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Advances in sequencing technologies have identified novel genes associated

with inherited forms of dystonia, providing valuable insights into its genetic basis

and revealing diverse genetic pathways and mechanisms involved in its

pathophysiology. Since identifying genetic variation in the transcription

factor coding THAP1 gene linked to isolated dystonia, numerous

investigations have employed transcriptomic studies in DYT-THAP1 models

to uncover pathogenic molecular mechanisms underlying dystonia. This review

examines key findings from transcriptomic studies conducted on in vivo and

in vitro DYT-THAP1 models, which demonstrate that the THAP1-regulated

transcriptome is diverse and cell-specific, yet it is bound and co-regulated

by a common set of proteins. Prominent among its functions, THAP1 and its co-

regulatory network target molecular pathways critical for generating

myelinating oligodendrocytes that ensheath axons and generate white

matter in the central nervous system. Several lines of investigation have

demonstrated the importance of myelination and oligodendrogenesis in

motor function during development and in adults, emphasizing the non-cell

autonomous contributions of glial cells to neural circuits involved in motor

function. Further research on the role of myelin abnormalities in motor deficits

in DYT6 models will enhance our understanding of axon-glia interactions in

dystonia pathophysiology and provide potential therapeutic interventions

targeting these pathways.
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Introduction

Dystonia manifests as prolonged involuntary twisting movements that can occur in

isolation or in combination with other neurological symptoms [1, 2]. In 2009, Fuchs et al.

identified that loss-of-function mutations in THAP1, which encodes a transcription factor

with a zinc finger DNA-binding domain, cause DYT6 dystonia [3]. Since this discovery,

numerous investigations have focused on transcriptomic studies of DYT-THAP1 (also

known as DYT6) models to uncover pathogenic molecular mechanisms underlying

dystonia. Here, we comprehensively examine prior investigations aiming to identify
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the THAP1 transcriptional network in neural and non-neural

lineage. Additionally, we discuss the critical role of THAP1 and

its network members in regulating neuron-glia interactions and

their significance in regulating motor function.

Studies of the THAP1 regulated
transcriptome

THAP1, similar to most of the dystonia genes, is ubiquitously

expressed in both neuronal and non-neuronal cells and within

multiple regions of the CNS [4]. Hence the expression pattern

makes it challenging to gauge its role in motor function.

THAP1 was first discovered in a two-hybrid screen as an

interactor of prostate-apoptosis-response-4 (Par-4) protein [5].

Gene expression studies from overexpression and knockdown of

THAP1 in HUVEC cells demonstrated that THAP1 regulates cell

cycle and apoptotic pathways by modulating pRb/E2F target genes

[6]. Several studies have since tried to identify and elucidate a core

function of the THAP1 in cells of neural origin.We have identified

10 unbiased transcriptomic studies in DYT6 models that are listed

in Table 1. These studies include investigations of: a) brain tissue

samples from motor related regions (cortex, striatum and

cerebellum) derived from mouse models with THAP1 deletion or

those carrying DYT6 pathogenic mutations from adult [8], juvenile

[7] and neonatal animals [9]; b) neuronal cultures that include

primary striatal cultures, induced pluripotent stem cell (iPSC)

derived cortical neuron precursor, dopaminergic and medium

spiny neurons [9, 12, 13, 17]; c) non-neuronal cells of neural

lineage that include oligodendrocytes [14], neuroblastoma cell

line (SH-SY5Y) [13, 18] and iPSC derived neural stem cells [11];

d) non-neural cell types including HUVEC [6], mouse embryonic

stem cells (mESC) [10] and mouse embryonic fibroblast [15].

Additionally, THAP1-bound genomic regions have been defined

using ChIP-seq in K562, mESC and SH-SY5Y cells [10, 13, 16].

In our recent study [19], we compared THAP1-regulated

transcriptome datasets commonly from all motor related regions

(cortex, striatum, and cerebellum) [7], and oligodendrocyte cultures

[14], which are direct targets of THAP1 (ChIP-seq data from

ENCODE) [16] to identify core genes regulated by THAP1 in

vivo and in vitro from neuronal and non-neuronal cells. Only five

genes (Ech1, Cuedc2, Dpagt1, Prepl, and Cln3) were commonly

TABLE 1 Transcriptomic and genome-wide binding studies of THAP1.

Studies of the THAP1 regulated transcriptome

Study Species Source Dataset
(Accession)

Biological pathway

1 [6] Human HUVEC E-TABM-24 Cell Cycle, Apoptosis

2 [7] Mouse Cortex, Striatum GSE97372 Myelination, Oligodendrogenesis

3 [8] Mouse Striatum, Cerebellum GSE123880 Cytoskeleton, Nervous system development,
Myelination/Gliogenesis

4 [9] Mouse Striatum, Cerebellum GSE98839 eIF2α Signaling, Mitochondrial Dysfunction, Neuron
Projection Development, Axonal Guidance

5 [10] Mouse Embryonic Stem Cells GSE86947 Embryonic pattern specification, Neuron
differentiation, Axon guidance

6 [11] Human iPSC Neural Stem Cells dbGaP: phs001525 Lipid metabolism, Lysosomes, Myelination, Glial
development, Neurodevelopment

7 [12] Human iPSC derived cortical neuronal precursors Neurotransmitter release, ECM organization, DNA
methylation

8 [13] Human
& Rat

iPSC derived dopaminergic neurons, SH-SY5Y &
THAP1 heterozygous knock-out rat

GSE141278;
GSE184961

Septum morphogenesis, ECM organization, Cell
adhesion, Neurotransmitter secretion

9 [14] Mouse OPC, Oligodendrocyte GSE161556 ECM binding, Cell adhesion, Ras GTPase

10 [15] Mouse MEF (mouse embryonic fibroblast) GSE154729 53BP1, DSB repair

Genome-wide binding studies (ChIP-Seq) of THAP1

Study Species Source Dataset
(Accession)

1 ENCODE
Project [16]

Human K562 GSM803408

2 [10] Mouse Embryonic Stem Cells GSE86911

3 [13] Human SH-SY5Y GSE184961

Also listed are corresponding cell/tissue source, dataset accession number and biological pathways overrepresented in the studies.
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identified across these datasets [19]. These observations and

comparisons of differentially expressed genes (DEGs) from studies

listed in Table 1 argue for a largely cell-specific program and that the

cellular context in which the transcriptomic study was conducted

strongly influences the final list of THAP1-regulated genes [19]. Yet

another surprising observation is that majority of the THAP1-bound

genes are not differentially expressed from THAP1 loss-of-function.

For instance, Aguilo et al. reported only 10% overlap between genes

in mESC that are THAP1-bound (ChIP-seq) and differentially

expressed (RNA-seq) upon Thap1 deletion [10] while Cheng et al.

observed a mere 7.5% overlap of THAP1-bound and DEGs from

mutant THAP1 in SH-SY5Y cells [13]. These findings suggest that

THAP1 transcriptome may additionally depend on its co-regulators.

Co-regulators of the THAP1
transcription factor pathway

A core feature of transcription factors is that they function in

complexes. What proteins function as co-regulators of

THAP1 transcriptional activity? Unlike the diverse molecular

pathways regulated by THAP1 in various studies, a specific set of

co-regulators appears to be associated with THAP1. Notably,

THAP1-bound promoters in both mouse and human genomes

are co-bound with YY1 (YIN-YANG-1), a transcription factor

belonging to the GLI-Kruppel class of zinc finger proteins [20].

Through in silico analyses of THAP1-bound genes (ENCODE), we

first identified that >90% of the THAP1 bound promoters are co-

bound by YY1 [7, 19]. Furthermore, THAP1 affects the genome

occupancy of YY1 [7]. Loss of THAP1 protein ablates the binding of

YY1 at the promoter of shared loci [7]. Multiple independent studies

using diverse models have since confirmed THAP1 and

YY1 association. Domingo et al. engineered an allelic series of

eight disease mutations in a common iPSC background and

differentiated these lines into near-isogenic neural stem cells [11].

In this study, they observed that DEGs from multiple allelic series

were enriched for YY1 binding motifs [11]. Aguilo et al. performed

THAP1 ChIP-seq in mESC, which identified significant enrichment

of YY1 in THAP1-bound genomic regions [10]. Additionally,

Baumann et al. conducted transcriptome analysis on cortical

neuronal precursors derived from iPSC generated from individuals

with manifesting and non-manifesting THAP1 mutation carriers.

Their study revealed that the YY1 binding motif was the most

enriched in DEGs from carriers with manifesting symptoms [12].

Thus, while the THAP1 transcriptome appears to be cell specific, they

are co-bound with YY1 across multiple species and cellular contexts.

Since the first description of YY1 as a binding partner of THAP1 [7],

numerous studies have reported loss of function YY1 mutations in

childhood onset isolated dystonia [21–24]. These reports from

human patients suggest the importance of THAP1-YY1

association in dystonia pathophysiology.

Multiple independent studies, utilizing in silico analyses and

functional testing have identified HCFC1 and SP1 as other

putative co-regulators of THAP1 transcriptome [7, 13, 15, 19,

25]. HCFC1 is another transcription factor that co-localizes with

majority of THAP1 and YY1 bound genes [7, 10, 25], suggesting

these three transcription factors could exist as a co-regulatory

module. Loss of THAP1 regulates the occupancy of HCFC-1, like

YY1 [25]. Functional evidence of co-regulation by THAP1, YY1,

and HCFC1 was provided by Shinoda et al., who discovered their

direct binding to the SHLD1 promoter and their cooperative

action in maintaining low basal expression of SHLD1, crucial for

DNA double-strand break repair [15]. In an interesting study,

Cheng et al. identified SP1, a zinc finger transcription factor as a

key downstream regulator of THAP1 differentially expressed in

SH-SY5Y cell lines [13]. Transcriptomic analyses revealed that

SP1 is a target of THAP1 and largely responsible for its DEGs,

thus representing an important critical downstream member of

the THAP1 driven transcriptional regulatory network [13]. We

are not including further description on several other singularly

predicted THAP1 co-regulatory proteins from investigations

listed in Table 1 or those defined from proteomic studies [26]

as they are beyond the scope of this review.

Beyond these co-regulators, THAP1 genomic association is

enriched in regions of active chromatin. Aguilo et al. conducted

ChIP-seq for THAP1 in mESC and identified that THAP1-

bound genomic regions is enriched for epigenetic signatures

of active enhancers and promoters—which includes

H3K4me1, H3K27ac and H3K4me3 [10]. Furthermore, these

active state epigenetic marks are enriched with signature motifs

of THAP1 co-regulatory factors. Cheng et al. observed that

genomic regions showing THAP1-dependent changes in

H3K4me3 and H3K27ac are enriched for SP1 binding motifs

[13]. These findings provide valuable insights into the

mechanisms governing gene expression and epigenetic

regulation by THAP1.

Role of THAP1 co-regulators in
disease mechanism

Pathogenic mutations in THAP1 have been reported to

exhibit a penetrance of approximately 50%. However, the

underlying factors responsible for incomplete penetrance

remain largely elusive. In a recent study Dulovic-Mahlow

et al., provided a clear evidence that the expression of

THAP1 is not likely the source of the reduced penetrance

[27]. The investigators in this study analyzed for changes in

THAP1 and TOR1A expression in a multigenerational family

with reduced penetrance (<10%) despite a loss-of-function

nonsense THAP1 mutation (p. Arg29X). Affected and

unaffected carriers similar expression for THAP1 and TOR1A

[27]. Consistent with this patient data, we and others have

observed and reported that THAP1 auto-regulates its

expression. Thus, changes in the level of THAP1 is unlikely to

explain the penetrance [28].
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Could mechanisms related to THAP1’s transcriptional

activity provide an explanation for reduced penetrance? In a

recent study conducted by Baumann et al., differential gene

expression analysis was employed on cortical precursor

neurons derived from affected or manifesting carriers

(MMCs) and unaffected or non-manifesting carriers (NMCs)

in an attempt to identify a gene signature correlating with

symptoms [12]. They identified DEGs and pathways

exclusively upregulated in MMCs compared to NMCs.

Neuronal signaling pathways, including dopamine transmitter

and eIF2α signaling, as well as cortical network formation, were

found to be upregulated in MMCs, while extracellular matrix

organization and DNA methylation were upregulated in NMCs.

Although the exact DEGs may be influenced by cell type and

neuronal culture conditions, the underlying signature of

transcription factors regulating these genes provides additional

clues regarding the mechanism underlying MMC-specific

pathways. The DEGs in MMCs were observed to be enriched

for the binding signatures of YY1 (along with ARID2, MIER1,

and ZBTB11), while NMC DEGs were associated with SIX2 [12].

These results suggest that the involvement of YY1 in the

regulation of THAP1 dependent DEGs in the MMC.

Additionally, THAP1 downstream target and co-regulator

SP1 has also been reported to show increased expression in

THAP1 patients’ iPSC-derived mDA neurons, while it is

decreased in THAP1 patients’ frontal cortex [13]. As

discussed in the prior section, THAP1 DEGs are enriched in

active epigenetic modifications and enrichment. An active role of

epigenetic status in penetrance, while yet to be demonstrated, is

likely.

More than 70% of the reported THAP1 mutations consist of

missense mutations, with a smaller proportion being indels or

mutations causing early truncation [29–31]. The majority of

missense mutations affect the N-terminal THAP domain and

have been described in other review articles [31, 32]. However,

up to this point, DYT6 mutations have been reported only in

seven of the 13 DNA binding residues comprising of eight

invariant ones (C5, C10, C54, H57, P26, W36, F58, and P78)

and an additional five residues (K24, R29, R42, F45, and T48)

(as depicted in Figure 1) [33–35]. Furthermore, disease

mutations have been identified in the C-terminal domain,

which affects the protein-interacting leucine zipper and

coiled-coil domains, thus influencing hetero- and homo-

dimerization and the overall protein structure [30, 36].

These findings suggest that loss-of-function DYT6 mutations

in THAP1 also involve mechanisms not disrupting its DNA

binding. In our recent studies, we reported that the F81L

DYT6 mutation [3], which occurs in the N terminus of the

protein but not the DNA binding residue, impairs THAP1’s

transcriptional activity without affecting its genomic binding

[19]. Instead, it disrupts the interactions between THAP1 and

YY1 and results in decreased histone acetylation (H3K9ac) at

THAP1 regulated loci [19]. These findings suggest an important

regulatory role for YY1 in the DYT6 disease mechanism and

FIGURE 1
DYT6 mutations in DNA binding residues of THAP1: The schematic of the THAP1 protein illustrates its major domains: the THAP domain
(responsible for DNA binding, depicted in orange), the proline-rich region (highlighted in red), and the coiled-coil domain (shown in purple). A
magnified view of the N-terminal THAP domain (residues 4–82) is provided, with eight invariant residues (C5, C10, C54, H57, P26, W36, F58, and P78)
and five additional residues (K24, R29, R42, F45 and T48) [33–35] involved in DNA binding indicated in larger font red andmarked with a asterix.
Additionally, the AVPTIF motif, highlighted in green, is presented. Missense mutations found in the DNA binding residues of THAP1, as identified from
the MDSGene database (https://www.mdsgene.org), are listed in blue.
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provide insights into how co-regulatory proteins influence

THAP1’s transcriptional activity.

Regulation of axon-glia interactions by
members of the THAP1 transcription
factor pathway

In a recent study, Diaw et al. identified the most significant

THAP1 dependent DEGs from existing studies [37]. They

observed a rather diverse set of pathways, including

myelination, nervous system development, cytoskeleton,

neuron projection, dopamine signaling, and axonal guidance,

among others [37]. Multiple other studies have also reported cell

cycle, extra cellular matrix and cell adhesion among other

THAP1-regulated pathways (references in Table 1), [6, 9, 12,

14, 15]. Neuron specific THAP1 pathways of note include

GABAA receptor alpha2 in iPSC derived medium spiny

neurons [17], eIF2α (Eukaryotic Initiation Factor 2 alpha) in

striatal neurons [9], synaptic transmission commonly in rat

striatal neurons and iPSC derived dopaminergic neurons [13].

Therefore, a wide range of biological pathways have been

identified in the THAP1-regulated transcriptome across

various studies (listed in Table 1). Of note among these

pathways is myelination, a prominent process governing

axon-glia interactions that is a target of THAP1, YY1 and

SP1 [7, 38, 39].

Myelination pathway is commonly dysregulated in multiple

transcriptomic datasets using both iPSC and mouse

DYT6 models [7, 8, 11, 37]. Furthermore, myelination actively

contributes to circuit plasticity, supporting motor learning

[40–42]. Myelination is a postnatal process in which

oligodendrocyte cells wrap axons with a myelin sheath to

support rapid neurotransmission [43]. In the CNS,

myelination is facilitated exclusively by the generation of

mature myelinating oligodendrocytes, which are differentiated

from oligodendrocyte progenitor cells (OPCs). The peak of

myelination during development coincides with the peak of

synaptogenesis, occurring mostly within the first 2 years in

humans and the first 3 weeks in rodents [44–46].

Our prior work demonstrates that CNS conditional

THAP1 null mice exhibit severe hypomyelination

accompanied by juvenile-onset motor dysfunction persisting

into adulthood [7]. Transmission electron microscopy (TEM)

analysis of myelin ultrastructure in THAP1-ablated mice

revealed a significant (>5-fold) reduction in the percentage of

myelinated axons in white matter (WM) tracts in the juvenile

CNS, along with a decrease (~25%) in myelin thickness [7].

Similarly, the DYT6 mutant THAP1F81L, which represents a

hypomorphic form of THAP1, also leads to CNS

hypomyelination, as observed through TEM analysis [19].

Interestingly, myelination and oligodendrogenesis are also

regulated by YY1. He et al. identified that conditional Yy1

ablation in vivo results in defective myelination in the CNS

based on ultrastructure studies [38]. Both THAP1 and

YY1 regulate CNS myelination through cell-autonomous role

in the generation of myelinating oligodendrocyte (OL), without

disrupting the fate of the parent OPC [7, 14, 19, 38]. Another

THAP1 co-regulatory protein SP1, also has a critical role in

myelination from its actions within the OL lineage. SP1 promotes

OPC differentiation by aiding their exit from cell cycle and

activating the transcription of the myelin basic protein [13,

39, 47–50]. In these studies, SP1 was demonstrated to directly

bind and activate the Mbp loci [39, 48–50].

In addition to myelination abnormalities observed in animal

models, changes in WM microstructure have been reported in

patients with twelve different forms of inherited dystonia—either

in isolation or combination with other neurological symptoms

[4]. Eight of the mutated genes have an established role in

myelination (THAP1, SLC2A1/GLUT1, BAP31, FA2H,

SLC16A2/MCT8, YY1, POLR3 and TUBB4A) [4]. Several

additional studies have reported microstructural WM changes

in idiopathic dystonia’s [51]. More details regarding the genetic

links between WM abnormalities and myelination in various

forms of dystonia have been discussed elsewhere [4].

Role of myelination and
oligodendrogenesis in motor
function

Several studies have investigated the significance of myelination

for motor function. McKenzie et al. first reported OPC proliferation

and generation of new myelinating oligodendrocytes in animals

learning the complex wheel motor task [40, 41]. Importantly, these

studies used genetic tools to block the generation of new

oligodendrocytes and demonstrated that the activity-induced

oligodendrogenesis and myelination are necessary components

for motor learning and skill acquisition, especially in early stages

of the learning paradigm [40, 41]. Consistent with these findings,

Simon et al. also reported that voluntary exercise (i.e., wheel

running) increased the cell cycle exit and consequently the

differentiation of OPCs into myelinating oligodendrocytes [52].

In a more recent study, Bacmeister et al. investigated whether

myelination is dynamically altered on individual cortical axons

during motor learning. They used a forelimb reaching task assay

and longitudinal in vivo two-photon imaging of the primary motor

cortex. They observed increased sheath retraction during training,

followed by increased sheath addition in the days after training [53].

Their study thus demonstrated thatmotor learning induces dynamic

changes in myelination specifically on behaviorally activated axons,

which correlates with motor performance [53]. Kato et al.

investigated for myelination dependent changes in neural activity

in motor cortex from motor learning using a genetic model with

myelination deficiency caused by extra copies of the myelin

proteolipid protein 1 gene [54]. They noted that deficit in myelin
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impaired motor learning was associated in variability in axonal

conduction from thalamocortical axons, which results in variable

cortical responses. From these observations, they concluded that

myelin regulation helps to maintain the synchrony of cortical spike-

time arrivals through long-range axons, facilitating the propagation

of the information required for learning [54]. Therefore, activity-

induced myelination resulting from motor learning is an important

mechanism for remodeling neural circuits [55, 56]. Parallel to these

demonstrations of the role of myelination in motor learning using

rodent models, several studies usingMRI technique diffusion tensor

imaging (DTI) have reported measurable changes in WM from

motor activity in humans. These studies include measurement of

WMusing DTI from piano practicing [57], juggling [58] andwhole-

body movement paradigm quadrato motor training (QMT) [59].

Motor learning also inducesWMchanges in rodentmodels learning

a highly skilled reaching task [60]. Further details describing WM

changes from motor activity have been described in depth

elsewhere [4].

What is the mechanism by which motor activity promotes

myelination? While it is known that myelination facilitates the

propagation of action potentials in axons, the reciprocal impact

of neuronal activity on the cellular state of oligodendrocytes is often

overlooked. Seminal experiments by Barres et al. demonstrated that

neuronal activity play a role in controlling the number of

oligodendrocytes. Pharmacological blockade of action potentials

in the retina inhibits OPC proliferation in optic nerves [61].

Other studies have reiterated these findings, showing that

electrical stimulation of medullary pyramids promotes the

proliferation and differentiation of OPCs in the corticospinal

tract of adult rats [62]. Similarly, optogenetic stimulation of

cortical layer 5 (L5) excitatory neurons promote the proliferation

and differentiation of OPCs [63]. Further details describing the role

of neuronal activity on oligodendrogenesis have been described in

depth elsewhere [64]. Thus, the generation of myelinating

oligodendrocytes is promoted by motor function induced

neuronal activity resulting in increased axon-glia interactions.

These observations provide a clear hypothesis as to how

THAP1 and its co-regulators may impact motor function based

on their role in generating myelinating oligodendrocytes.

Onset of DYT6 and myelination
during development

The onset of symptoms in DYT-THAP1 is consistent with

neurodevelopmental abnormalities. Domingo et al. utilized

literature sources and the ClinVar database to examine case

reports of individuals and families with THAP1 gene-related

dystonia [31]. They reported that 69.2% of cases displayed

symptoms before the age of 20, with 82.6% of those

experiencing onset before the age of 15, presenting with

generalized or multifocal dystonia [31]. In a parallel study,

Lange et al. conducted an extensive investigation using the

MDSGene protocol, reviewing approximately 1,200 citations

[32]. They analyzed 241 THAP1 mutation carriers from

169 families and determined a median age of onset at

15 years. Notably, 34.9% of patients experienced childhood

onset, and 69.3% developed symptoms in early adulthood

[32]. Thus, the onset of symptoms in DYT6 predominantly

occurs in early ages, implicating neurodevelopmental events in

its neuropathology.

The early developmental periods of childhood and

adolescence are also marked by myelination of the white

matter, which occurs in a non-linear manner [65]. The most

rapid brain growth occurs during the first 3 years of life,

accompanied by myelination primarily within the first 2 years

in humans and the first 3 weeks in rodents [46]. The timing of

myelination in cerebral white matter coincides with the

developmental trajectories of cognitive and motor skills [66].

Multiple studies employing various approaches have concluded

that the rate and extent of cortical myelination during

development occur earlier in motor and sensory regions. In a

comprehensive study involving 484 participants, Grydeland et al.

explored the trajectory of myelination across the cortex in relation

to age [67]. Peak myelination exhibited a bimodal distribution

relative to age, with a pre-pubertal wave ofmyelination observed in

primary sensory and motor cortices. A similar conclusion was

drawn in one of the most well-defined descriptions of human

myeloarchitecture, based on the findings of Oscar and Cecile Vogt

by Rudolf Nieuwenhuys [66, 68]. These studies on the parcellation

of the cortex describe that primary brain areas, both sensory and

motor, show a greater degree of myelination, while the superior

parietal cortex and prefrontal cortex have strikingly fewer

myelinated axons. Thus, critical periods during the emergence

of motor function coincide with the onset of DYT6 symptom and

de novo myelination of the sensory and motor cortex.

Discussion

Unbiased transcriptomic studies using multiple DYT-

THAP1 models has yielded valuable insights into a

transcriptional regulatory network driven by THAP1 and its

role in various cellular pathways. While the THAP1 regulated

transcriptome is diverse and cell-type specific, it is bound and

co-regulated by a common set of proteins which prominently

target the axon-glia interactions governing myelination

pathway at a molecular level. The importance of myelination

in motor function as a neurodevelopmental process and also in

its role in activity dependent remodeling of motor circuits,

make it an important downstream target pathway relevant for

dystonia. Further investigation of THAP1-mediated myelination

and its impact on motor function will help us comprehend the

contribution of axon-glia interactions in dystonia pathophysiology

and provide opportunities for therapeutic interventions targeting

these pathways.
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