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Task-specific tremor (TST) is a specific type of tremor that occurswhen performing

or attempting to perform a specific task, such as writing or playing a musical

instrument. The clinical entity of TST remains heterogeneous. Some TSTs can only

be induced by conducting a specific task, while others can be elicited when

adopting a particular position simulating a task. The pathophysiology of TST is

controversial. Whether TST is an isolated tremor syndrome, a spectrumof dystonic

tremor syndrome (DTS), or essential tremor (ET) is not yet clear. Evidence from

electrophysiological studies suggests that TST patients have normal reciprocal

inhibition responses but abnormal motor cortical excitability, especially relating to

the maladaptive long-interval intracortical inhibitory circuitry. The blink recovery

study and eyeblink classical conditioning studies demonstrated possible

hyperexcitability of the brainstem circuits and cerebellar dysfunction in patients

with TST. Functional MRI studies have further shown that patients with TST have

reduced functional connectivity in the cerebellum, similar to patients with DTS

and ET. Due to variablemethodologies and the sparsity of functional MRI studies in

TST, it remains uncertain if patients with TST share the connectivity abnormalities

between the cortical or subcortical areas that have been demonstrated in patients

with DTS. Comprehensive electrophysiological and functional neuroimaging

studies may help to elucidate the pathophysiology of TST.
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Introduction

Task-specific tremor (TST) is a specific type of action tremor occurs only or

predominantly when an affected individual is performing or attempting to perform a

specific task. The clinical entity remains heterogeneous. TST can be induced by active

movements or by adopting a specific position simulating the task, and is usually non-

progressive [1]. TSTs mostly involve the upper limbs, especially dominant limbs, during
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specific skilled tasks though sometimes the orolingual area (e.g.,

lip, chin) is affected [2]. TSTs have a mean frequency of 5–7 Hz

(range 3–8 Hz), which may be accompanied by a jerky

component in some cases [3]. To date, there are no known

patients with TSTs involving the lower limbs.

The involved tasks are variable. For example, most

commonly, TSTs are elicited while writing and referred to as

“primary writing tremor” (PWT) [4]. TSTs in musicians (TSTM)

occur mainly while playing an instrument, with cases reported in

string instrumentalists [5–7] or flutists [8]. TSTs can also occur

during other daily activities. For instance, finger tremors when

playing carroms [9], lip tremors while drinking [10–13], chin

tremors only while brushing teeth [14], finger tremors with the

use of scissors [15], and wrist tremors during weightlifting

[16–18]. Given its various clinical subtypes, limited case

numbers, and diagnosis uncertainty, there are no accurate

numbers for the prevalence and incidence of TST among

general populations.

Despite limited reported cases, PWT and TSTM are the two

most prevalent TST subtypes. Two case series with 21 and

56 patients with PWT, respectively [4, 19], reported the mean

age of onset to be around 50 years of age (broad range:

16–72 years), with a male predominance (70%–95.2%), and up

to 33%–44% of the patients reported a positive family history of

PWT. These findings suggest that there may be a possible genetic

susceptibility to PWT, in addition to environmental factors.

However, no causative gene or mutation has been identified

so far. In contrast to PWT cohorts, a case series of 23 musicians

with TSTM reported the age of onset to be 44.6 ± 13.6 years, with

equal gender distribution, and without a positive family history.

Besides, TSTM was associated with a relatively long average

duration of playing an instrument (35 years) prior to tremor

onset [6]. The variable clinical features implied that different

types of TST may not share an identical pathophysiology.

Some recent studies have alluded to the possibility that TST

may be an early symptom before the onset of other parkinsonism

features in patients with Parkinson’s disease (PD) [14, 20, 21]. A

case series reported that three of the fve patients with PWT (onset

age between 46 and 76 years), later developed PD (within

1–5 years of PWT onset). All three patients had reduced

uptake in DaTscan contralateral to the tremor-affected side,

and were refractory to propranolol/primidone, but responded

to carbidopa-levodopa treatment [20]. However, the interval

between TST onset and a diagnosis of PD has been reported

to be even longer (average: 13.66 years) in another case series

[21]. Currently, the relationship between TST and PD is unclear.

The pathophysiology of TST has been debated in the past

decade. The clinical presentation of being focally distributed and

task-specific, sometimes with abnormal posturing [4, 22], the

presence of coactivation and overflow of muscular activity to

adjacent muscles in electromyography [23], a better response to

botulinum toxin therapy, suggests a possible correlation between

TST and dystonic tremor syndromes (DTS), which included both

dystonic tremor and tremor associated with dystonia [24]. The

alleviation of symptoms by gestes antagonistes has been

described as a clinical hallmark characteristic of dystonia but

was only reported in one patient with TST in the previous

literature [25]. On the other hand, many studies have

reported considerable symptomatic relief of TST by ethanol or

propranolol [26–28], and identified a genetic susceptibility, with

one case reported with bilateral involvements [26], which points

to a possible relationship between TST with ET. Therefore,

whether TST is an isolated tremor syndrome, a tremor

associated with task-specific dystonia, or a variant of ET,

remains uncertain [29, 30]. In this review, we explored the

current electrophysiological and functional neuroimaging

studies of TST and discussed the possible pathophysiology

of TST.

Electrophysiological characteristics
of TST

Electromyography (EMG) recording

Surface EMG is an important tool for recording muscular

activity, especially in various movement disorders including

tremor syndromes [31]. The EMG recording site depends on

the subtype of TSTs. For example, in patients with PWT and

TSTM, the commonly sampled muscles include the distal

muscles of the upper limbs, such as the abductor pollicis

brevis, abductor digiti minimi, wrist extensors, wrist flexors,

and the more proximal muscles, such as the biceps, triceps,

deltoid and pectoralis-major muscles [4, 6]. There are no specific

hand muscles that are consistently involved in different kinds of

TST patients.

Most of the EMG studies of TST were PWT patients.

Alternating EMG bursts, with burst activity between the

forearm agonist/antagonist muscles and phasic activity in the

intrinsic hand muscles is a typical finding [4, 23, 28, 32].

However, a co-contraction pattern of the agonist/antagonist

muscles, or solely extensor muscle activity, has also been

documented [4, 28]. Usually, the tremor frequency ranges

from 3 to 8 Hz, with a mean frequency of 6 Hz [4]. As a

comparison, the usual frequency of the action tremor of the

upper extremities in ET is 4–12 Hz, while the frequency being

more variable with irregular amplitudes in dystonic tremor

(mainly less than 7 Hz) [2]. While earlier studies in PWT did

not provide definite evidence of excessive overflow of EMG

activity into the proximal musculature [4], a recent study on

TSTM demonstrated co-activation of the flexor and extensor

muscles and excessive EMG activity in the adjacent muscles [33],

implying a possible relationship with dystonia such as writer’s

cramp [34, 35].

Of note, EMG findings in TST are sometimes difficult to

classify, as the muscle groups involved during a specific task, such
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as holding a pen or playing an instrument may be subtly different

for each patient. Moreover, some patients may use excessive force

to control their movements, resulting in diverse and sometimes

dystonic features when recording the EMG.

Reciprocal inhibition of Hoffmann’s reflex

Hoffmann’s reflex (H-reflex) refers to the reflex response of

muscles after low-intensity electrical stimulation of Ia sensory

afferents. Reciprocal inhibition of the H-reflex refers to the

phenomenon in which the H-reflex response is reduced on a

contraction of the antagonist muscle elicited by peripheral nerve

stimulation at a certain period before the H-reflex. In forearm

reciprocal inhibition, the H-reflex response arises from the flexor

carpi radialis muscle when the median nerve is stimulated, while

the radial nerve stimulation represents the conditioning

stimulation [36, 37]. In healthy subjects, the time course of

the forearm reciprocal inhibition has three distinct inhibitory

phases, depending on the inter-stimulation interval (ISI) between

the two stimulations. The first inhibitory phase is the ISI within

1 ms, which indicates Ia afferent disynaptic inhibition from the

radial nerve to the flexor alpha motor neurons. The second phase

is the ISI at 5–50 ms, which reflects presynaptic inhibition at the

terminals of the flexor Ia afferent fibers. The third phase is the ISI

at 50–100 ms, with an undetermined mechanism. There were no

significant differences in the first (disynaptic) and second

(presynaptic) phases of the forearm reciprocal inhibition

between patients with PWT and healthy subjects [4, 38]. The

third phase has not been comprehensively explored, but the

inhibition has been shown to be normal at 75 ms as well [4]. For

patients with ET, a significantly attenuated second phase of

reciprocal inhibition (ISI at 10–30 ms) has been demonstrated

in some studies [39, 40]. In contrast, Munchau et al. reported

normal reciprocal inhibition in patients with ET [41]. For

patients with writer’s cramp, most studies have demonstrated

attenuation of all three phases of the forearm reciprocal

inhibition [42–44]. However, the 2nd phase of the RI was

abnormal in patients who presented arm tremor in the

beginning and later presented cervical dystonia [41]. These

patients can be classified into ET plus syndrome or dystonia

with tremor according to the new tremor classification. These

findings suggest that patients with PWT may preserve their

spinal inhibitory circuits, which distinguishes them from

patients with dystonia or patients with ET.

Blink reflex

The R2 blink reflex recovery cycle (R2BRrc) is an

electrophysiological measurement of brainstem excitability

that measures the orbicularis oculi muscle responses during

paired-pulse electrical stimulation of the supraorbital nerve. It

is known to be abnormally enhanced in blepharospasm, PD,

craniocervical dystonia, and dystonic tremor (DTS), indicating

an alteration in brainstem interneuron excitability [44–47]. In

contrast, R2BRrc tends to be normal in patients with ET [48].

The conditioning of the eyeblink reflex is a well-established

paradigm in motor learning assessment. This is referred to as

eyeblink classical conditioning (EBCC), with the neural circuitry

involving the cerebellum, hippocampus, and prefrontal cortex

[49]. The blink reflex is recorded as the responses of the

orbicularis oculi muscle, with auditory condition stimulus

(CS) from the ipsilateral ear, at a set frequency and amplitude

(1,000 Hz, 70 dB, duration 540 ms) [50]. EBCC tends to be

abnormal in patients with ET and DTS [51, 52], indicating

underlying cerebellar dysfunction. This is consistent with the

concept that a functional disturbance of the olivo-cerebellar

circuit contributes to the expression of many types of tremors.

A recent study demonstrated a reduced R2BRrc in patients

with PWT, which was similar to the patients with DTS, while

those with ET experienced a normal R2BRrc [53]. Overall, in

this study, a reduced conditioned response in EBCC was also

found in all PWT, ET, and DTS patient groups, but normal in

healthy subjects. According to these findings, though with

limited large-scale studies, patients with TST tend to have

increased brainstem excitability and impaired olivo-cerebellar

circuitry, sharing a more common pathophysiology with DTS

rather than ET.

Transcranial magnetic stimulation

Transcranial magnetic stimulation (TMS) is a useful

modality for exploring the electrophysiology of the brain. By

generating induced currents, TMS can activate neurons and

interneurons in the cortex. When paired stimulation is

delivered, TMS can further assess the function of the

intracortical facilitatory/inhibitory circuits at different ISI.

Short-interval intracortical inhibition (SICI), a

GABAA-mediated inhibitory circuit, is the most frequently

used paired-pulse TMS paradigm for evaluating motor cortex

excitability. SICI is conducted via motor cortex stimulations with

a sub-threshold conditioning stimulus, followed by a supra-

threshold test stimulus, at the ISI of 1–6 ms. Likewise, long-

interval intracortical inhibition (LICI), a GABAB-mediated

inhibitory circuit, is conducted via two supra-threshold stimuli

at the ISI of 50–200 ms. Both SICI and LICI reduce the MEP

amplitude compared to the MEP generated by a test stimulus

alone. Another common TMS parameter used to evaluate the

cortical inhibitory circuit is the cortical silent period (CSP). The

CSP refers to a period of 50–300 ms of electrical silence in the

active background EMG following a supra-threshold TMS pulse

to the motor cortex. The duration of the CSP increases with

stimulus intensity, but not with the size of the preceding MEP

[54] or the contraction strength of the target muscle [55, 56].
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A previous study demonstrated normal intracortical

excitability at short and long ISIs in patients with PWT [38].

In contrast, some studies have shown a reduction of the SICI in

patients with PWT [53, 57] and posterior displacement of the

position of the cortical motor maps [57], suggesting possible

dysfunction in the cortical inhibitory circuitry and

disorganization of the corticomotor representation, similar to

the studies in patients with writer’s cramp [58–60]. The

suppression ratio of SICI was approximately 40%–50% in

patients with PWT and patients with DTS, but >60% in

normal subjects [53]. The LICI was reduced by paired

associative stimulation (PAS) in normal subjects but

paradoxically enhanced in those patients with PWT or DTS,

indicating maladaptive plasticity in the motor cortex [53, 61].

In individuals with and without PWT, the CSP duration is

the same during writing or performing a voluntary contraction

action of the hand of similar intensity on the affected side or

between the sides [62]. Interestingly, a significantly shortened

duration of the CSP during near-maximum voluntary

contraction on both sides has been noted in patients with

PWT. These findings indicate that patients with PWT may

have impaired cortical inhibitory processes that are only

apparent during strong voluntary activations, which are

probably not directly linked to unilateral tremulous activity.

In contrast, a shortened duration of the CSP was observed in

patients with writer’s cramp during dystonic contraction or

voluntary contraction of a similar strength, but only on the

affected side [63]. Meanwhile, most studies have demonstrated

that the baseline cortical excitability including RMT, SICI, or CSP

is not significantly different between patients with ET and

healthy subjects [64–67].

In brief, TMS studies of patients with TST, or specifically

primary PWT patients, suggest impairments in the central

GABAergic pathways, and the impairments may be different

from the patients with dystonia.

Neuroimaging insights of TST

Functional magnetic resonance image (fMRI) techniques

provide a non-invasive assessment of the structural,

functional, and metabolic alterations of neurological disorders.

Numerous imaging studies have been performed in patients with

ET and DTS, but the studies on TST are sparse.

In an early fMRI study involving three patients with PWT,

PWT was shown to be associated with increased activity of the

cerebellum bilaterally, with a more pronounced area of activation

on the side ipsilateral to the affected hand, along with bilateral

activation of the parietal lobule with a more pronounced

activation on the side contralateral to the affected hand [68].

Conversely, recent studies have shown opposite findings in the

cerebellum. For example, Hirdesh Sahni et al. showed

overactivations of the primary and supplementary motor areas

and reduced activity in the cingulate motor area and the

cerebellum in six patients with PWT [69]. Another recent

study using voxel-based morphometry and diffusion tensor

imaging (DTI) found that there was predominantly gray

matter atrophy in the frontal lobe and the cerebellum, along

with white matter changes in the frontal lobe and the cingulum in

patients with PWT when compared with healthy subjects [70].

Lenka et al. further applied graph theory-based neural network

analysis to fMRI to explore connectivity during the resting state

of the functional brain [71]. In this study, the brain was modeled

as a complex functional network with two measurements

including “clustering coefficient”, which quantified the local

connectivity as an index of network segregation; and “path

length,” which quantified the global connectivity as an index

of network integration. The results of this analysis demonstrated

that patients with PWT had a significantly lower clustering

coefficient and a higher path length in the bilateral medial

cerebellum, right dorsolateral prefrontal cortex, and left

posterior parietal cortex, suggesting significant disruptions of

the small-world brain architecture in these regions.

To our knowledge, to date, there are no studies that directly

compared patients with TST to patients with ET or DTS.

However, numerous studies have discussed the structural,

functional, and metabolic presentations between patients with

ET and patients with tremors associated with dystonia. Through

understanding the difference between ET and DTS in the MRI

images may shed lights on the pathophysiology of TST. Findings

from DTI studies suggest an increased mean diffusivity and a

decreased fractional anisotropy of the cerebellum in patients with

ET, indicating possible microstructural tissue damage and a loss

of cellular integrity [72–74]. fMRI studies in ET patients have

further clearly demonstrated abnormal cerebellar function and

altered connectivity in the cerebello-thalamico-cortical circuitry

[75]. Another recent MRI study demonstrated grey matter

hypertrophy of the thalamus and motor cortex in the

cerebello-thalamo-cortical circuit among patients with DTS

[76]. The author concluded that deficient input from the

cerebellum towards the thalamo-cortical circuit with

hypertrophy of the thalamus, may play a key role in the

generation of DTS. To compare patients with ET and DTS, a

functional MRI during a grip-force task as a proxy of tremor-

related cerebral activity showed similar reduction of functional

connectivity in the cerebellum in both patients with ET and DTS

[77]. Nevertheless, when the region of interest was outside the

cerebellum, compared to patients with ET, those with DTS have

more widespread areas of reduced functional connectivity in the

cortical regions when the seed regions were placed either in

cortical regions, such as the sensorimotor cortex and inferior

parietal lobule or subcortical areas, such as globus pallidus

interna. Another study using multi-modal imaging combining

resting-state functional MRI and DTI showed reduced functional

connectivity between the cerebellum and dentate nucleus

bilaterally for the ET group but not the DTS group, compared
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to healthy subjects [78]. From the treatment response viewpoint,

both ET and DTS improved after deep brain stimulation were

significantly correlated to the stimulation of the dentato-rubro-

cortical tract, while only DTS, but not ET, presented a significant

additional correlation to the pallidothalamic tract [79]. These

findings point towards a second pathophysiological mechanism

involving the basal ganglia in patients with DTS. Taken together,

connectivity dysfunction of both the cerebello-thalamo-cortical

and the basal ganglia-thalamo-cortical networks may both be

involved in driving the pathophysiology of DTS [80, 81] which

was different from ET who presented mainly cerebello-thalamo-

cortical connectivity impairment.

Discussion and conclusion

There is an ongoing debate about whether TST is a distinct

disease entity, a variant form of ET, or a focal task-specific

dystonia with dystonic tremor. Based on current evidence, it

is reasonable to classify TST as a subtype of DTS, rather than a

subtype of ET. Clinically, TST occurs when the patient performs

a specific task, similar to patients with writer’s cramp who

present with dystonic postures when they are writing.

Moreover, TST usually affects the dominant hand only, unlike

ET, which involves both sides bilaterally. On the contrary, the

findings of electrophysiological studies suggest that TST showed

normal spinal inhibitory circuits and motor cortical excitability,

but a disinhibited brain stem inhibitory circuitry is evident from

the reduced EBCC and R2BRrc. The loss of LICI modulation by

PAS and reduced SICI are present in both TST and DTS patients.

Nevertheless, patients with dystonia usually demonstrate other

forms of hyperexcitability of the motor cortex, for example, a

reduced CSP, or hyperexcitability of the spinal cord and a loss of

reciprocal inhibition. Therefore, the overall electrophysiological

characteristics of TST imply that the underlying pathophysiology

is not entirely identical to dystonia.

Due to the variable methodologies used in fMRI studies and

the sparsity of fMRI studies in patients with TST, it remains

inconclusive whether TST is distinct from ET or DTS. Although

cerebellar functional connectivity impairments were observed in

PWT, it could also represent a fundamental abnormality for any

tremor syndrome, since patients with ET and DTS also

demonstrate a decreased connectivity in the cerebello-

thalamo-cortical circuits. Whether the additional basal

ganglion-thalamo-cortical circuits are involved, or whether a

more widespread reduction in functional connectivity in the

cortical regions occurs in the patients with TST is still

uncertain. From the structural point of view, whether patients

with TST presented thalamic hypertrophy, which implied

dystonia characteristics, may be another clue to interpret the

pathophysiology of TST in the future. All these aspects may be

critical to distinguishing the underlying pathophysiology

TABLE 1 A summary of the differences between task-specific tremor (TST), dystonic tremor syndrome (DTS) and essential tremor (ET), from clinical,
electrophysiological and neuroimage aspects.

TST ET DTS

Clinical aspects

Symptoms Task-specific, focal, non-progressive (most induced
by writing or playing specific instruments)

Posture-related, bilateral involved During postural holding and reaching tasks,
focal or segmental, gestes antagonistes

Electrophysiological studies

Surface EMG Alternating EMG bursts activity at 3–8 Hz (some
reports with co-contraction, overflow activity) [4,
28, 33]

Rhythmic EMG burst at a 4–12 Hz bilaterally,
without overflow or co-contractions [31]

Rhythmic EMG burst at 4–10 Hz, co-
contractions, overflow, and mirror dystonia [34,
35, 81]

H reflex Normal reciprocal inhibition of H reflex [4, 38] Normal reciprocal inhibition [41] or attenuation
of 2nd phase of reciprocal inhibition [39, 40]

Diminished reciprocal inhibition [42–44]

Blink reflex Reduced blink recovery cycle, reduced EBCC [53] Normal blink recovery cycle, reduced EBCC [46,
51, 53]

Reduced blink recovery cycle, reduced EBCC
[52, 53]

TMS Equivocal normal or slightly reduced SICI [38, 53, 57] Normal SICI [64] Reduced SICI [58, 59]

Normal CSP [62] Normal CSP [65] Reduced CSP [63]

Neuroimaging studies

Functional
MRI

Decreased functional connectivity in cerebellum to
other cortical areas [69–71]

Decreased connectivity in cerebello-thalamico-
cortical circuitry [72–75]

Decreased connectivity in cortical-basal ganglia-
cerebellar pathway [79–81]

Reduced functional connectivity between
cortical and subcortical regions [77]

Structural
MRI

Gray matter atrophy in the cerebellum [69] Loss of cerebellar integrity [72–74] Thalamic hypertrophy [76]

CSP, cortical silent period; DTI, diffuse tensor image; EBCC, eyeblink classical conditioning; EMG, electromyography; MRI, magnetic resonance image; SICI, short-interval intracortical

inhibition; TMS, transcranial magnetic stimulation.
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between TST, ET and DTS. Table 1 compares the different

features, such as the clinical presentation, electrophysiological

findings and fMRI results, between TST, ET, and DTS.

Although the association between TST and Parkinson disease

(PD) is less depicted in the previous literature, especially in the

electrophysiological assessment, however, a recent study of eight

patients with TST who later developed into PD showed an

optimal response to apomorphine but was refractory to other

dopaminergic agents [82]. Therefore, TST responses to the

apomorphine test might provide an early hint to indicate that

TST may be full-blown to PD in the future. Figure 1 delineated

the current position of TST in the tremor syndrome by

integrating electrophysiological and fMRI findings, and

indicated the knowledge gap that might help clinicians to

better understand the pathophysiology of TST in the future.

There is still a lack of comprehensive and consistent

understanding of TST due to limitations in the currently

available studies. First, most studies have a small sample size,

with a large intra-subject variability. Second, the inclusion criteria

in each study are varied, and some studies conducted even before

the development of tremor classification and the definitions for the

patient groups are ambiguous and non-standardized in some

studies. For example, dystonic tremor or tremor with dystonia

may not be necessarily shared the same pathophysiology, although

they both can be sorted in the same disease population as “dystonic

tremor syndromes” in most of the studies. A significant portion of

the studies were conducted before the development of tremor

classification criteria [83]. Third, the different methodologies and

paradigm designs used in each study, including both

electrophysiological and neuroimage aspects, have led to

FIGURE 1
The current position of task-specific tremor (TST) in the tremor syndrome by integrating electrophysiological and fMRI findings, including the
characteristics similar to or overlapped with dystonic tremor syndrome (DTS) and essential tremor (ET). There is still a knowledge gap, which might
help clinicians understand the pathophysiology of TST in the future. DTI, diffuse tensor image; EBCC, eyeblink classical conditioning; LAI, long-
latency afferent inhibition; LICI, long-Interval Intracortical Inhibition; MRI, magnetic resonance image; SICI, short-interval intracortical
inhibition.
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inconclusive results. Fourth, most of the TST studies mentioned in

this review focused on PWTpatients, whichmight only represent a

specific subtype of TST though still giving us an insight of the

picture of the underlying pathophysiology. Moreover, most studies

lack long-term follow-up. Thus, additional neurological signs that

emerge over timemay be left undetected (e.g., Parkinson’s disease),

which may have led to unreported but critical findings,

misinterpretations, or incorrect inferences.

Findings from the available electrophysiological and fMRI

studies on patients with PWT suggest that TST may be an

isolated tremor entity or a spectrum of DTS, rather than an

ET variant. This is consistent with the latest consensus statement

on tremor classification from the task force on tremors of the

International Parkinson and Movement Disorder Society [83], in

which TST has been separately classified as a specific action-

induced tremor, different from DTS or ET. Regular follow-ups

and comprehensive symptoms documentation with longitudinal

electrophysiological and neuroimaging assessment are the keys to

fully understanding the underlying pathophysiology of each

individual patient with TST.
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