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Introduction: In preceding work, a deleterious REEP4 variant [GRCh38/hg38,

NC_000008.11:g.22140245G>A, NM_025232.4:c.109C>T, p.Arg37Trp] was

found to co-segregate with blepharospasm (BSP) in a large African-

American pedigree. Other REEP4 variants have been reported in genetic

screening studies of dystonia. The REEP4 paralogs, REEP1 and REEP2, are

associated with spastic paraplegia. The causal contributions of REEP4

variants to dystonia and other neurological disorders remains indecisive.

Methods: Sanger sequencing was used to screen subjects (N = 307) with BSP

and BSP-plus dystonia affecting additional anatomical segments (BSP+)

phenotypes for variants in REEP4. In silico tools were used to examine the

deleteriousness of reported (ClinVar) and previously published REEP4 variants.

Results: No highly deleterious variant was identified in coding or contiguous

splice site regions of REEP4 in our cohort of 307 subjects. In silico analysis

identified numerous deleterious REEP4 variants in published screening studies

of dystonia and several highly deleterious single nucleotide REEP4 variants

in ClinVar.

Conclusion: Highly deleterious REEP4 variants are rare in BSP and BSP+

phenotypes.
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Introduction

Blepharospasm (BSP) is a focal dystonia characterized by involuntary orbicularis oculi

spasms that are usually bilateral, synchronous, and symmetrical [1]. BSP typically spreads

to nearby craniocervical segments, including the lower face, masticatory muscles, and

neck, resulting in segmental craniocervical dystonia [2, 3]. The term BSP-plus (BSP+) is

used to describe individuals with BSP who experience further spread to additional

anatomical segments [2–4].

A notable percentage of BSP probands have at least one 1st-degree relative with

dystonia [5–8]. Defazio and co-workers [8] examined 233 relatives of 56 probands with

isolated BSP and found a 1st-degree relative affected by BSP or other anatomical

distribution of dystonia in 27%. Penetrance is approximately 20% in pedigrees with
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BSP [8, 9]. For comparison, penetrance of the classic ΔGAG
mutation in TOR1A (DYT1) is 30%–40% [10]. Approximately

10% of subjects in published biorepositories of isolated dystonia

report a relative with dystonia [11–15].

Even though late-onset isolated dystonias including BSP and

BSP+ have a notable heritable component, large pedigrees

adequately powered for linkage analysis are rare. Although

rare cases of isolated BSP have been linked to THAP1

mutations [16], the genetic underpinnings of this important

focal dystonia remained largely unknown until identification

of a deleterious co-segregating REEP4 variant [GRCh38/hg38,

NC_000008.11:g.22140245G>A, NM_025232.4:c.109C>T,
p.Arg37Trp] in seven subjects with BSP or BSP+ from a 3-

generation African-American BSP/BSP+ pedigree [17]. Follow-

up screenings of large cohorts of patients with BSP and other

forms of dystonia for REEP4 variants is a logical and necessary

next step in the study of BSP [18, 19]. Additional REEP4 variants

have been identified in single cases of BSP, but to our knowledge,

no other highly deleterious and co-segregating variants have been

reported in other multiplex pedigrees.

REEP4, a member of the receptor expression-enhancing

protein (REEP) family, contributes to nuclear pore formation

[20]. Other dystonia-associated genes (TOR1A and NUP62) play

critical roles in nuclear pore functions including

nucleocytoplasmic trafficking [21, 22]. Spastic paraplegia

(SPG) has been linked to mutations in other family members

(REEP1/SPG31 and REEP2/SPG72). Although not yet reported

in SGP31 and SPG72, dystonia is a phenotypic feature of many

SPGs [23]. In aggregate, existing genetic, cellular, and clinical

data suggest that REEP4 is a candidate gene for dystonia and

other neurological disorders.

Materials and methods

The DNA samples used in this study were collected by the

Dystonia Coalition (DC) and acquired from the Coriell Institute

for Medical Research (Camden, New Jersey, United State). The

DC is part of the Rare Diseases Clinical Research Network, which

is funded by the National Institutes of Health and led by the

National Center for Advancing Translational Sciences (NCATS).

The DC is funded under a grant (U54NS116025) as a

collaboration between NCATS and the National Institute of

Neurological Disorders and Stroke. DNA analyses were

approved by the University of Memphis Institutional Review

Board. The cohort reported herein consisted of 307 subjects with

BSP (N = 200) or BSP+ (N = 107) phenotypes. BSP+ phenotypes

included subjects with BSP along with various combinations of

lower facial, oromandibular and cervical dystonia. There were

224 females and 83 males with ages of acquisition ranging from

19 to 87 years. The median age at acquisition was 63 years with a

mean ± standard deviation of 63.1 ± 11.0 years. Self-declared

races included 259 whites, 1 Native American, 1 Pacific Islander,

11 Asians, 20 African Americans, 5 multi-racial, and 10 of other,

not reported, or unknown race.

Genome assembly GRCh38.p14 served as the reference for

primer design and variant annotation. Primers were designed to

cover the coding regions of REEP4 along with exon-intron

boundaries (Supplementary Table S1). Sequencing also

extended into proximal intergenic regions 5′ and 3′ to REEP4.

Unidirectional Sanger sequencing was completed in the entire

cohort of 307 subjects with BSP and BSP+ phenotypes.

Bidirectional Sanger sequencing was used to confirm all

identified variants.

ClinVar [24] and PubMed were analyzed for reported and

published REEP4 variants up to 15 July 2023. PubMed was

interrogated with the search terms dystonia, blepharospasm,

gene, genetics, mutation, genetic variant, Meige, and REEP4.

The gnomADV3.1.2 database was used to assess the frequency of

these variants in a larger population [25, 26]. The v3.1.2 data set

includes 76,156 whole genomes mapped to GRCh38/hg381.

CADD-Phred-scores [27, 28], MetaLR [29], and REVEL [30]

were used to access variant deleteriousness. A CADD-Phred

score of 10 indicates that the variant is among the 10% most

deleterious in the genome, a score of 20 indicates that the variant

is among the 1% most deleterious variant in the genome, and so

on. Pathogenicity classification followed the standards set by the

American College of Medical Genetics and Genomics [31],

considering factors such as population data, variant databases,

co-segregation, disease databases, and location of the variant

within established functional domains of the encoded protein.

Variants were classified by suggested terminology: “pathogenic,”

“likely pathogenic,” “uncertain significance,” “likely benign,” and

“benign.” The gnomAD v3.1.2 data set was examined for putative

loss-of-function (pLoF) variants.

Results

No highly deleterious variants were identified in our cohort

of 307 subjects (Table 1). One variant (NM_025232.4: c.129T>A,
NP_079508.2:p.Ile43Ile) resulted in an Exon 3 synonymous

change from Isoleucine (Ile) to Isoleucine (Ile). Although

mildly deleterious (CADD = 9.78), the c.129T>A variant was

present in a higher percentage (7.7%) of gnomAD v3.1.2 alleles

(z = −4.89, p < 0.0001). This variant is located within a

ZNF263 binding site [32] (OREG1946722) and could play a

role in gene expression. Five of the identified variants were non-

coding. In comparison to our BSP/BSP+ cohort, all these variants

were present in a higher percentage of gnomAD v3.1.2 alleles.

On 28 July 2023, ClinVar reported clinical significance for

93 variants (1 likely benign, 22 of uncertain significance, 4 likely

1 https://gnomad.broadinstitute.org/stats
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pathogenic, and 66 pathogenic). Of the 66 pathogenic variants,

57 were duplications and 7 were deletions, all large structural

variants affecting more than one gene. Of the 16 single nucleotide

variants (SNVs), 1 was likely benign and 15 were of uncertain

significance (Table 2). All SNVs were associated with an “inborn

genetic disease” and deposited by a single submitter. Thirteen of

these SNVs are highly deleterious to protein function with

CADD scores >20 (Table 2). The variants are distributed

across the encoded REEP4 from amino acid (aa) residues

16 to 226 (REEP4 Isoform 1 = 257 aa).

Three REEP4 screening studies have been published to

date. Hammer and colleagues [18] examined 132 patients

(116 white) diagnosed with BSP or BSP+ phenotypes. A

second study included 78 Han Chinese [19] and a third

study from Hungary screened 47 nonrelated patients with

BSP and 74 patients with cervical dystonia [32]. A total of

70 patients harbored a REEP4 variant. A total of 19 variants

were reported in the literature. The most common (N = 27)

was the synonymous variant (p.Ile43Ile) in Exon 3. Seven

published variants included in Table 2 have CADD-Phred

scores >20.0 but 3/7 have population prevalence rates above

0.01% (>1/10,000). We classified 10 of the 19 published

variants as benign due to CADD-Phred scores <10 and

high population prevalence rates. The p.Arg37Trp variant

[17] was classified as likely pathogenic due to positive co-

segregation in a large pedigree, CADD-Phred score >30, high
REVEL and MetaLR scores, and low population prevalence.

The other 8 variants were classified as “uncertain

significance.”

A total of 11 unique unflagged pLoF REEP4 variants is

reported in 12 individuals within the gnomAD

v3.1.2 database. Nine of these variants are in coding regions

of REEP4 (7 frameshift, 2 stop gained), and two are splice

acceptors. CADD-Phred scores for these pLoF variants range

from 25.7 to 45.0 with a mean of 31.9. The gnomAD

v3.1.2 database does not provide Loss Intolerance probability

(pLI). For the gnomAD v2.1.1 database, the pLI score for

REEP4 is 0.03.

Discussion

Without comprehensive co-segregation analyses in pedigrees

with dystonia and trio analyses in early-onset neurological

disorders, it is not possible to convincingly ascribe

pathogenicity to published and reported REEP4 variants.

Moreover, the study of dystonia genetics is compromised by

subtle phenotypes, incomplete penetrance, possible pleiotropy,

and the largely unexplored possibilities of recessive and

oligogenic inheritance patterns. Assuming penetrance of 20%

for a BSP-associated gene and BSP population prevalence of

50–100 cases per million [34], a possibly pathogenic variant

should be seen in no more than 20/100,000 alleles. The variants

tabulated herein that exceeded that threshold are unlikely to be

causal in monogenic fashion.

In addition to lack of co-segregation analyses (e.g., phenotyping

and genotyping all available family members) there are other

obvious limitations to our screening study. First, Sanger

TABLE 1 REEP4 (GRCh38/hg38, NC_000008.11, NM_025232.4) variants identified with Sanger sequencing.

Variant Number of
subjects

Allele
count

Homozygotes Protein gnomAD
v3.1.2 allele
frequency

CADD
Phred-
scaled

Clinical
significance

NM_025232.4:c.418-
43A>T (rs56401147)

73/307 (24%) 98/
614
(16.0%)

15 NA (intronic) 34,782/152,086
(22.87%)

0.127 Benign

NC_000008.11:
g.22137633C>G
(rs79472476)

7/307 (1.63%) 7/
614
(1.14%)

0 NA
(downstream)

2,421/152,174 (1.59%) 2.76 Benign

NC_000008.11:
g.22137584G>T
(rs12676497)

57/307 (11.07%) 62/
614
(10.1%)

5 NA
(downstream)

29,058/151,988
(19.12%)

0.091 Benign

NM_025232.4:c.129T>A
(rs35574275)

15/307 (4.89%) 15/
614
(2.44%)

0 NP_079508.2:
p.Ile43Ile

11,722/152,116 (7.71%) 9.78 Benign

NC_000008.11:
g.22142150A>C
(rs76026658)

9/307 (2.93%) 9/
614
(1.47%)

0 NA (upstream) 5,989/152,200 (3.94%) 1.66 Benign

NM_025232.4:c.418-
25C>T (rs73549542)

7/307 (1.95%) 7/
614
(1.14%)

0 NA (intronic) 4,029/152,238 (2.65%) 0.036 Benign

NA, not applicable.
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TABLE 2 REEP4 variants reported by NCBI’s ClinVar and PubMed.

Variant (accession) Protein change Condition (number
of probands)

Clinical
significance

gnomAD v3.1.2
(allele frequency)

CADD-
Phred

MetaLR REVEL Reference

c.48G>C (SCV003984452.1) p.Met16Ile Inborn genetic disease (N = 1) Uncertain
significance

2/152,270 23.1 0.55 0.24 [33]

c.101A>T (SCV003692342.1) p. Glu34Val Inborn genetic disease (N = 1) Uncertain
significance

6/152,114 33.0 0.93 0.94

c.116T>C (SCV003757666.1) p. Met39Thr Inborn genetic disease (N = 1) Uncertain
significance

0 26.6 0.87 0.91

c.118A>T (SCV003678640.1) p. Met40Leu Inborn genetic disease (N = 1) Uncertain
significance

5/152,096 29.0 0.84 0.82

c.160G>A (SCV003750691.1) p.Val54Ile Inborn genetic disease (N = 1) Likely benign 0 0.04 0.35 0.19

c.250G>A (SCV003734663.1) p. Ala84Thr Inborn genetic disease (N = 1) Uncertain
significance

12/152,152 24.1 0.85 0.69

c.371G>A (SCV003558622.1) p. Arg124Gln Inborn genetic disease (N = 1) Uncertain
significance

6/152,226 23.6 0.42 0.41

c.382A>G (SCV003620006.1) p. Ile128Val Inborn genetic disease (N = 1) Uncertain
significance

0 17.9 0.45 0.19

c.436G>A (SCV003759714.1) p. Gly146Ser Inborn genetic disease (N = 1) Uncertain
significance

29/152,214 23.6 0.54 0.30

c.436G>T (SCV003974326.1) p.Gly146Cys Inborn genetic disease (N = 1) Uncertain
significance

0 26.4 0.75 0.53

c.473C>T (SCV003900529.1) p. Ser158Phe Inborn genetic disease (N = 1) Uncertain
significance

1/152,242 22.5 0.60 0.25

c.475A>T (SCV003730928.1) p. Ile159Phe Inborn genetic disease (N = 1) Uncertain
significance

27/152,196 22.6 0.56 0.32

c.583G>A (SCV003888930.1) p. Asp195Asn Inborn genetic disease (N = 1) Uncertain
significance

22/152,192 21.7 0.33 0.19

c.634G>C (SCV003759638.1) p. Ala212Pro Inborn genetic disease (N = 1) Uncertain
significance

0 5.3 0.33 0.11

c.662G>A (SCV004002432.1) p.Arg221His Inborn genetic disease (N = 1) Uncertain
significance

14/152,208 23.4 0.59 0.49

c.676C>T (SCV003893236.1) p. Arg226Cys Inborn genetic disease (N = 1) Uncertain
significance

1/152,226 27.0 0.61 0.59

c.109C>T (NM_025232.4) p. Arg37Trp BSP/BSP+ (N = 1) Likely pathogenic 3/152,168 31.0 0.960 0.77 [17]

(Continued on following page)
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TABLE 2 (Continued) REEP4 variants reported by NCBI’s ClinVar and PubMed.

Variant (accession) Protein change Condition (number
of probands)

Clinical
significance

gnomAD v3.1.2
(allele frequency)

CADD-
Phred

MetaLR REVEL Reference

c.-404_-401delAAGT (NM_025232.4) NA BSP (N = 3) Uncertain
significance

96/152,274 21.1 NA NA [19]

c.129T>A (NM_025232.4) p.Ile43Ile BSP (N = 4 + 23 = 27) Benign 11,722/152,116 9.78 NA NA [18, 19]

c.303 + 137G>C (NM_025232.4) NA BSP (N = 5) Benign 54/152,204 3.15 NA NA [19]

c.304-8G>T (NM_025232.4) NA BSP (N = 2) Benign 124/152,174 0.025 NA NA [19]

c.446G>A (NM_025232.4) p. Arg149Gln BSP (N = 3) Uncertain
significance

501/152,226 29.6 0.4856 0.73 [19]

c.418-43A>T (NM_025232.4) NA BSP (N = 6) Benign 34,782/152,086 0.13 NA NA [19]

c.*170_*188del (NM_025232.4) NA BSP (N = 8) Benign 18,507/152,046 8.51 NA NA [19]

c.649C>T (NM_001316964.2) p.Arg217Cys BSP (N = 3) Uncertain
significance

1/152,226 9.34 0.66 0.20 [19]

c.*39C>T (NM_025232.4) NA

c.182 + 17C>T (NM_025232.4) NA BSP (N = 2) Benign 174/152,206 0.22 NA NA [18]

c.312C>T (NM_025232.4) p.Asp104Asp BSP (N = 1) Benign 738/152,206 1.18 NA NA [18]

c.418-12T>C (NM_025232.4) NA BSP (N = 1) Benign 0 2.00 NA NA [18]

c.538C>T (NM_025232.4) p. Arg180Trp BSP (N = 1) Uncertain
significance

8/152,232 20.2 0.3472 0.34 [18]

c.539G>A (NM_025232.4) p. Arg180Gln BSP (N = 1) Benign 2,415/152,220 4.28 0.2425 0.16 [18]

c.553 + 28T>C (NM_025232.4) NA BSP (N = 1) Benign 2,427/152,206 3.95 NA NA [18]

c.661C>T (NM_025232.4) p. Arg221Cys BSP (3 subjects) (N = 3) Uncertain
significance

703/152,212 24.0 0.4778 0.33 [18]

c.*95_*96insTCCACGTCTGTG
(NM_025232.4)

p.Val251_Pro252insSerThrSerVal BSP (N = 1) Uncertain
significance

195/152,226 17.0 NA NA [18]

c.538C>T (NM_025232.4) p.Arg180Trp Cervical dystonia (N = 1) Uncertain
significance

8/152,232 20.2 0.44 0.34 [32]

c.734G>A (NM_025232.4) p.Arg245Gln BSP (N = 1) Uncertain
significance

30/152,110 21.2 0.38 0.12 [32]

NA, not applicable.
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sequencing will often miss exonic deletions and large structural

variants. Second, our study was limited to BSP as driven by our

previous identification of REEP4 p.Arg37Trp in an African-

American family. It is possible that REEP4 plays a more

important role in other forms of focal dystonia or spastic

paraplegia. In this regard, a novel variant in ATP5MC3 co-

segregated with both dystonia and spastic paraplegia in a large

multiplex pedigree [35]. Third, we have not characterized the

biological effects of individual variants using cellular, invertebrate,

or vertebrate model systems. In silico assessments of deleteriousness

are informative but, in isolation, cannot establish causality.

The REEP family of REEP1-6 can be divided into subfamilies

REEP1-4 and REEP5-6. The REEP1-4 subfamily can be separated

into REEP1-2 and REEP3-4 groups based on structural/

functional similarities [36]. While REEP1 and REEP2 are

linked to HSP, REEP6 is associated with retinitis pigmentosa

77 [37]. REEP3 and REEP5 have not yet been associated with

specific neuro-ophthalmological or general medical disorders.

REEP4 protein is expressed in regions of the brain (basal ganglia

and cerebellum) that play a role in the pathophysiology of

dystonia2, and very few pLoF variants are included in the

gnomAD v3.1.2 database. This information suggests a possible

role for REEP4 in neuro-ophthalmological disorders. In this

regard, the gnomAD v2.1.1 pLI score for single nucleotide

variants must be recognized but interpreted with caution [38].

Several non-coding intronic and nearby intergenic REEP4

variants were identified in our screening study but all of these

were present at higher frequency in the gnomAD

v.3.1.2 database. These differences in allele frequency are likely

due to population stratification since the majority of Coriell DC

samples were likely collected from only a few high enrolling sites

whereas the gnomAD v.3.1.2 data was derived from more

geographically diverse populations. One or more of these

variants in isolation or a combination of variants (haplotype)

could, in theory, play a role in REEP4 expression. For instance,

the intergenic variant NC_000008.11:g.22137633C>G is located

within a regulatory region (OREG0018606) [39], binding site for

transcription factors TFAP2C (OREG1194750), FOXP1

(OREG1608060), and CTCF (OREG1385204), and distal

enhancer-like signature (dELS, EH38E2616119) [40].

In conclusion, more work is required to establish a convincing

role for REEP4 in dystonia and other neurological disorders. Of note,

REEP4 may make a more significant contribution to African

American dystonia, whereas our work herein and other published

screening studies of REEP4 were focused on white Americans,

Chinese, and Hungarians. Future studies should include patients

with other forms of dystonia, more diverse racial and ethnic

populations, and include phenotypic and genotypic assessments of

other family members. Family studies with trio analyses are essential

for understanding early-onset neurological disorders. Finally,

inclusion of REEP4 in commercial dystonia DNA panels would

be of clear value to the scientific community.
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