87]). Cortical,

thalamic, and dopaminergic afferents are also specifically

organized on mature cholinergic interneurons. Corticostriatal

synapses are the sparsest, and predominantly form on the distal

dendrites of cholinergic interneurons [87–90]. In contrast,

thalamostriatal synapses are the most abundant, concentrated
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on both the proximal dendrites and somata [87, 88, 90].

Dopaminergic afferents activate D1/D5 and D2 receptors,

which are similarly localized throughout the cell, dispersed

across the cholinergic somata and neurites [91–94]. The

spatial distribution and quantity of each excitatory synapse

type is not known for striatal cholinergic interneurons during

postnatal development, but likely differs from adults, when

dendritic remodeling and synaptic pruning is complete.

Characterizing synaptic inputs onto striatal cholinergic

interneurons throughout postnatal development may be

important for understanding the pathogenesis of

neurodevelopmental disorders, including DYT1 dystonia,

especially given that torsinA is intensely expressed in striatal

cholinergic interneurons from P14 to P21 and its functions have

been implicated in the secretory pathway and synaptogenesis

[37, 95, 96].

FIGURE 1
Striatal connectivity during development and locomotor maturation. (A) Schematic detailing the times (Embryonic day, E; Postnatal day, P) in
which major excitatory afferents (ctx = cortex, blue; Th = thalamus, magenta; SN = substantia nigra, orange) project into the developing mouse
striatum or are made internally (CPu = Caudate putamen, green). (B) Developmental timeline of striatal connectivity. Embryonic (E0–E20), perinatal
(P0–P3), neonatal (P3–P9), postnatal (P9–P15), pre-juvenile (P15–P26), and juvenile (P26–P60) refer to periods of mouse behavioral
development, as described in Fox, 1965 [54]. Mature neural properties emerge during the postnatal period (P9–P15, yellow). Locomotion becomes
refined and more adult-like in pre-juvenile mice (P15–P26, gray). (C) Abnormal motor behaviors manifest postnatally in a symptomatic DYT1 mouse
model, while striatal cholinergic interneuron (ChI) function, striatal innervation, and locomotion are maturing. Graphs were adapted by plotting
calculations performed on data published in different sources. Circuit Maturation was calculated from data published by McGuirt et al., (2021) [81],
licensed under CC BY 4.0. Locomotor Maturation was calculated from data published by Shriner et al., (2009) [86], with permission from Elsevier.
Circuit and locomotor maturation estimates (0%–100%) were calculated using the formula: % maturity = (developmental measurement/adult
measurement)*100%. Data included ChI firing (e.g., spontaneous firing frequency and coefficient of variation) and hindlimb placement
measurements (i.e., the last locomotor feature to develop). A percent estimate of 100% represents complete maturation of the property studied.
Synaptic innervation was measured by excitatory and inhibitory density values in the whole striatum, estimated from data published by Tepper et al.,
(1998) [80], with permission from Karger Publishers Percentages (0%–150%) represent the difference in innervation (excitatory, purple; inhibitory,
green) between pups and adults. Limb clasping and grid hang failures were the abnormal motor behaviors summarized. Percentages (0%–150%)
represent the cumulative expression of behaviors (Grid Hang % difference + Limb Clasping % difference) between control and Dlx-CKO mice. [24]
Calculations weremade using the limb clasping and grid hang failure data published in Pappas et al., (2015) [24], licensed under CC BY 4.0. Postnatal
day P. (D) Striatal ChI morphology and connectivity co-evolve, with peak dendritic complexity and innervation exhibited by Postnatal day (P)14.
Periods of neural (yellow) and locomotor (gray) maturation correspond to times of active ChI dendritic and synaptic remodeling in (C,D).
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Altogether, several developmental processes must be

coordinated within the mouse striatum during the first 4 weeks

of life to establish a functional, mature circuit and execute

movement. Whether striatal cholinergic synaptogenesis and

morphogenesis directs behavioral changes remains to be

elucidated, but their embryonic or conditional loss from the

forebrain supports this prospect [97, 98]. Additionally, some

DYT1 models (e.g., [24, 26, 27]) develop motor symptoms (P14-

P21) as cholinergic neuron firing and morphology matures

(Figures 1C,D; [79, 81]). During normal striatal

development, cholinergic interneurons fire with increased

frequency, pacemaking, and less irregularity from P14 to

P18, as excitatory synaptic input and dendritic branching

becomes refined [81, 99]. Prolonged synaptogenesis or

impaired pruning resulting in aberrant excitatory

connections onto striatal cholinergic interneurons may

explain why some DYT1 models have enhanced

acetylcholine tone or increased striatal cholinergic neuron

excitability (e.g., [24, 29, 42, 44, 46]) and are responsive to

anticholinergic interventions [24, 49]. Not only are

cholinergic interneurons particularly sensitive to changes

in excitatory input [88, 100, 101], but they also start making

connections themselves, onto neighboring cells from P15 to

P21, as evidenced by a drastic increase in background ChAT

staining [75]. Therefore, increased cholinergic excitation

would have downstream effects on medium spiny neuron

function, with one effect being increased synchronization

[102]. Human dystonia patients exhibit neuronal

synchronization in the globus pallidus internus (GPi) due

to burst-firing propagating from the striatum [102–106].

Burst-firing and neuronal synchronization is presumed to

underlie dystonic postures because behavior improves when

either are alleviated through GPi-targeted deep brain

stimulation (GPi-DBS) or anticholinergics [106–109].

Discussion

Here, I considered the development of striatal cholinergic

interneurons and their possible role in DYT1 pathogenesis. Not

only is striatal cholinergic interneuron dysfunction detected in

several DYT1 models, but cholinergic receptor expression is

altered in patients and anticholinergic medications are among the

leading treatment options to manage their motor symptoms [8, 10,

23, 24, 43, 44, 110]. However, not knowing the role of cholinergic

interneurons in dystonia limits our understanding of

antimuscarinic-based therapies and their efficacy in

DYT1 patients. Given that DYT1 has neurodevelopmental

origins and cholinergic interneurons are among the first striatal

cell type to be born and reach functional maturity, it is possible that

cholinergic interneurons are fundamentally involved in setting up a

dysfunctional striatal circuit. This phenomenon is found in other

motor regions and neurodevelopmental disorder models. For

instance, Purkinje cells are among the first cell type to be born

in the cerebellum (~E10.5–E12.5), and instructs the development of

granule cells, which constitute approximately 99% of the cerebellum

via neurochemical cues [111–113]. Altering Purkinje cell

functioning through pharmacological or genetic manipulations

disrupts interactions with granule cells and leads to aberrant

cerebellar circuit development and motor abnormalities

[114–118]. In the postnatal striatum, cholinergic interneurons

could direct innervation by excitatory afferents, which in turn

prompts medium spiny neuron maturation and supports motor

learning and execution. Cholinergic interneurons are in a position to

coordinate rudimentary connections with excitatory projections

because 1) cortical and dopaminergic afferents enter the striatum

when cholinergic neurons are postmitotic and active, but medium

spiny neurons are still being born [71, 74, 77]; 2) Cholinergic

neurons act as “gatekeepers” and control excitatory inputs onto

medium spiny neurons [119, 120]; 3) Cholinergic survival is

unaffected by early dopaminergic or cortical denervation [121].

Indeed, cholinergic interneurons modulate the development

of nigrostriatal pathways through expressing sonic

hedgehog and TrkA, a nerve growth factor receptor [122,

123]. Both sonic hedgehog and TrkA signaling in the

postnatal striatum maintains cholinergic cell numbers,

which is required for nigrostriatal connectivity [122].

Through proper nigrostriatal connectivity, dopamine is

released and guides medium spiny neuron maturation

[15, 16, 81]. TrkA expression is downregulated in adult

DYT1 patient and Dlx-CKO mouse model tissue [24],

suggesting cholinergic dysfunction in dystonia. If TrkA

signaling is dysregulated earlier, striatal connectivity

could be impacted.

While altered striatal cholinergic interneuron instruction is

possible, it is more likely that the striatal circuit develops

normally but later becomes abnormal. Evidence for this

hypothesis includes neonatal DYT1 mice exhibiting normal reflex

behaviors [24]. When reflex behaviors develop normally, it suggests

that underlying neural substrates are present and properly integrated

into the motor circuit [54]. Later dysfunction of these neural

substrates due to genetic insults, environmental stresses, or a

combination of both then contributes to the development of

abnormal behaviors [8, 124, 125]. In the Dlx-CKO mouse model

where neonatal, but not postnatal, behaviors are preserved [24], the

introduction of sensory inputs into themotor circuit may contribute

to this shift. In the striatum, sensory inputs start influencing circuit

function from P15 on, corresponding to a time of cortico-striatal

plasticity changes [126] and locomotor behavior refinement [54].

Both medium spiny neurons and striatal cholinergic interneurons

play integral roles in sensorimotor processing through their

integration of dopaminergic and glutamatergic inputs [127]. This

process is impaired in the hMT model, where plasticity or D2-

receptor signaling defects were found in developing medium spiny

neurons and striatal cholinergic interneurons [28, 29]. While similar

observations have been reported in adult Tor1aΔGAG/+, Tor1a+/−, and
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muscarinic receptor (M2/M4) double knockout mice [38, 128, 129],

determining how reproducible these electrophysiological

phenotypes are in development requires earlier timepoints.

Increased investigation into distinguishing the contributions of

medium spiny neurons from striatal cholinergic interneurons in

sensorimotor processing during development and across models are

also necessary.

Interestingly, what makes developing striatal cholinergic

interneurons individually equipped to integrate sensory

inputs (e.g., their D2 and corticotropin releasing factor type

1 (CRF-R1) receptors), could also provide an explanation for

the incomplete penetrance of DYT1 dystonia [79, 101].

Activation of D2 and CRF-R1 receptors enable reward as

well as alters striatal cholinergic interneuron activity

specifically in response to environmental cues [130, 131].

One prevailing hypothesis for the incomplete penetrance of

DYT1 is that loss of torsinA primes the circuit for dysfunction,

but symptoms only manifest if a secondary, external insult is

applied [125]. Since striatal cholinergic interneurons normally

express torsinA and can directly change their firing in

response to environmental cues, then this two-hit

hypothesis is plausible, despite not knowing the triggering

sensory event(s). Another possibility is that DYT1 dystonia

manifests when there is maladaptation or a lack of

compensation. Focal dystonia is a prime example of

maladaptation, where abnormal connectivity between the

basal ganglia, cerebellum, and cortex develops as a result of

repeatedly engaging muscles in prolonged motor tasks, such as

writing or playing an instrument [132]. Unlike focal dystonia,

maladaptation in DYT1 could result from changes occurring

during development because peak torsinA expression

coincides with periods of synaptogenesis in maturing

striatal cells. Indeed, both striatal cholinergic interneurons

and medium spiny neurons show evidence of increased

synaptic inputs through exhibiting larger somata,

increased membrane capacitances, and more spines [24,

37]. Alternatively, DYT1 dystonia could manifest due to a

lack of compensation, which is supported by animal model

studies. TorsinB is structurally and functionally similar to

torsinA and can rescue cellular and behavioral phenotypes in

Dlx-CKO mice, when overexpressed [133–136]. Reducing

torsinB levels in Dlx-CKO animal models worsens

DYT1 phenotypes, indicating that loss of torsinA drives

dysfunction while torsinB attempts to normalize

dysfunction [133]. Despite an early loss of torsinA (from

~E11), the timing of torsinB expression remains the same

( ≥ P14; [107, 108]). The emergence of motor symptoms

during peak torsinB expression reveal that the extent of

compensation depends significantly on torsin function

interchangeability and timing.

Questions remain regarding how involved striatal cholinergic

interneurons are in DYT1 pathophysiology, including: Are

cholinergic neurons main contributors to dystonic postures?

Are striatal cholinergic interneurons aberrantly connected?

Are observations detailing striatal cholinergic dysfunction in

adults conserved during development? Major limitations to

answering these questions is a lack of behavioral

reproducibility and consistency among cellular phenotypes

across preclinical DYT1 models. Standardizing experimental

readouts and testing various ages can help, but the lack of

reproducibility also stems from the biological and technical

requirements of different genetic models and an unclear

understanding of torsinA mutations in cholinergic neurons.

For example, some studies suggest that striatal cholinergic

excitation alone is not sufficient to elicit dystonia-like

behaviors [137, 138], but the duration of striatal cholinergic

excitation may be imperative for behavioral manifestation [52].

As for our understanding of pathogenic torsinA mutations, they

are hypothesized to result in a loss-of-function or dominant-

negative effect. Not knowing which mechanism(s) torsinA

mutations utilize—or which under what

circumstances—affects how we develop models and interpret

data. Accumulating evidence in human cells and DYT1 knockin

(Tor1aΔGAG/ΔGAG, Tor1aΔGAG/+) mice suggests that the ΔE
mutation results in a loss-of-protein-function [25, 27, 139].

Not only has torsinA been found to have a significantly

reduced half-life, but the protein also exhibits impaired

binding to enzymatic cofactors, LAP1 and LULL1, and

undergoes premature degradation culminating in decreased

protein levels [140–144]. Despite having strong evidence to

support torsinA loss-of-function, mutant torsinA (ΔE) also

has been shown to act in a dominant-negative manner by

mislocalizing and suppressing wild-type torsinA activity [139,

142, 145]. Studies that have dissected the molecular mechanisms

of torsinA mutations have not directly tested whether these

change between cell types, or more specifically whether loss-

of-function or dominant-negative mutant protein behavior is

conserved in cholinergic neurons. Several germline (e.g.,

Tor1a−/−) and conditional (e.g., Dlx-CKO, N-SKI)

DYT1 models cannot be used to answer this question because

they have been engineered using directed, loss-of-function

mutations, but mice heterozygous for murine ΔE-torsinA (e.g.,

Tor1ai-ΔGAG/+, Tor1aΔGAG/+) or overexpressing human ΔE-torsinA
(e.g., hMT) can be [24, 53, 146].

Overall better functional characterizations will improve

our understanding of dystonia, the cells contributing to its

pathophysiology, and the clinical relevance of basic

DYT1 research. This includes providing a timeline of the

physiological changes surrounding dystonia onset because

currently, there is no consensus on how early pathogenesis

begins. Already, there have been advances in elucidating

torsinA roles in nuclear-cytoplasmic communication [32,

147] and uniting behavior from preclinical and clinical work,

including the finding that both human patients and dystonia

animal models exhibit variable leg adduction [52]. Increased

knowledge will inevitably guide the development of more
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effective therapies by improving target specificity

and timing.
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