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Animal models of DYT-TOR1A dystonia consistently demonstrate abnormalities

of striatal cholinergic function, but the molecular pathways underlying this

pathophysiology are unclear. To probe these molecular pathways in a genetic

model of DYT-TOR1A, we performed laser microdissection in juvenile mice to

isolate striatal cholinergic interneurons and non-cholinergic striatal tissue

largely comprising spiny projection neurons during maturation. Both

cholinergic and GABAergic enriched samples demonstrated a defined set of

gene expression changes consistent with a role of torsinA in the secretory

pathway. GABAergic enriched striatum samples also showed alteration to genes

regulating synaptic transmission and an upregulation of activity dependent

immediate early genes. Reconstruction of Golgi-Cox stained striatal spiny

projection neurons from adult mice demonstrated significantly increased

spiny density, suggesting that torsinA null striatal neurons have increased

excitability during striatal maturation and long lasting increases in afferent

input. These findings are consistent with a developmental role for torsinA in

the secretory pathway and link torsinA loss of function with functional and

structural changes of striatal cholinergic and GABAergic neurons. These

transcriptomic datasets are freely available as a resource for future studies of

torsinA loss of function-mediated striatal dysfunction.
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Introduction

DYT-TOR1A (DYT1) is a dominantly inherited dystonia characterized by early onset

involuntary abnormal movements and postures (1, 2). TorsinA resides in the endoplasmic

reticulum and nuclear envelope lumen, where interaction with cofactors LAP1 and

LULL1 promote its ATPase activity (3-9). The DYT-TOR1A disease mutation deletes a

single glutamic acid (ΔE) (2), impairing torsinA function (5,8,10-12). The natural history
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of DYT-TOR1A suggests that processes occurring during

development are particularly important for disease

pathogenesis (reviewed in (13)) and findings in mouse models

suggest that the functions of the Tor1a encoded protein torsinA

are essential during a developmental critical period but

dispensable in adult animals (14). Several CNS developmental

processes are altered by torsinA loss of function. In animal

models, Tor1a deletion or Tor1aΔE knock-in disrupts nuclear

envelope structure (15, 16) and alters nuclear pore distribution

and function (17, 18) during a postnatal CNS developmental

period in which neuronal nuclear pore complex biogenesis and

insertion is upregulated (19). TorsinA dysfunction causes deficits

in secretory processing, protein quality control, and translational

control (20-26) and alters synapse formation (27-30), all of which

potentially contribute to the altered synaptic plasticity identified

in dystonia (31-34). The mechanisms underlying synaptic

changes in torsinA deficient neurons are not defined.

Multiple animal models of torsinA dysfunction display

aberrant corticostriatal plasticity, including enhanced long

term potentiation and decreased synaptic inhibition (24,35-

37). Abnormal cholinergic signaling contributes to disrupted

plasticity in some DYT-TOR1A models (36) and

antimuscarinic compounds improve disease features in some

people with DYT-TOR1A (38). Altered striatal plasticity is an

early pathophysiological feature. Knock-in mice expressing the

Tor1aΔE/+ disease mutation exhibit premature long term

potentiation, impaired long term depression, and increased

AMPA receptor abundance in corticostriatal synapses during

early striatal development (29). This converging evidence

suggests that diminished inhibitory synaptic function (39) and

dysfunction of striatal cholinergic interneurons (ChI) (40) are

drivers of dystonia and suggest that processes occurring during

development or maturation are critical for dystonia pathogenesis.

To mechanistically explore the relationship between torsinA

loss-of-function and synaptic and behavioral change, we

modeled DYT-TOR1A dystonia by conditionally deleting

torsinA in forebrain inhibitory and cholinergic neurons using

Dlx5/6-Cre (41) (“Dlx-CKOmice”). TorsinA is thus deleted from

all neurons in the striatum, globus pallidus, reticular thalamic

nucleus, and basal forebrain, and from inhibitory interneurons in

the cortex and hippocampus in Dlx-CKO mice. Like the natural

history of DYT-TOR1A, Dlx-CKO mice exhibit motor

dysfunction beginning as juveniles, which worsens with

increased handling and is responsive to antimuscarinic

treatment (41). During the same juvenile period, a

subpopulation of ChI in the dorsolateral striatum selectively

degenerate. These findings suggest that Dlx-CKO mice model

a link between cholinergic and motor dysfunction (42) believed

important in human DYT-TOR1A dystonia (43).

To probe the mechanisms by which torsinA loss alters ChI

and surrounding cell types during striatal maturation, we

conducted RNAseq analyses on maturing Dlx-CKO striatal

ChI somas or surrounding striatum tissue (mainly comprised

of spiny projection neuron somas, with a small proportion of

GABAergic interneuron somas, glia, and neural processes)

isolated using laser microdissection. Striatal cholinergic and

non-cholinergic enriched samples from control vs. Dlx-CKO

identified a core set of genes enriched in secretory pathway and

synaptic function. We further demonstrate abnormal synaptic

structure in Dlx-CKO striatum with Golgi-Cox staining of spiny

projection neurons. This study identifies a role for torsinA within

the secretory pathway and implicates abnormal synaptic

structure in the torsinA deficient striatum.

Materials and methods

Animals

Animal work described in this manuscript has been approved

and conducted under the oversight of the UT Southwestern

Institutional Animal Care and Use Committee. Male and

female control (Tor1aFlx/+) and Dlx-CKO (Dlx5/6-Cre+;

Tor1aFlx/-) mice expressing ChAT(BAC)-eGFP (JAX strain

007902) were generated as previously described (41).

Laser microdissection and RNA isolation

Brains were harvested at postnatal day 14 (P14) and snap

frozen in dry ice-chilled isopentane. 16 μm fresh frozen brain

sections were generated with a cryostat, mounted on PET

membrane slides, and dehydrated in ethanol and xylenes.

Laser microdissection was performed using the ×20 objective

of a Leica LMD7microscope. ChAT-eGFP+ cell bodies (341–524

GFP+ somas per brain) or GFP-negative striatal tissue (1–1.5

million μm2 tissue area collected per brain) was laser

microdissected and lysed in buffer RLT with 1% β-
mercaptoethanol (Qiagen). Total RNA was isolated using a

RNeasy-micro kit (Qiagen) and eluted in RNase-free water.

RNA quantity and integrity was assessed using an Agilent

Bioanalyzer and samples with RIN between 7.6–9.3 were used

for RNA sequencing. Samples were derived from the following

number of animals: ChI soma n = 6 control and n = 6 Dlx-CKO;

Striatum: n = 4 control and n = 5 Dlx-CKO.

RNA sequencing and analysis

RNA-seq was performed using the HiSeq2500 (Illumina)

platform in the University of Michigan Sequencing Core. RNA-

seq libraries were generated using SmartSeq4 (Clontech).

Libraries were quantified and normalized using an Agilent

Bioanalyzer and sequenced using the HiSeq2500 High-Output

SBS V4 single-end 50 cycle kit. The quality of the raw reads data

was checked using FastQC (version 0.11.3). Low quality bases
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from individual reads were trimmed using CutAdapt. Tuxedo

Suite software package was used for alignment, differential

expression analysis, and post-analysis diagnostics (44-46). We

aligned reads (genome build UCSC mm10) using TopHat

(version 2.0.14) and Bowtie (version 2.2.1). We used FastQC

for a second round of post-alignment quality control to ensure

that only high quality data would be input to expression

quantitation and differential expression analysis. We used

Cufflinks/CuffDiff (Version 2.2.1) for expression quantitation,

normalization, and differential expression analysis. Diagnostic

plots were generated with CummeRbund package. We used

locally developed scripts to format and annotate the

differential expression data output from CuffDiff. Genes were

designated as DE if they passed quality control (Cuffdiff/

Cufflinks QC test status = “ok”), had Benjamini-Hochberg

FDR q-values <0.05, and fold change >1.5 (Tables 1, 2). The

TABLE 1 Differentially Expressed genes from striatal cholinergic interneuron soma samples.

Gene Gene ID Description Control
FPKM

Dlx-CKO
FPKM

Fold
change

q_value

Pdlim3 53318 PDZ and LIM domain 3 6.324 12.967 2.05 .01740

Rbm45 241490 RNA binding motif protein 45 7.387 14.970 2.03 .01740

Hmox1 15368 heme oxygenase 1 3.711 7.056 1.90 .03139

Cd59a 12509 CD59a antigen 14.549 26.403 1.81 .01740

Pdyn 18610 Prodynorphin 22.559 39.175 1.74 .01740

Prr5l 72446 proline rich 5 like 1.567 2.589 1.65 .04447

Fos 14281 FBJ osteosarcoma oncogene 7.107 11.580 1.63 .01740

Sdf2l1 64136 stromal cell-derived factor 2-like 1 31.479 49.964 1.59 .01740

Itga9 104099 integrin alpha 9 2.025 3.135 1.55 .04447

Grtp1 66790 GH regulated TBC protein 1 30.451 20.193 .66 .01740

Npy 109648 neuropeptide Y 609.880 401.328 .66 .01740

Sv2c 75209 synaptic vesicle glycoprotein 2c 11.522 7.481 .65 .01740

Cartpt 27220 CART prepropeptide 69.853 43.915 .63 .01740

Sst 20604 Somatostatin 1,044.770 646.451 .62 .01740

Beta-s 100503605 hemoglobin, beta adult s chain 351.612 213.052 .61 .01740

Col1a2 12843 collagen, type I, alpha 2 3.317 1.927 .58 .01740

F2r 14062 coagulation factor II (thrombin) receptor 2.813 1.626 .58 .04447

Hba-a2 110257 hemoglobin alpha, adult chain 2 185.868 107.032 .58 .01740

Igfbp2 16008 insulin-like growth factor binding protein 2 30.841 17.678 .57 .01740

Hddc3 68695 HD domain containing 3 47.292 26.738 .57 .01740

Insrr 23920 insulin receptor-related receptor 3.712 2.047 .55 .01740

Gfap 14580 glial fibrillary acidic protein 36.399 17.785 .49 .01740

Serping1 12258 serine (or cysteine) peptidase inhibitor, clade G, member 1 5.829 2.531 .43 .01740

Igf2 16002 insulin-like growth factor 2 6.092 2.557 .42 .01740

Gjb2 14619 gap junction protein, beta 2 2.135 .887 .42 .01740

Col1a1 12842 collagen, type I, alpha 1 1.983 .690 .35 .01740

Nov 18133 nephroblastoma overexpressed gene 4.641 1.409 .30 .01740

Spp1 20750 secreted phosphoprotein 1 3.096 .907 .29 .01740

Dcn 13179 Decorin 5.817 1.624 .28 .01740

Slc6a13 14412 solute carrier family 6 (neurotransmitter transporter, GABA),
member 13

2.547 .686 .27 .01740

Fam180a 208164 family with sequence similarity 180, member A 2.217 .384 .17 .01740

Vip 22353 vasoactive intestinal polypeptide 2.470 .374 .15 .01740

Fmod 14264 Fibromodulin 2.703 .293 .11 .01740

Aldh1a2 19378 aldehyde dehydrogenase family 1, subfamily A2 2.253 .205 .09 .01740

Slc13a4 243755 solute carrier family 13 (sodium/sulfate symporters), member 4 2.153 .170 .08 .01740

Ptgds 19215 prostaglandin D2 synthase (brain) 609.567 43.543 .07 .01740

Tuba1c 22146 tubulin, alpha 1C 14.184 .407 .03 .01740

Tor1a 30931 torsin family 1, member A (torsin A) 47.518 10.149 .21 .01740
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raw count data for all replicates are provided in Supplementary

Tables S7, S8 and the alignment rates are provided in

Supplementary Table S9.

Gene ontology analyses

Differentially expressed genes identified from RNAseq

were further analyzed for the identification of biologically

enriched pathways by gene ontology (GO)

enrichment analyses using the following web based

applications: GENEONTLOGY http://geneontology.org/

docs/go-enrichment-analysis/ and DAVID https://david.

ncifcrf.gov/home.jsp.

Golgi-cox staining

Brains from 10 to 14 week old female control (Tor1aFlx/+) and

Dlx-CKO (Dlx5/6-Cre+; Tor1aFlx/−) mice were harvested fresh

and immediately processed using the FD Rapid Golgi stain kit

(FD Neurotechnologies) as per manufacturer’s instructions and

as described previously (41). Slides were observed under

brightfield microscopy and striatal spiny projection neurons

with dense Golgi-cox impregnation without dendritic breaks

or obstructions were imaged with a ×63 objective lens and

reconstructed using Neurolucida (MBF Bioscience). Spines

were assessed on 3rd order or higher dendrites at ≥ 80 μm

from the soma. A total of 31 neurons from 6 control animals

and 25 neurons from 5 Dlx-CKO animals were assessed.

TABLE 2 Differentially Expressed genes from non-cholinergic striatum samples.

Gene Gene ID Description Control FPKM Dlx-CKO FPKM Fold change q_value

Eln 13717 Elastin 1.577 13.526 8.58 .01960

Tuba1c 22146 tubulin, alpha 1C .624 4.356 6.98 .01960

Ptgds 19215 prostaglandin D2 synthase (brain) 2.139 14.035 6.56 .01960

Serpina3n 20716 serine (or cysteine) peptidase inhibitor, clade A, member 3N 1.554 5.061 3.26 .01960

Crhbp 12919 corticotropin releasing hormone binding protein 1.592 4.775 3.00 .03323

Pdlim3 53318 PDZ and LIM domain 3 6.686 19.440 2.91 .01960

Npas4 225872 neuronal PAS domain protein 4 1.169 2.943 2.52 .04679

Gadd45g 23882 growth arrest and DNA-damage-inducible 45 gamma 24.837 62.021 2.50 .01960

Doc2g 60425 double C2, gamma 3.626 8.125 2.24 .03323

Igf1 16000 insulin-like growth factor 1 .655 1.438 2.20 .01960

Npas2 18143 neuronal PAS domain protein 2 4.878 10.687 2.19 .01960

Crip1 12925 cysteine-rich protein 1 (intestinal) 27.202 58.769 2.16 .01960

Dcdc2a 195208 doublecortin domain containing 2a .946 1.942 2.05 .01960

Arc 11838 activity regulated cytoskeletal-associated protein 44.295 89.269 2.02 .01960

Hspb1 15507 heat shock protein 1 13.250 25.970 1.96 .03323

Ctgf 14219 connective tissue growth factor 3.671 6.825 1.86 .03323

Nr4a1 15370 nuclear receptor subfamily 4, group A, member 1 51.004 93.507 1.83 .01960

Pdyn 18610 Prodynorphin 21.950 39.961 1.82 .03323

Fos 14281 FBJ osteosarcoma oncogene 7.206 12.946 1.80 .04679

Rbp4 19662 retinol binding protein 4, plasma 19.486 34.677 1.78 .01960

Egr4 13656 early growth response 4 97.187 172.884 1.78 .01960

Gfap 14580 glial fibrillary acidic protein 19.204 32.604 1.70 .01960

Mgp 17313 matrix Gla protein 55.013 92.441 1.68 .03323

Rps21 66481 ribosomal protein S21 899.763 1,416.980 1.57 .01960

Sec61b 66212 Sec61 beta subunit 197.548 309.101 1.56 .04679

Etl4 208618 enhancer trap locus 4 5.189 3.150 .61 .03323

Cdr1 631990 cerebellar degeneration related antigen 1 103.307 62.310 .60 .01960

Gpx6 75512 glutathione peroxidase 6 27.586 15.782 .57 .01960

Cnih3 72978 cornichon family AMPA receptor auxiliary protein 3 23.884 12.954 .54 .01960

Xist 213742 inactive X specific transcripts 5.991 2.035 .34 .01960

Pla2g4e 329502 phospholipase A2, group IVE 2.525 .854 .34 .01960

Tor1a 30931 torsin family 1, member A (torsin A) 34.565 6.742 .20 .01960
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Statistics

All data are reported asmean ± SEMunless otherwise indicated.

All statistical tests reported (Student’s t-tests, One-way or two-way

ANOVAs) were performed using Graphpad Prism (Version 9.3.1).

Results

RNA-seq of cholinergic somas and striatal
non-cholinergic tissue in maturing
striatum

To explore the effects of torsinA loss of function on striatal

cholinergic interneurons (ChI) and non-cholinergic cells during

development, we performed laser microdissection of dorsolateral

striatal ChI somas or surrounding non-cholinergic striatum

containing spiny projection neuron cell bodies, interneurons, glia,

and neural processes (Figure 1A). We purified total RNA from

control (Tor1aFlx/+) and Dlx-CKO (Dlx5/6-Cre+; Tor1aFlx/-) ChI

soma (n = 6 control and n = 6 Dlx-CKO) and non-cholinergic

striatum (n = 4 control and n = 5 Dlx-CKO) samples and performed

RNA-seq analyses (Methods). ChI soma samples demonstrated up to

193.7-fold higher expression of cholinergic-selective markers

compared to striatum samples. Non-cholinergic striatum samples

were enriched up to 2.8-fold for GABAergic markers (Figure 1B).

Within each sample type, there were not significant differences in the

expression of cholinergic or GABAergic markers between control and

Dlx-CKO genotypes except for Pdyn (Supplementary Table S1). We

identified control vs. Dlx-CKO differentially expressed (DE) genes in

both ChI soma and striatum samples (Figure 1C, DE genes in red;

Methods) afterfiltering out geneswith FPKMvalues less than 1 in both

FIGURE 1
Laser microdissection of cholinergic interneuron somas and non-cholinergic striatum samples identifies differentially expressed genes in Dlx-
CKO vs. control genotypes. (A) Laser microdissection workflow. ChI somas were dissected from ChAT-GFP+ cells followed by dissection of
surrounding GFP-negative striatum comprisedmainly of SPN somas, as well as GABA interneuron somas, glia, and neural processes. (B) Fold change
of cholinergic andGABAergicmarkers (derived from FPKM) demonstrates enrichment of laser microdissected samples. (C)Control vs. Dlx-CKO
differentially expressed genes (highlighted in red) identified fromRNA-seq analyses (ChI soma samples derived from n= 6 control and n= 6Dlx-CKO
mice; Striatum samples derived from n = 4 controls and n = 5 Dlx-CKOmice). Insets show the same data from 3.5–4.5 on the y-axis. All differentially
expressed genes are listed in Tables 1, 2. (D) Upregulated and downregulated genes from ChI soma and striatum. (E)Overlap between ChI soma and
striatum differentially expressed genes.
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genotypes (Supplementary Table S2). DE genes were cross referenced

with the brainrnaseq.org database of purified cell types (47), which

confirmed expected expression levels (FPKM) in the brain. Over 75%

of DE genes in ChI somas were downregulated (28/37 genes

downregulated), and 80% of DE genes in striatum samples were

upregulated (25/31 genes upregulated) (Figure 1D). From these

comparisons we identified a core set of 7 genes differentially

regulated in both ChI soma and striatum samples (Figure 1E).

Overrepresentation of differentially
expressed genes encoding secreted and
extracellular components in ChI soma and
non-cholinergic striatum

To assess the functional significance of control vs. Dlx-CKO

DE genes, we first determined their subcellular localization by

cross referencing with the COMPARTMENTS database (48).

Consistent with the role of torsinA in the secretory pathway, 62%

of DE genes in ChI soma (23/37 genes) and 42% of DE genes in

striatum (13/31 genes) were categorized as secreted, extracellular,

extracellular matrix, or plasma membrane localized in mouse

(Supplementary Table S3). Similarly, 48% of DE genes in ChI

soma (18/37 genes) and 29% of DE in striatum (9/31 genes) are

present in the human secretome (49) (Supplementary Table S4).

Gene ontology (GO) analysis of Tor1a CKO DE genes using

DAVID (50) identified a significant over-representation of genes

encoding secreted factors in both ChI soma and striatum samples

(Supplementary Table S5). An annotation cluster comprising

secreted, extracellular region, and extracellular space was

significantly over-represented in ChI samples (16/37 genes;

cellular component; enrichment score 6.52; Figures 2A, B).

Most of these DE genes in ChI were downregulated

(Figure 2C). Striatum samples were also over-represented for

FIGURE 2
Gene ontology analysis demonstrates over-representation of genes encoding secreted proteins in Dlx-CKO mice. (A) A cellular component
annotation cluster of secreted, extracellular region, and extracellular space related geneswas significantly over-represented in ChI soma samples. (B)
Percent of all ChI soma differentially expressed genes annotated as secreted. (C) Number of upregulated vs. downregulated genes in ChI soma
analyses. (D) A cellular component annotation cluster of genes encoding secreted proteins was significantly over-represented in non-
cholinergic striatum samples. (E) Percent of all non-cholinergic striatum differentially expressed genes annotated as secreted. (F) Number of
upregulated vs. downregulated genes in non-cholinergic striatum samples.
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FIGURE 3
Alterations to synaptic structure and function in Dlx-CKO striatal GABAergic neurons. (A) A biological process annotation cluster of synaptic
signaling related genes was significantly over-represented in non-cholinergic striatum samples. (B) Fold change of the annotated synaptic signaling
genes (derived from FPKM). (C)Golgi-Cox impregnated striatal spiny projection neurons and associated dendritic arbor reconstructions from control
and Dlx-CKO adult mouse brains. (D) Total dendritic length of spiny projection neurons (control: n = 30 neurons from 6mice, Dlx-CKO: n = 25
neurons from 5 mice. t53 = .6718, p = .5046). (E) Spine density of third order dendrites on spiny projection neurons (control: n = 31 neurons from 6
mice, Dlx-CKO: n = 25 neurons from 5 mice, t54 = 3.008, p = .004).
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genes encoding secreted factors (13/31 genes; cellular

component; enrichment score 2.07; Figures 2D, E), and most

of these DE genes were upregulated (Figure 2F).

Overrepresentation of synaptic genes in
non-cholinergic striatum and dendritic
spine alterations in striatal spiny projection
neurons

GO analyses (geneontology.org) (51, 52) identified broad

changes to synaptic function in non-cholinergic striatum from

Dlx-CKO samples as compared to control (Supplementary Table

S6). An annotation cluster comprising synaptic signaling,

anterograde trans-synaptic signaling, and chemical synaptic

transmission was significantly over-represented in striatum

samples (Figure 3A). Of the annotated synaptic genes, Doc2g,

Crhbp, Dcdc2a, Npas4, Pdyn, and Nr4a1 were upregulated, and

Cnih3 was downregulated (Figure 3B). This cluster of gene

expression changes suggests that striatal synaptic structure

may be altered in Dlx-CKO mice.

To assess this possibility, we examined dendritic structure in

Dlx-CKO and control mice by performing Golgi-Cox

impregnation and assessing striatal spiny projection neuron

morphology using light microscopy (Figure 3C). Spiny

projection neurons are morphologically immature at P14 and

their inputs onto dendritic spines continue to mature into

adulthood (53-55), so we assessed morphology and spine

density in adult brains. Consistent with our previous findings

(41), the length of the dendritic arbors of striatal spiny projection

neurons were not significantly different between control and Dlx-

CKO mice (t53 = 0.6718, p = 0.5046; Figure 3D). However, the

spine density of 3rd order dendritic branches was significantly

increased in Dlx-CKO brains compared to control (t54 = 3.008,

p = 0.004; Figure 3D).

Increased spine density reflects increased excitatory input to

spiny projection neurons. Consistent with the potential for

increased excitability, activity-dependent immediate early

genes were significantly upregulated in Dlx-CKO non-

cholinergic striatum samples. At least 7 immediate early genes

were upregulated in striatum, including Fos (1.8 fold), Arc (2

fold), Egr4 (1.8 fold), Nr4a1 (1.8 fold), Npas4 (2.5 fold), Npas2

(2.2 fold), and Ctgf (1.85 fold). In ChI samples, Fos was

significantly upregulated (1.6 fold), suggesting that ChI

activity may also be increased in Dlx-CKO mice.

Discussion

These studies identify a core set of differentially expressed

genes in the striatum of torsinA conditional knockout mice

during postnatal CNS maturation. Despite the previously

reported divergent phenotype between cell types (cholinergic

neurodegeneration vs. GABAergic neuron survival (41)), both

ChI soma and non-cholinergic striatum samples demonstrated a

discrete set of gene expression changes consistent with the role of

torsinA in the secretory pathway. Striatum samples also

displayed expression changes of genes regulating synaptic

transmission and an upregulation of activity-dependent

immediate early genes. Consistent with our RNAseq analyses,

striatal spiny projection neurons in adult mice demonstrated

significantly higher spine density, suggesting that surviving

striatal neurons exhibit increased excitability during striatal

maturation and increased afferent inputs in adulthood.

We isolated either ChAT-GFP+ ChI somas or GFP negative

striatal tissue containing mainly spiny projection neuron somas,

as well as GABAergic interneuron somas, glia, and neural

projections using laser microdissection (see Figure 1A for a

summary of the laser microdissection approach). The ChI

soma samples were therefore highly enriched in a single cell

type, while striatum samples contained mostly GABAergic

neurons in a mixture of cell types and compartments, mainly

comprising spiny projection neurons. This is reflected in our

analyses as a cholinergic marker enrichment of 193.7 fold vs.

GABAergic marker enrichment of up to 2.8 fold. Differential

expression analyses of both sample types were overrepresented

for genes encoding factors that are secreted to the extracellular

space. Several neuropeptides were overrepresented in Dlx-CKO

ChI soma samples, including Pdyn (upregulated), Vip, Npy,

Cartpt, and Sst (downregulated). These factors were

previously found to be enriched in GABAergic striatal

neurons (56-61), but our enrichment protocol may have

enabled measurement of sparse neuropeptide expression. The

differential expression of genes encoding extracellular proteins

and neuropeptides are consistent with a central role of torsinA in

the secretory pathway (21, 22), as suggested by its localization in

the endoplasmic reticulum lumen (3, 62).

Dlx-CKO striatum samples demonstrated a suite of gene

expression differences consistent with a structural or functional

change in striatal synapses. Whether the synaptic changes of

GABAergic neurons reflect intrinsic responses to torsinA

deficiency or a compensation consequent to neighboring

cholinergic neurodegeneration remains unknown. Striatal

cholinergic signaling matures postnatally and begins to

dynamically regulate the synaptic activity of other striatal

neurons as skilled motor function develops (63). The second

postnatal week (when samples were collected in this study) is a

maturational period during which corticostriatal synaptogenesis

and spinogenesis begins and progresses (reviewed in (64)) as

activity induced factors shape the connectivity of striatal neurons

(65, 66). Several differentially expressed genes identified in this

study modulate striatal spiny projection neuron spine density.

The nuclear receptor Nr4a1 (upregulated 1.83 fold in Dlx-CKO)

is enriched in spiny projection neurons (67), where its activity-

induced expression alters spine density as part of a

transcriptional program that regulates density and distribution
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of dendritic spines (68, 69) and promotes spiny projection

neuron maturation (67). Npas4 (upregulated 2.51 fold) is a

transcription factor that regulates GABAergic synaptic

function (70) and is important for synaptic formation,

function and ongoing plasticity (71). Knockdown of Npas4

reduces dendritic spine density on D1 receptor-expressing

spiny projection neurons (72). Expression of the cytoskeleton

associated protein Arc (upregulated 2-fold in Dlx-CKO striatum)

increases spine density in vivo (73, 74). IGF-1 (upregulated 2.19-

fold in Dlx-CKO striatum) administration rescues spine density

(75) or spine motility (76) in Mecp2 mutant mice and

knockdown of IGF-1 decreases spine density of purkinje cells

(77). The upregulation of these factors during striatal maturation

is consistent with changes to synaptic structure, as evidenced by

significantly increased spine density of Golgi-Cox-stained spiny

projection neurons in the present study.

Our differential expression analyses also suggest functional

synaptic changes in Dlx-CKOmice. Doc2g (upregulated 2.24 fold

in Dlx-CKO) is a member of the DOC2 family of proteins that

modulates spontaneous synaptic transmission (78). Knockdown

of DOC2 proteins triggers excitatory synaptic scaling without

altering action potential dependent activity (79). Cnih3

(downregulated 1.84 fold in Dlx-CKO) is an AMPA receptor

auxiliary subunit that functions in the endoplasmic reticulum

and remains associated with the AMPA receptor complex at the

synapse (80). CNIH3 regulates AMPA receptor trafficking and

gating properties by determining the subunit composition of

heteromeric AMPA receptors (81) and controlling the export of

AMPA receptors from the endoplasmic reticulum (82). The

structure of the interface between CNIH3 and AMPA

receptors suggests that lipids play a role in the assembly of

these complexes (83). The endoplasmic reticulum localization

of CNIH3 and its interplay with lipids in complex with AMPA

receptors suggests that it could be one link between torsinA

function and the synaptic plasticity differences observed in

animal models (24,35-37) and in people with dystonia (31-

34). The synapse-related gene expression changes identified in

torsinA null striatal neurons during maturation may therefore

contribute to long lasting enhancement of spiny projection

neuron synaptic structure and function.

To our knowledge, spine density has not been assessed

previously in torsinA null mice. Heterozygous Tor1aΔE/+ mice

have reduced spiny projection neuron spine density at P26 (29),

but no difference at P60 (29), consistent with other spine density

studies in adult Tor1aΔE/+ mice (27, 84). Spine density on distal

dendrites of cerebellar purkinje neurons is reduced in 3 month

old Tor1aΔE/+ animals (28). However, motor behavior is not

altered in these mice (85).

Surprisingly, despite glial enrichment, Gfap (encoding Glial

Fibrillary Acidic Protein) was upregulated in both ChI soma and

non-cholinergic striatum samples of Dlx-CKO mice. ChI soma

sample Gfap expression could reflect “contamination” with

adjacent or (synapsed) astrocytes, as increased neuronal

activity increases expression of glial Gfap (86). However,

astrogliosis is not observed in Dlx-CKO striatum (41).

Neurons can express Gfap in neurodegenerative disease (87),

but we observed robust Gfap expression in both control and Dlx-

CKO samples. Some neuronal Gfap expression is observed in the

normal mouse brain ((47); brainrnaseq.org). Fate mapping

studies demonstrate that Gfap-expressing progenitors give rise

to some neurons, including in the striatum (88), suggesting that

wemay be observing physiological ChI expression ofGfap during

striatal maturation.

Six genes were differentially expressed in both ChI soma and

non-cholinergic striatum samples. Fos, Pdlim3, and Pdyn were all

upregulated to similar extents in both sample types,

suggesting that these genes could represent common

responses to torsinA loss of function or striatal circuit

changes. In contrast, Ptgds, Tuba1c, and Gfap were

downregulated in ChI somas, but upregulated in non-

cholinergic striatum, suggesting a role in differential

vulnerability of striatal neurons to cell death or cell type

specific responses to torsinA loss of function. Tuba1c

reduction (35.71 fold decreased in ChI) may reflect

microtubule disruption or active degeneration of ChI,

while its increase in non-cholinergic striatum (6.98 fold

increased) could reflect compensatory neurite outgrowth or

axon elongation in surviving cells (89). Only a single tubulin

isoform was altered in this study, suggesting that torsinA loss

of function caused a highly specific change rather than broad

disruption of microtubule structure. Microtubule dynamics

contribute to dendritic spine development, morphology, and

synaptic plasticity (90-93). Increased Tuba1c expression may

therefore reflect or contribute to the spine density increases

we observed in Dlx-CKO spiny projection neurons.

Ptgds encodes lipocalin type prostaglandin D2 synthase,

which catalyzes the conversion of prostaglandin H2 to the

neuromodulatory prostaglandin D2 in the brain (94-96).

Prostaglandin D2 is neuroprotective in contexts such as

hypoxia-ischemic injuries, excitotoxicity, and oxidative stress

(97,98,99,100,101). Prostaglandin D2 synthase (also called β-
trace) itself is a neuroprotective chaperone that inhibits Aβ
aggregation (102, 103), and alterations to its expression may

be a biomarker of several neurological disorders (104). In the

present study, Ptgds was 14.08 fold decreased in ChI soma and

6.56 fold increased in non-cholinergic striatum. Ptgds

upregulation could contribute to the selective survival of non-

cholinergic neurons in the striatum of Dlx-CKO mice. Further

investigations would be required to determine whether this

association is causative.

This study supports a developmental role for torsinA in the

secretory pathway and demonstrates abnormal synaptic

development in the torsinA deficient striatum. These

transcriptomic datasets are freely available as a resource for

future hypothesis driven work exploring the consequences of

torsinA loss for striatal structure and function.
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