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Mutations in the GNAL gene, encoding Gαolf, are causative for an adult-onset,

isolated dystonia that may provide unique insights into the etiology of adult-

onset idiopathic dystonia. Gαolf is an alpha subunit of heterotrimeric G protein

that replaces Gαs in the striatum and has unique expression patterns outside of

the striatum. Gαolf additionally has defined molecular functions in GPCR

signaling. These defined molecular pathways and expression pathways point

to defined circuit deficits underlying the causes of this adult-onset dystonia that

may provide additional insights into broader idiopathic dystonia. Here, we will

review the available evidence for normal Gαolf function, and how this is

corrupted by GNAL mutations to cause dystonia. Thes include the molecular

signaling and expression profiles of Gαolf and the other G proteins, β2γ7,
complexedwith it., Additionally, we will discuss the circuits that Gαolf
influences, and how GNAL mutations may reorganize these circuits to

cause dystonia.
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Introduction

In 2013, the first mutations in GNAL were reported through whole exome sequencing

in 2 families with dystonia which revealed a nonsense mutation in one family and a

missense mutation in the other [1]. Further screening in 39 other families with dystonia

revealed another 6 autosomal dominant mutations in GNAL including nonsense,

missense, frameshift, and deletions [1]. The frequency of mutations in these families

was 19%, and suggested that mutations in GNAL may be a common cause of familial

dystonia. Subsequent studies have revealed at least 30 more pathogenic variants in GNAL

as well as rare autosomal recessive mutations that are linked to dystonia [1–8].

Additionally, recent evidence has also suggested that sporadic GNAL mutations are

linked to dystonia, and that >50% of all GNAL dystonia cases are sporadic [8–10]. These

genetic studies have suggested that GNAL linked dystonia is rarer than originally believed

with a frequency as low as 0.5% of familial dystonia attributed to mutations in GNAL [3].

Clinically, patients with mutations in GNAL are largely indistinguishable from

idiopathic dystonia [1–5, 10, 11]. Age of onset in patients is typically in adulthood

with age range at diagnosis between 7 and 68 years (average ages 31–42 years) [1, 8, 11].

Also, GNAL dystonia patients present with an isolated dystonia that often starts focally,

sometimes becomes segmental, and rarely becomes generalized [8]. The exception to this
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is the rare autosomal recessive mutations in GNAL which also

present with intellectual disabilities [6]. This high overlap in

clinical characteristics with idiopathic disease, as well as defined

gene function of GNAL discussed below, may make this form of

genetic dystonia an interesting model system to understand

synapses, circuits, and cells that are disturbed in dystonia, and

how these alterations can be manipulated for novel therapeutic

targets. Here, we review the known mechanisms of GNAL

mutations, the functions of its protein product Gαolf, and

discuss how these mutations may lead to dystonia.

Molecular signaling and expression
of Gαolf

GNAL encodes Gαolf which is an alpha subunit of a

heterotrimeric G protein [3, 12]. Gαolf is part of the GαS
family of alpha subunits [13]. Upon neurotransmitter

binding to the G protein coupled receptor, Gαolf switches

from a GDP bound state to GTP bound state, dissociates

from the receptor, and the G βγ subunits. Active Gαolf then
binds to adenylate cyclase type 5, activates this enzyme, and

leads to the production of the second messenger cAMP which

then acts on its many downstream targets including protein

kinase A, exchange proteins activated by cAMP (EPAC

proteins), and cyclic nucleotide gated ion channels (See

Figure 1) [14]. In order to inactivate Gαolf, GTP must be

hydrolyzed to GDP which can achieved by the slow intrinsic

GTPase activity of Gαolf and can be accelerated by regulator of

G signaling (RGS) proteins [13]. Normal signaling of Gαolf is
critical to the function of the striatum as Gαolf is the

determining factor in cAMP second messenger production in

the striatum [15–18]. Gαolf has an expression pattern that

points to a unique role for the above signaling in normal

basal ganglia function. Gαolf replaces GαS in the

predominant neuron types in the striatum, spiny projection

neurons. Additionally, Gαolf is co-expressed with Gαs in

cholinergic interneurons, and possibly other interneuron

classes, in the striatum [8, 19, 20]. This indicates that Gαolf
is the major signal transducing alpha subunit for pro-excitatory

neurotransmitters and their G protein coupled receptors in the

striatum with Gαolf coupling to the D1 dopamine receptor in

direct pathway spiny projection neurons and the adenosine 2A

receptor in indirect pathway spiny projection neurons [15].

While the signaling role for Gαolf in the striatum is better

defined, the role for Gαolf outside of the striatum is not well

understood. Gαolf is expressed in multiple brain nuclei. IHC

studies indicate Gαolf expression in Purkinje Cells of the

cerebellum and dopaminergic cells of the substantia nigra

pars compacta [8]. RNAseq and proteomics studies have

supported even further widespread expression including in

multiple cortical regions, thalamus, and amygdala [21–23].

However, receptors to which Gαolf couples in these regions

are not understood, and in many cases the cell type or types that

expressGαolf in these regions are notwell understood.Understanding
the complete expression profile of Gαolf with cell type specificity will

aid in understanding the mechanisms and networks that are

corrupted by mutations in GNAL to lead to dystonia.

Mechanisms of mutations in Gαolf
In the original paper describing the first mutations in GNAL,

bioluminescence resonance energy transfer experiments gave the

first evidence that disease associated mutations were loss of

function mutations [1]. These experiments tagged the βγ
subunits associated with Gαolf with the venus acceptor in this

system and a downstream effector of βγ, GIRK, with the

luciferase donor. Upon stimulation of the D1 dopamine

receptor, mutations showed decreased association of βγ with

GIRK, and suggested that mutations in GNAL represent loss of

function mutations as they disrupt normal dopamine signaling

through the D1 dopamine receptor [1]. However, the original

description of the effects of GNAL mutations did not examine

Gαolf dependent functions such as cAMP production.

More recently, however, the effects of GNAL mutations on

Gαolf function have been examined in exquisite detail [12]. As

discussed above, Gαolf is critical not only for the activation of

adenylate cyclase and the production of cAMP, but also in

formation of the heterotrimeric G protein complex,

sequestering βγ from being active, and also termination of the

signal through hydrolysis of GTP [12, 13]. These studies

rigorously examined the effects of the known mutations at the

time of the study on the full spectrum of molecular events that

Gαolf is associated with. These studies revealed that, with respect

to normal, well-regulated dopamine signaling, known mutations

in GNAL are loss of function, but that the effects of the mutations

on Gαolf function are significantly more nuanced than previously

appreciated.

Each of the mutations had distinct effects on stability of Gαolf,
formation of the trimer, G protein activation, signal termination,

cAMP production, and basal signaling which led to each

mutation having a distinct functional phenotype [12].

Interestingly, some of the mutations led to increased basal or

dopamine induced cAMP production which would more

traditionally appear as gain of function mutations. However,

despite this increased basal or induced cAMP production, these

mutations still represent a loss of function with respect to normal

response to dopamine release [12]. This challenges the simple

assignment of gain or loss of function to GNAL linked dystonia,

and highlights the complicated molecular mechanisms behind

mutations in GNAL. Furthermore, when these differential

mutation effects on Gαolf are compared to dystonia severity or

symptom clusters, the mutation effects do not significantly

associate with any phenotype [12]. This suggests that although

diverse in their mechanism, mutations in GNAL lead to an
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isolated dystonia phenotype through diverging from a narrow

range of normal Gαolf activity.

Signaling partners of Gαolf also are
associated with dystonia

Giving further validity to the critical nature of normal levels

of Gαolf signaling are further human genetic studies that point to

proteins both upstream and downstream of Gαolf as causative for
dystonia. Mutations in five genes (GCH1, TH, PTS, SPR, and

QDPR) that lead to disruption of the synthesis of dopamine are

causative for dystonia [24–28]. Also upstream of Gαolf, mutations

in the D1 dopamine receptor (DRD1) are linked to infantile

parkinsonism-dystonia and tardive-like dystonia [29, 30].

Downstream of Gαolf, there are dystonia associated mutations

in ADCY5, encoding adenylate cyclase 5, the enzyme responsible

for the second messenger cAMP [31]. Further downstream

enzymes, including PDE2A and PDE10A which are

phosphodiesterase’s responsible for metabolizing cAMP to

AMP are causative for a neurological syndrome that includes

dystonia as a symptom [32, 33]. Also, mutations in DARPP-32, a

signal transducing protein of the cAMP effector protein kinase A

are dystonia linked [34]. These mutations upstream and

downstream of Gαolf show that disrupting normal dopamine

signaling can cause dystonia. However, there is one key difference

between GNAL mutations and mutations for the other proteins

in this pathway, Other than rare bi-allelic autosomal recessive

mutations in GNAL [6], these autosomal dominant mutations in

GNAL lead to an isolated dystonia which is usually adult onset.

However, these other mutations in the Gαolf pathway often

produce a neurological disorder that has dystonia as a

symptom of a larger clinical syndrome, rather than in

isolation, with juvenile age of onset. Why GNAL mutations

are unique in this regard are not known, but point to a

unique opportunity for utilizing GNAL to understand the

pathophysiology of dystonia.

Gαolf dysfunction is associated with
other movement disorders

While not genetically linked to other movement disorders,

alterations in expression and activity of Gαolf are associated with

Parkinson’s Disease and treatment induced dyskinesia [35]. This

is most notable in levodopa induced dyskinesia, which is an

adverse effect of the gold-standard of treatment for Parkinson’s

disease. In levodopa induced dyskinesia, expression levels of

Gαolf are associated with development and severity of

dyskinesia in experimental models of this disorder, and not

upstream receptors or neurotransmitters [35–38]. This points

to an important role of Gαolf activity in the regulation of normal

movement, and also a unique role of aberrant Gαolf activity in

producing abnormal movement. However, how Gαolf activity can
differentially alter striatal output and basal ganglia activity to

produce different disease states is not known.

Possible βγ contributions to
GNAL dystonia

Gα subunits in the GDP bound state sequester Gβγ, and
prevent the Gβγ subunits from interacting with their effector

proteins [13]. In the striatum, Gαolf couples to β2γ7 to form a

form the functional heterotrimeric G protein [17, 18]. While the

levels of expression of individual components of the

heterotrimeric G protein are linked, decreased expression or

removal of a single component the heterotrimeric G protein

does not completely eliminate the other G protein components.

For example, genetic removal of Gαolf or γ7 reduces the

expression of the other, but does not eliminate it [12, 39].

Additionally, even in GNAL mutations that increase turnover

of Gαolf or reduces stability of the trimer, there is still observable

expression of β2γ7 [12]. This has led to all mutations in GNAL

having observable unsequestered β2γ7 [12]. The consequences of
this unsequestered and freely active β2γ7 are unknown. However,

there are several possibilities. βγ subunits modulate the activity of

several effector proteins including activation of phospholipase C,

activation of GIRK channels, and inhibition of N, P, and Q type

calcium channels [40–43]. Interestingly, one of the primary

effectors of Gβγ, GIRK, are not expressed in striatal spiny

projection neurons [44]. Unregulated modulation of these

effectors by unsequestered β2γ7 could have profound effects

on neuronal physiology and alter striatal activity. However,

how unsequestered β2γ7, and possibly other βγ subunits in

cells expressed outside the striatum, contribute to the

development, maintenance, or expression of dystonia

remains untested.

Models of GNAL linked dystonia

Gαolf expression and function were originally described in

the olfactory epithelium where it is a key mediator of odorant

receptor signaling. A global knockout of GNAL was made to

study Gαolf in this context, and found that homozygous knockout

ofGNAL results in anosmia [19]. Also, due to feeding deficits, the

majority of homozygous knockout mice die in early postnatal

development. The original report of these mice showed that these

homozygous knockout mice were paradoxically hyperactive, but

the effects of GNAL loss on motor systems was confounded by

the failure to thrive of global knockout mice that survived post

weaning [19]. Heterozygous mice, however, are viable, have

normal olfactory function, and are of comparable weight to

wildtype littermate controls. These heterozygous mice do not

display alterations in gross locomotor ability, but do have rotarod
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deficits that are progressive with age [45]. More recently, a

heterozygous GNAL rat was developed, but displays similar

motor deficits to the mouse with decreased spontaneous

locomotion and rotarod deficits [46]. However, both the

mouse and the rat GNAL model do not display overt dystonia

like motor deficits in both visual observation based assays as well

as EMG [45, 46].

Key findings from rodent models
of dystonia

Despite the general lack of overt dystonic symptoms in the

GNAL heterozygous mice and rats, these models have driven

valuable understanding of how loss of Gαolf alters the central

nervous system, and have given possible electrophysiological and

biochemical endophenotypes of neuronal dysfunction to link to

dystonic symptoms. First, the GNAL heterozygous mouse can

have abnormal movements induced by administration of the

non-selective muscarinic acetylcholine receptor agonist

oxotremorine either through intraperitoneal injection or

microinjection into the dorsal striatum but not the cerebellum

[45]. GNAL heterozygous mice are more sensitive than littermate

controls to administration of oxotremorine, regardless of route of

administration, which points to an important role for cholinergic

interneurons of the striatum in regulating GNAL linked dystonia.

Second, rodent models have pointed to electrophysiological

alterations in basal ganglia physiology that may be important to

the generation of dystonic motor phenotypes. Interestingly,

GNAL heterozygosity did not alter intrinsic properties of

striatal spiny projection neurons in the rat model of GNAL

with no changes in resting membrane potential, membrane

resistance, or rheobase current [46]. Additionally, no baseline

differences in cortico-striatal evoked post-synaptic currents or

paired pulse ratio was observed. However, there was significant

impairment of cortico-striatal long-term depression that was

partially ameliorated through application of D1 and D2

dopamine receptor agonists and fully ameliorated through

Adenosine2A receptor agonists [46]. These electrophysiological

findings have pointed to a potential unique role in altering

activity dependent striatal activity, and altering striatal

processing of cortical inputs.

Next, rodent models of GNAL have pointed to nuclei outside

of basal ganglia as being altered by GNAL heterozygosity. As

discussed above, Gαolf is expressed in Purkinje Cells of the

cerebellum [20]. Using in vivo electrophysiology and

optogenetics, recent evidence has shown that in both an

asymptomatic state and oxotremorine induced abnormal

movement state, cerebellar connectivity to cortical and

thalamic nuclei is altered [47]. At baseline, GNAL

heterozygous mice have decreased cerebello-thalamic plasticity

induced by deep cerebellar nuclei stimulation [47]. Also, after

abnormal movements were induced through oxotremorine

administration, both cortical and thalamic inputs from the

cerebellum were altered after deep cerebellar nuclei

stimulation [47]. Interestingly, this alteration in cerebellar-

thalamic activity may drive striatal dysfunction as well

through decreased connectivity to fast spiking interneurons in

GNAL heterozygous mice [47].

However, an important caveat to all of these key findings is

the lack of overt dystonic symptoms in these models which

prevents the unambiguous link between electrophysiological and

biochemical endophenotypes to dystonic symptoms.

Development of rodent models that harbor the patient derived

mutations in GNAL or a Gnal floxed mouse that allows for the

conditional removal of Gnalmay prevent the post-natal lethality

of the global Gnal knockout mouse, and allow for the

development of dystonia like movements in mice. This will be

critical for understanding of the neuronal changes induced by

mutations in GNAL to cause dystonia.

Targeting Gαolf for
therapeutic benefit

Due to levels and activity of Gαolf being associated with other
movement disorders, directly targeting Gαolf with small

molecules may not be the optimal strategy to target GNAL

linked dystonia [36, 37]. Also, due to the diversity of

mechanisms of GNAL mutations, directly targeting Gαolf may

prove impractical as well [12]. Instead, targeting known

modifiers of Gαolf function may provide greater efficacy. One

possibility is the M4 muscarinic acetylcholine receptor [48, 49].

M4 directly opposes Gαolf and D1 dopamine receptor activity in

direct pathway spiny projection neurons with M4 activation

inhibiting adenylate cyclase and subsequent cAMP production

[50]. Removing this inhibition of adenylate cyclase in direct

pathway spiny projection neurons through M4 selective

inhibitors may help to restore normal striatal output and

basal ganglia activity to reduce dystonic symptoms [48, 49,

51]. Currently used small molecule therapeutics for dystonia

may point to this treatment path as being promising. The non-

selective muscarinic antagonist trihexyphenidyl remains a

mainstay of treatment options for dystonia, but is not well

tolerated by patients due to adverse effects [52, 53]. Selective

M4 antagonists may provide efficacy in GNAL linked dystonia

without the adverse effects of non-selective muscarinic

antagonists. The first series of truly M4 selective antagonists

have recently been developed [54], and the extent of their

potential efficacy and liabilities has been highlighted in recent

reviews [48, 49].

The defined signaling pathway of Gαolf also provides several
additional possible therapeutic strategies for GNAL linked

dystonia. Targeting modifiers of Gαolf which are downstream

of Gαolf itself will likely be important, as targeting upstream

proteins of Gαolf will likely not alter downstream signaling
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sufficiently. Activators of adenylate cyclase to boost cAMP

levels itself may provide therapeutic benefit, but keeping the

timing of cAMP production in sync with upstream

neurotransmitter release will be challenging and may limit

therapeutic efficacy [55]. Similarly, increasing cAMP through

inhibiting its metabolism through phosphodiesterase may

provide therapeutic efficacy, but may not allow for precise

control of cAMP production in response to upstream

neurotransmitter signaling [56]. Targeting of downstream

effectors of cAMP produced by Gαolf such as downstream

targets of protein kinase A and cyclic nucleotide gated

channels also possible [57, 58], but further understanding of

how these targets are altered in pre-clinical models of GNAL

dystonia will be necessary.

Discussion

Mutations in GNAL are associated with both sporadic and

familial dystonia [8]. These mutations lead to an adult onset

dystonia that is usually not co-morbid with other disorders [1,

8]. This and other clinical characteristics of GNAL linked

dystonia, suggest that this form of genetic dystonia may

possibly have significant clinical and pathological overlap

with idiopathic dystonia. This may represent a unique

opportunity within dystonia research to utilize GNAL linked

dystonia both in pre-clinical research and clinical research to

determine, define and delineate the brain nuclei, cell types, and

molecular events that are disturbed to cause disease.

Translationally, this may represent unique opportunities for

the design of rationale therapeutic strategies for a disease

with few efficacious, well tolerated, or non-invasive therapies.

Current animal models of GNAL linked dystonia have shown

both striatal and cerebellar abnormalities, and a possible

important role for striatal cholinergic signaling as a

consequence of loss of Gαolf [45, 47, 59]. However, lack of

overt dystonic symptoms in animal models of GNAL dystonia

have prevented directly tying electrophysiological and

biochemical endophenotypes with expression of dystonic

motor phenotypes, and resulting in uncertainty over if these

pathways are necessary or sufficient to drive dystonic motor

phenotypes. Additionally, there are several open questions over

the circuits, neuron types, andmolecular signaling pathways that

are altered to cause dystonia in these model systems. Generation

of humanized mice that express the patient specific mutant

forms of Gαolf or floxed mice that will allow for the

conditional removal of Gαolf in specific cell types may allow

for the development of symptomatic mice to directly address

these questions. Further dissection of the mechanisms behind

how mutations in GNAL lead to dystonia hold promise as a

platform not only to mechanistically understand dystonia, but

also as a platform to develop and test new anti-

dystonic therapies.
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FIGURE 1
Normal Signaling Pathway of Gαolf: At rest Gαolf is complexed with βγ subunits (β2γ7 in spiny projection neurons) into an inactive heterotrimer.
When neurotransmitter binds to its GPCR, Gαolf switches GDP for GTP, causing the heterotrimer to disassociate and its components are now active.
Gαolf will bind to and activate adenylate cyclase 5, and leads to the production and accumulation of the secondmessenger cAMP. cAMP has a number
of effector proteins including protein kinase A (PKA), exchange proteins activated by cAMP (EPAC), and cyclic nucleotide gated channels. β2γ7
also will modulate the activity of several enzymes and channels. These include G-protein gated inward-rectifying potassium channels (GIRK), voltage
gated calcium channels, N, P, and Q type calcium channels, as well as phospholipase C. Created with BioRender.com.
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