
Approach to the Treatment of
Pediatric Dystonia
Carolina Gorodetsky1,2 and Alfonso Fasano1,2,3,4,5*

1Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada, 2Edmond J. Safra Program in Parkinson’s Disease,
Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON,
Canada, 3Division of Neurology, University of Toronto, Toronto, ON, Canada, 4Krembil Brain Institute, Toronto, ON, Canada,
5Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada

Dystonia is the most common movement disorder in the pediatric population. It can affect
normal motor development and cause significant motor disability. The treatment of
pediatric dystonia can be very challenging as many children tend to be refractory to
standard pharmacological interventions. Pharmacological treatment remains the first-line
approach in pediatric dystonia. However, despite the widespread use of different ani-
dystonia medications, the literature is limited to small clinical studies, case reports, and
experts’ opinions. Botulinum neurotoxin (BoNT) is a well-established treatment in adults
with focal and segmental dystonia. Despite the widespread use of BoNT in adult dystonia
the data to support its use in children is limited with the majority extrapolated from the
spasticity literature. For the last 2 decades, deep brain stimulation (DBS) has been used for
a wide variety of dystonic conditions in adults and children. DBS gained increased
popularity in the pediatric population because of the dramatic positive outcomes
reported in some forms of genetic dystonia and the subsequent consensus that DBS
is generally safe and effective. This review summarizes the available evidence supporting
the efficacy and safety of pharmacological treatment, BoNT, and DBS in pediatric dystonia
and provides practical frameworks for the adoption of these modalities.
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INTRODUCTION

Dystonia is characterized by abnormal, often repetitive movements and/or postures that are caused
by sustained or intermittent muscle contractions causing abnormal often repetitive movements and/
or postures (1). Dystonia is classified along two axes. The first axis addresses the clinical
characteristics, such as age at onset, body distribution, temporal pattern, and associated features
(additional movement disorders and/or neurological features). The second axis concentrates on
etiology which includes nervous system structural changes, effects of toxins/drugs, genetic mutation,
etc. (2)

Dystonia is a clinical diagnosis and there are no specific diagnostic tests (3). There is great
phenomenological heterogeneity in the presentation of pediatric dystonia, hence the importance of
correct diagnosis to avoid diagnostic and therapeutic delays. Diagnosis of dystonia involves the
identification of dystonic movements and postures that are typically repeated in individualized
patients. Other physical signs are sensory tricks, activation with volitional movements, task
specificity, and overflow activation (4). Accurate diagnosis of dystonia in the pediatric
population poses additional challenges as many developmentally normal children have overflow
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TABLE 1 | summarizes the common inherited dystonias with specific treatments available.

Disease Gene Age of onset Clinical
manifestations

Diagnostic tests Treatment

Abetalipoproteinemia MTTP Childhood to
early adulthood

Progressive ataxia, chorea, dystonia,
seizures, acanthocytosis, retinitis
pigmentosa, fat malabsorption
syndrome

Plasma lipids and
lipoproteins

Vitamin E and reduced fat diet (can
prevent/reduce symptoms)

MTTP sequencing

Aromatic L-amino acid
decarboxylase deficiency

AADC Infancy Global developmental delay,
hypotonia, dystonia, oculogyric crisis,
autonomic dysfunction

CSF neurotransmitters Dopamine agonists, monoamine
oxidase inhibitors, gene therapyAADC activity in the

plasma
AADC sequencing

Ataxia with vitamin E
deficiency

TTPA Late childhood Ataxia, dystonia, dysarthria, areflexia,
vision loss, loss of proprioception, and
sensory disturbance

Plasma vitamin E level Oral vitamin E
Brain MRI
TTPA sequencing

Biotin and thiamine
responsive basal ganglia
disease

SLC19A3 Abrupt onset in
early childhood

Dystonia, parkinsonism, ataxia,
subacute encephalopathy, dysarthria,
dysphagia, external ophthalmoplegia,
seizures

Brain MRI Biotin and thiamine
SLC19A3 sequencing

Biotinidase deficiency BTD Infancy Encephalopathy with motor delay,
ataxia, dystonia, and seizures

BTD activity in serum/
plasma

Biotin

Brain MRI
BTD sequencing

Cerebral folate deficiency FOLR1 Early childhood Ataxia, dystonia, myoclonus,
developmental regression, seizures

Brain MRI Folinic acid
CSF neurotransmitters
FOLR1 sequencing

Cerebrotendinous
xanthomatosis

CYP27A1 Late childhood
to adulthood

Ataxia, spasticity, dystonia, myoclonus,
tendon xanthomas, peripheral
neuropathy, neonatal cholestatic
jaundice, bilateral childhood-onset
cataracts, chronic diarrhea

Plasma cholestanol levels Chenodeoxycholic acid
Plasma and urine bile
alcohols
Brain MRI
CYP27A1 sequencing

Dopa responsive dystonia,
classic

GCH1 Early childhood
to late
adulthood

Dystonia, parkinsonism CSF neurotransmitters Levodopa
Phenylalanine load test
Levodopa trial
GCH1 sequencing

Dopa responsive dystonia,
complicated

TH,
PTPS, SPR

Infancy to
adolescence

Dystonia, parkinsonism, oculogyric
crisis, autonomic disturbances

CSF neurotransmitters Levodopa, 5-hydroxytryptophan,
tetrahydrobiopterinGenetic sequencing

Dystonia with brain
manganese accumulation

SLC30A10
SLC39A14

Childhood Dystonia, parkinsonism,
hypermagnesemia, hepatic cirrhosis
polycythemia

Blood manganese levels Chelation
CBC, liver function
Brain MRI
SLC30A10 and
SLC39A14 sequencing

Glucose transporter 1
deficiency syndrome

SLC2A1 Early childhood,
adulthood

Ataxia, dystonia, myoclonus,
paroxysmal exertion-induced
dyskinesia, seizures, acquired
microcephaly, developmental delay

CSF/plasma glucose
ratio

Ketogenic diet

SLC2A1 sequencing

Glutaric aciduria type 1 GCDH Abrupt onset in
early childhood

Dystonia, parkinsonism, chorea, acute
encephalopathic crisis, macrocephaly,
hypotonia, seizures

Plasma and urine organic
acids

Lysine and tryptophan restricted
diet, carnitine supplementation,
avoiding and treating intercurrent
illnesses

Plasma acylcarnitines
Brain MRI
GCDH enzyme analysis
GCDH sequencing

Methylmalonic aciduria MUT Childhood Generalized dystonia after an
encephalopathic crisis, developmental
delay, renal insufficiency

Organic acids in the urine Avoiding and treating intercurrent
illness with protein restrictionAmino acids in the blood

Acylcarnitine profile in
blood
Genetic sequencing

Niemann-Pick disease
type C

NPC1 NPC2 Early childhood/
adulthood

Ataxia, dystonia, developmental delay,
supranuclear vertical gaze palsy,
hepatosplenomegaly, seizures, gelastic
cataplexy

Oxysterols,
lysosphingomyelin
derivatives, bile acids

Miglustat

NPC1/NPC2 sequencing
Propionic aciduria PCCA Early childhood

to adolescence
Generalized dystonia after an
encephalopathic crisis, developmental
delay

Organic acids in the urine Avoiding and treating intercurrent
illness with protein restrictionAmino acids in the blood

PCCB Acylcarnitine profile in
blood
PCCA/PCCB
sequencing

(Continued on following page)
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movements due to an immature nervous system. Furthermore,
children can present with very severe dystonia, often combined
with spasticity, that manifests more as hypertonia than as
abnormal movements (5).

Dystonia is among the most commonly observed movement
disorders in pediatric clinical practice and usually involves the
whole body (generalized) (3). Thus, dystonia frequently affects
motor function and can be a source of significant motor disability.
The etiology of childhood dystonia is very heterogeneous and
requires a structured approach to reach the correct diagnosis
promptly (6). Due to the rapid advances in the next generation
sequences, more than 200 genes have been recognized as a cause
of generalized child-onset dystonia. (7–11)

Dyskinetic CP is a common cause of dystonia in children and
comprises 4%–17% of all cases of CP (12). Dystonia frequently
co-exists with spasticity where it is referred to as “mixed tone.”
(13, 14) In children with CP dystonia manifests with fluctuating
hypertonia, involuntary postures, and abnormal movements
triggered by arousal, cognitive tasks, and emotional state (15,
16). In these children dystonia can be generalized (trunk and at
least two other sites are involved), focal (a single body part is
affected), or segmental (two or more contiguous body regions are
affected) (2). The presence of dystonia can impact motor
function, pain, and ease of care in these patients (17). Despite
the advances in the understanding of the pathophysiology of
dystonia, treatment remains largely symptomatic. Thus, our
review will not discuss specific therapies once the axis II
reveals treatable dystonia (e.g., copper chelator in case of
Wilson’s disease). Table 1 summarizes the inherited dystonias
with specific treatments.

The goal of symptomatic treatment includes reducing pain,
decreasing involuntary movements, preventing contractures, and
improving motor function and quality of life (18). Therapeutic
options must be individualized for each child and the majority of
the children will require a combination of several drugs and
treatments (19). Treatment options for childhood dystonia
include physical and supportive treatment, oral medications,
chemo denervation with botulinum toxin (BoNT), and
neurosurgical procedures such as deep brain stimulation
(DBS) (3). Although clearly beneficial the evidence of physical
and other rehabilitative treatments is poor as very few studies

have been performed in pediatric dystonia as well as in dystonia
in general. Medications are first-line agents, and we’ll briefly
discuss the principal ones, although even here the evidence is
poor and mainly coming from old uncontrolled studies. In this
article, we will focus on dystonia treatments with the highest level
of evidence, namely BoNT and DBS, providing a narrative
literature review and practical clinical recommendations.

METHODS

In the following narrative review, we searched for systematic
reviews on the topic of “pharmacological management of
pediatric dystonia,” “BoNT treatment in dystonia/pediatric
population,” and “DBS for treatment of pediatric dystonia.”
The systematic reviews were supplemented with a review of
the original articles.

PHARMACOLOGICAL TREATMENT FOR
PEDIATRIC DYSTONIA

Introduction
The first-line treatment of pediatric dystonia is pharmacological,
although its scientific evidence is limited. The majority of
therapeutic trials in childhood dystonia are not randomized
controlled studies and the current treatment guidelines are
based on the literature on adult movement disorders and
expert opinion(3).

In 1984, Marsden et al. (20) described the so-called “Marsden
cocktail” for the treatment of severe dystonia in children and
adults. The cocktail is a combination of tetrabenazine, pimozide,
and benzhexol. In recent years neuroleptics are rarely used for
dystonia management due to inferior side effect profile and
possible development of tardive dystonia, hence we will not
discuss their use in the following review.

In the following section, we will review the most used
medication to treat pediatric dystonia. Table 2 summarizes the
recommended doses and side effects of the most used
pharmacological agents, according to the rule A-B-C-D
(anticholinergics, baclofen, clonazepam, and other

TABLE 1 | (Continued) summarizes the common inherited dystonias with specific treatments available.

Disease Gene Age of onset Clinical
manifestations

Diagnostic tests Treatment

Pyruvate dehydrogenase
deficiency

Multiple Infancy Progressive generalized or paroxysmal
dystonia

Blood lactate and
pyruvate

Thiamine, ketogenic diet

Plasma amino acids
Pyruvate dehydrogenase
complex enzyme activity
Genetic sequencing

Wilson’s disease ATP7B Childhood/
young
adulthood

Dystonia, parkinsonism, ataxia, chorea,
flapping tremor, Kayser-Fleischer rings,
dysarthria, liver disease, psychiatric
symptoms

Slit-lamp exam Zinc, penicillamine, trientine
Serum ceruloplasmin and
24 h urinary copper
excretion
Brain MRI
ATP7B sequencing
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benzodiazepines, and dopamine, i.e., levodopa, tetrabenazine,
neuroleptics).

Anticholinergics
Anticholinergic medications such as trihexyphenidyl are one of
the most effective agents for the treatment of generalized dystonia
in the pediatric population. Trihexyphenidyl blocks the action of
acetylcholine on the central muscarinic receptors in the striatum.
Animal studies demonstrated abnormal coupling between
dopaminergic and cholinergic signaling and pathological
elevation of striatal cholinergic tone in dystonia (21).

Trihexyphenidyl has the most robust evidence for dystonia
management. It is usually considered a first- or second-line
treatment for generalized dystonia in children. In a
prospective, double-blind, crossover study (22) demonstrated
significant clinical response with 30 mg trihexyphenidyl versus
placebo in children and young adults with segmental and
generalized dystonia (22 of 31 children and young adults age
9–32; the response was judged clinically significant if there had
been improvement in dystonia scores if there had been an impact
on daily function and if the benefit of the response outweighs side
effects). Fahn et al. (23) conducted an open-label trial
demonstrating a moderate to drastic improvement with
trihexyphenidyl in 61%–71% (average daily dosage of 41 mg)
of children versus 19%–38% in adults (average daily dosage of
24 mg).

A recent systematic review (24) evaluated dystonia
management in children with cerebral palsy (CP). The authors
identified 7 studies utilizing trihexyphenidyl in this population
(23, 25–30). Overall the studies suggest that trihexyphenidyl
results in little to no difference in dystonia, motor function,
achievement of individualized goals, and ease of caregiving.

Trihexyphenidyl is better tolerated in children than in adults,
however, adverse effects are still common in the pediatric

population. The most common side effects are constipation
(43%), decreased urinary frequency (19%), irritability/
behavioral change (13%), and dry mouth (28). Other less
common adverse effects include blurry vision, chorea, rash,
and somnolence (26, 27). Children can tolerate higher doses
than adults, but the cognitive effect remains a concern and
requires close monitoring. Trihexyphenidyl usually requires
prolonged treatment (weeks to months) before seeing a clinical
response (26). Other anticholinergic medications include
benztropine and procyclidine among others. The data on their
use in the pediatric population is limited to the treatment of acute
dystonic reactions (31).

Baclofen
Baclofen functions as gamma-aminobutyric acid (GABA) agonist
on the GABA-B receptors. It reduces the motor neuron
excitability mainly at the spinal cord level. Oral baclofen has a
very limited blood-brain-barrier (BBB) penetration, hence high
doses of oral baclofen are required to achieve clinical benefit (32).

Oral baclofen is frequently used in clinical practice in
childhood dystonia, although the therapeutic evidence is
extremely limited and most of the data is based on expert
opinion (33, 34). While trihexyphenidyl is considered a first-
line treatment, baclofen is considered a second or third-line
treatment (34). Greene et al. (35) found moderate
improvement with baclofen in 7 out of 16 children with
idiopathic dystonia (based on patients’ reports). A subsequent
study (36) evaluated baclofen treatment in idiopathic childhood
dystonia: based on a retrospective chart review, 10% responded to
oral baclofen versus 51% who responded to anticholinergic
agents. No studies evaluating oral baclofen in the CP
population were identified.

Baclofen is generally well-tolerated in children. The most
common adverse effects include fatigue, nausea, constipation,

TABLE 2 | Summary of common medications used to treat pediatric dystonia (from Lexicomp pediatric, AHFS clinical drug information pediatric.

Medication Dosage Side effects Comments

Trihexyphenidyl 0.1–0.2 mg/kg/day in 2–3 divided doses; titrate weekly
by 0.15 mg/kg/day

Constipation, urinary retention, irritability/behavioral
change, dry mouth, blurry vision, chorea, rash,
somnolence, memory problems, confusion,
tachycardia, worsening of narrow angle glaucoma

Monitor cognition, ECG, and
intraocular pressure

Max daily dose: 0.75–2 mg/kg/day divided in 3 doses Avoid using in children with
concomitant chorea

Baclofen 2–7 years: initial dose of 2.5 mg 3 times a day and
increase by 5 mg weekly. Max dose 20–40 mg daily

Fatigue, nausea, constipation, drowsiness, dizziness,
worsening of axial hypotonia

Monitor for hypotonia worsening

>8 years: initial dose of 5 mg 3 times a day and increase
by 5 mg weekly. Max dose 60–80 mg daily

Clonazepam <10 years: initial dose of 0.01–0.03 mg/kg/day divided in
2–3 doses; max dose: 0.2 mg/kg/day

Sedation, behavioral changes, disinhibition,
confusion, respiratory depression

Monitor for respiratory depression

>10 years: initial dose 0.01–0.05 mg/kg/day divided in
2–3 doses; max dose: 20 mg daily

Diazepam 0.01–0.3 mg/kg/day divided 2–4 times daily. Max dose:
20 mg daily

Levodopa/
carbidopa

1 mg/kg/day divided in 3 doses. Titrate weekly by
1 mg/kg divided 3 times per day. Max dose:
10 mg/kg/day

Nausea, dizziness, behavioral changes, insomnia,
orthostatic hypotension

Consider trying in every child with
unexplained dystonia

Tetrabenazine Start 6.25–12.5 mg/day divided 3 times per day. Titrate
weekly by 6.25–12.5 mg divided 3 times per day. Max
dose: 50 mg per day

Sedation, behavioral changes, depression, worsening
of movements, akathisia, nausea, parkinsonism

Consider in generalized
hyperkinetic movements and
tardive dyskinesia

Abbreviations: Kg, kilogram; mg, milligram; max, maximum.
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drowsiness, and dizziness. High doses of baclofen can exacerbate
axial hypotonia (36, 37). Given its poor ability to cross the BBB
when given orally, baclofen administered intrathecally by means
of a pump has a greater effect on spasticity and dystonia and will
discuss later.

Benzodiazepines
Benzodiazepines are frequently used to treat pediatric dystonia.
Benzodiazepines bind to central GABA-A receptors and increase
the inhibitory hyperpolarization of the neurons expressing these
receptors (37).

Benzodiazepines are generally considered a second or third-
line treatment for dystonia. No studies have compared the
different benzodiazepines in the pediatric dystonia
population, but generally, longer-acting benzodiazepines are
used. Greene et al. (36) found that 16% of individuals (children
and adults) responded to clonazepam. Children had a better
response rate than adults. Chuang et al. (38) evaluated 33
patients (children and adults) with hemidystonia and found
a 50% response rate to clonazepam and diazepam (defined as
any improvement reported by the patient). Clonazepam was
also reported to be beneficial in the treatment of myoclonus-
dystonia in the pediatric population (39, 40). The majority of
the data regarding the treatment of myoclonus-dystonia comes
from the adult literature and includes drugs such as zonisamide,
tetrabenazine, and levodopa (41).

No studies evaluating benzodiazepines in the CP population
were found.

Benzodiazepines are very well tolerated in the pediatric
population and have fewer adverse effects compared to
trihexyphenidyl, baclofen, and levodopa (34). The most
common adverse effect is sedation. Less frequent side effects
include behavioral changes, disinhibition, confusion, and
respiratory depression (38). Sudden cessation of
benzodiazepines can cause worsening of dystonia and
withdrawal symptoms.

Dopaminergic Medications (Levodopa and
Tetrabenazine)
Levodopa
Levodopa crosses the BBB and converts into dopamine. Its
mechanism of action in dystonia is not fully understood.

Levodopa is the principal treatment in levodopa-responsive
dystonia (DRD) and produces a significant clinical benefit in
these conditions (42, 43). A trial of levodopa is warranted (for at
least 3 months up to the dose of 600 mg/day (10 mg/kg/day) if
needed) in every child with an unknown cause of dystonia (44).

A single randomized crossover trial evaluated the levodopa
treatment in CP and dystonia (45). This trial failed to
demonstrate upper extremity motor function improvement.
The authors did not evaluate dystonia severity, pain/comfort,
or quality of life measurements.

The side effect profile is generally favorable in the pediatric
population. The most common side effects include nausea,
dizziness, behavioral changes, insomnia, and orthostatic
hypotension.

Not all DRDs respond greatly to levodopa with up to 36% of
children with tyrosine hydroxylase deficiency showing no
response to this treatment (46). Furthermore, depending on
the genetic cause of DRD, additional treatments with mono-
oxidase B inhibitors (e.g., selegiline), antidepressants,
tryptophane, and carbidopa might be needed. This is especially
the case for the autosomal recessive forms of DRD (47, 48).

Tetrabenazine
Tetrabenazine causes a selective and reversible depletion of
monoamines from the synaptic terminals by blocking the
VMAT2, a vesicular monoamine transporter expressed in the
central nervous system. It preferentially affects dopamine, but
norepinephrine, serotonin, and histamine are also depleted (49,
50). Tetrabenazine is mainly used for the treatment of chorea and
other hyperkinetic movement disorders in the adult and pediatric
population (51–53). The evidence of its efficacy in pediatric
dystonia is very limited. Jankovic et al. (54) conducted a
retrospective review of 124 patients (adults and children) with
dystonia who were treated with tetrabenazine: 76% of them
experienced moderate improvement. Individuals with
generalized and tardive dystonia had greater improvement
than patients with focal and cranial involvement. This study
did not provide separate information on the pediatric subgroup
and it is very difficult to conclude efficacy in children in mixed
cohorts.

A recent multicenter retrospective longitudinal study
evaluated the usage of tetrabenazine in children with CP. A
significant clinical improvement was detected between baseline
and after 6 and 12 months of treatment (55).

Adverse effects are common with tetrabenazine treatment.
Most of the adverse effects are dose-related. The most common
side effects include sedation, behavioral changes, depression,
worsening of movements, nausea, and parkinsonism (50).
Notably, tetrabenazine has never been associated with tardive
dystonia, thus making it a good option for these patients.

Newer VMAT2 inhibitors (deutetrabenazine and valbenazine)
were recently approved for tardive dystonia treatment in the adult
population (56, 57), but no data on their use in pediatric dystonia
is available at the moment.

BOTULINUM TOXIN TREATMENT FOR
PEDIATRIC DYSTONIA

Introduction
BoNT is produced by an anaerobic spore-forming bacteria
Clostridium botulinum. Seven immunologically distinct
serotypes (A-G) have been identified (58). BoNT temporarily
inhibits the release of acetylcholine at the neuromuscular junction
levels by creating focal chemo-denervation at the injection site,
eventually resulting in muscle relaxation (59). In a physiological
state, when an action potential reaches the cholinergic
presynaptic nerve terminal an influx of calcium facilitates
acetylcholine vesicle fusion with the presynaptic membrane.
This fusion is facilitated by a group of proteins called SNARE
(soluble N-ethylmaleimide sensitive factor attachment receptor).
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BoNT acts on the presynaptic nerve terminal by inactivating
serotypes-specific SNARE proteins (60). Neurotransmission
recovers when the axon terminal sprouts new nerve endings
and forms new synaptic contacts with an adjacent muscle fiber.

Neurotoxin type A (OnabotulunumtoxinA – Ona-A,
AbobotulinumtoxinA – Abo-A, IncobotulinumtoxinA – Inco-
A) and B (RimabotulinumtoxinB – Rim-B) are approved and
used in clinical practice with type A being the most widely used in
the pediatric population (58).

While BoNT is the first-line treatment for adult patients with
focal dystonias (blepharospasm and cervical dystonia) and it is
also effective in individuals with laryngeal and limb dystonia
(61–65), the data to support the treatment of dystonia in the
pediatric population is limited and the majority of data are
extrapolated from the spasticity literature.

Botulinum Neurotoxin Treatment for
Inherited Pediatric Dystonia
We failed to identify studies systematically evaluating the BoNT
effect in this population, but in clinical practice, BoNT can be
used as an adjunctive to pharmacological/surgical therapy to
control pain and improve individualized goals, exactly as done
in all dystonia patients (50).

Botulinum Neurotoxin Treatment for
Acquired Pediatric Dystonia—Cerebral
Palsy
A recent systematic review and meta-analysis evaluated BoNT
treatment in children with CP and dystonia (24). This review
identified a total of 5 studies (one randomized crossover trial and
four non-randomized studies) (66–70). The randomized study
failed to demonstrate improvement in the dystonia while non-
randomized studies suggested possible improvement in the
dystonia as well as upper extremity motor function (using the
Quality of Upper Extremity Skills Test) (71). The studies also
supported pain reduction, improvement in ease of care as well as
improvements in the achievement of individualized goals within
the CP population. These findings are limited due to the
subjective nature of these observations. There was no change
in the quality of life in CP children treated with BoNT. Four
studies reported adverse events. There was an increased risk of
dysphagia among participants with cervical dystonia and up to
40% of participants reported transitory focal weakness in the
treated limb. The authors concluded that there is some evidence
(although limited) to support the use of BoNT in children with
CP and dystonia, mainly to improve ease of caregiving, control
pain, and help with the achievement of individualized goals.

Botulinum Neurotoxin Formulations
All four commercially available BoNT’s formulations (Ona-A,
Abo-A, Inco-A, and Rim-B) are FDA-approved for the treatment
of adults with cervical dystonia while Ona-A and Inco-A are
approved in individuals 12 years and older for blepharospasm.
The use of BoNT for other dystonias is considered off-label (72).
Ona-A and Abo-A are FDA-approved for upper and lower

extremity spasticity in children (>2 years) and Inco-A is
approved for pediatric sialorrhea and pediatric upper
extremity spasticity (>2 years).

The most commonly used formulations in the pediatric
population are Ona-A and Abo-A.

Conversion Between Different Formulations
All BoNT products are distinct in their molecular structure,
manufacturing process, and methods to determine biological
activity. There is no agreed conversion ratio between Ona-A
and Abo-A, but some studies reported a ratio of 1:2.5–1:3. The
doses of Inco-A are probably parallel those of Ona-A with a
conversion ratio of 1:1 (73, 74).

Dilution
The most common dilutions used in the pediatric studies are
100 U/1 ml or 100 U/2 ml (range 1–4 ml saline/vial) for Ona-A
and Inca-A and 500 U/2.5 ml (range 1–5 ml saline/vial) for Abo-
A. The precise impact of the dilution on the rate of the spread is
not known and most of the studies were done on children with
spasticity. Studies in children demonstrated conflicting results.
Some showed no difference between groups with different
dilution ratios (100 U/5 ml −100 U/2.5 ml) while others
showed improvement in the muscle tone and
electrophysiology (dilution 100 U/2 ml) (75–77). In 2012
Fehlings et al. (78) evaluated the Canadian practice patterns of
BoNT injections in pediatric hypertonia (spasticity and/or
dystonia): 79% of physicians reported using 100 U/2 ml
dilution of Ona-A for lower limb injections while only 36%
were using similar dilution in upper extremities.

Botulinum Neurotoxin Doses
There are currently no standard guidelines for BoNT dosing
for pediatric dystonia. Injection doses are often extrapolated
from adult literature as well pediatric spasticity treatment
(Table 3).

Dose calculation for each preparation is based on a few key
factors: (1) total units per treatment session (i.e., the total number
of units given during a single treatment session), (2) total units
per kg body weight per session (i.e., total units per kg of body
weight per single treatment session), (3) units per muscle, (4)
units per injection site, and (5) units per kg of body weight per
muscle. Additional dose modifiers to consider include the severity
of the dystonia, accompanying diagnosis (dysphagia, aspiration,
breathing problems), presence of other tone abnormalities
(spasticity), goals of treatment, the activity of the injected
muscle, muscle size, dynamic versus fibrotic muscle and
experience with previous BoNT (58, 79).

The European consensus 2009 on the Use of Botulinum Toxin
for Children with Cerebral Palsy recommended 400 U or 20 U/Kg
of Ona-A as a maximum total amount per session and 1000 U or
20 (30) U/kg for Abo-A. Adult dosing is recommended for
children heavier than 60 kg (79). Inco-A can be used at a
maximal dose of 5 U/kg per session (80).

In the study of Canadian practice patterns of BoNT injections
in children with hypertonia, the majority of the practitioners used
16 U/kg of Ona-A as a maximal injected dose per session (78).
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Lower Extremities Injections
In the clinical studies lower limb doses ranged from 1 to 12 U/kg
of Ona-A and 15–30 U/kg of Abo-A for the gastrocnemius/soleus
muscles. For the hamstrings and adductor muscles, 1–5 U/kg of
Ona-A or 20–30 U/kg of Abo-A were found to be safe and
beneficial (81).

Upper Extremities Injections
The recommended doses of Ona-A for upper extremity injections
are 0.5–2 U/Kg for forearm muscles, 2–3 U/kg for the arm
muscles, and a total of 5–7.5 U for adductor or opponens
pollicis (62, 82). Kawamura et al (83) performed a double-
blind randomized control trial to evaluate the Ona-A doses for
treatment of upper extremity spasticity in children with CP. The
higher dose group received double the doses of the lower dose
group. The study showed no differences between the treatment
groups and concluded the following recommended doses: biceps
brachii 1 U/kg, wrist/finger flexors 1.5 U/kg, brachioradialis, and
pronator teres 0.75 U/kg, adductor/opponens pollicis 0.3 U/kg.

Pain Management and Localization
Techniques
Procedural pain management is extremely important in children.
BoNT treatment often requires repetitive, multiple painful
injections. The optimal regimen will vary between individuals
and is influenced by the child’s age, cognitive level, underlying
condition, number of muscles to be treated, and institutional
settings and resources. Procedural pain management includes
pharmacological and non-pharmacological techniques. Possible
techniques include distraction, application of local EMLA
(lidocaine and prilocaine topical anesthetic cream), sedation,
and general anesthesia (79).

In the past, palpation and the use of anatomical landmarks was
the most widely used localization technique in the pediatric
population. With the advances in technology, ultrasound has
become a very helpful and widely used tool. The advantages of
this technique include less pain and the possibility to control the
injection placement even with anatomic variations,
differentiation of neighboring anatomic structures, and not

requiring cooperation, i.e. not being affected by sedation.
Electromyography (EMG) is widely used in the adult
population with dystonia. This method has a few significant
disadvantages in children: painful injections and discomfort
during muscle stimulation, limited cooperation for muscle
activation, sedation may lower the EMG signal and it does not
always ascertain that the needle is in the right muscle. (58, 79).

Safety and Adverse Events
BoNT is safe and well-tolerated in the pediatric population (3,
79). Several long-term longitudinal studies demonstrated its
safety and effectiveness with prolonged treatment. Systemic
adverse effects like generalized weakness, bulbar weakness, and
respiratory involvement are rare (67, 84). Adverse reactions
correlate to the location of the injection, dose, and frequency
as well as the underlying condition and involvement of other
systems. Children with CP experience a greater number of BoNT
related adverse effects than other users (84).

Intrathecal Baclofen Treatment in Pediatric
Dystonia
In 1985 the first pediatric treatment with intrathecal baclofen
(ITB) in a 4-year-old girl with spasticity and opisthotonos
following a near-drowning was reported, (85) followed a few
years later by children with CP. (86) Oral baclofen absorbs
rapidly, but less than 10% crosses the BBB. Because its main
effect is within the central nervous system, intrathecal doses up to
100 times lower than oral ones can be used achieving a great
therapeutic effect (87). In children, the typical dose range is
between 200 and 350 µg/24 h (88). The therapy is delivered via an
implantable infusion system directly to the intrathecal space.

The most common indication for ITB in children is spastic
and dystonic CP. Other indications include metabolic and
neurodegenerative conditions such as Pantothenate kinase-
associated degeneration (PKAN), Lesch Nyhan syndrome
(LNS), glutaric aciduria type 1, and mitochondrial disorders
(89–92). ITB is particularly beneficial in reducing the tone in
the lower limbs (with catheter placement at T10-11 level),
although upper extremity tone reduction can be seen with a

TABLE 3 | Summary of recommended doses of BoNT treatment for upper and lower extremities.

Dose range of Ona-A Dose range of Abo-A

Max total amount per session 400 U or 20 U/kg 1000 U or 30 U/kg
Lower extremities
Gastrocnemius mediale/laterale 1–3 U/kg 3–6 U/kg
Soleus 1–2 U/kg 2–4 U/kg
Tibialis posterior 1– U/kg

Adductor longus/magnus 1–4 U/kg 20–30 U/kg
Upper extremities
Biceps brachii 1–2 U/kg 5–10 U/kg
Flexor carpi radialis 0.5–1.5 U/kg 5–10 U/kg
Flexor capri ulnaris 0.5–1.5 U/kg 5–10 U/kg
Flexor digitorum supeficialis 1–1.5 U/kg 5–10 U/kg
Brachioradialis/pronator teres 0.75–1 U/kg 5–10 U/kg
Adductor/opponens pollicis 0.3–1 U/kg 3–5 U/kg

Abbreviations: Abo-A, AbobotulinumtoxinA; BoNT, botulinum toxin; kg, kilogram; Ona-A, OnabotulunumtoxinA; U, unit.
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higher catheter placement (C1-C4) (93). A recent systematic
review found a clinically significant improvement in dystonia
severity, motor function, pain/improvement, and a trend toward
improvement of individualized goals and ease of caregiving in
children with dystonia due to CP treated with ITB (24). There is
currently insufficient evidence to support the use of ITB in
primary dystonia due to the absence of spasticity (now called
“isolated dystonia”), for which ITB is more effective (94).

ITB pumps have relatively high complications rates
(25%–30%) (95, 96). Complications can be divided into
procedure-related, pump-related, catheter-related, and drug-
related. Infection is the most common procedure-related
complication (1%–5% of implantations) and usually occurs
within the first 6 weeks. Other complications include CNS
pressure-related problems, seromas, bleeding, spinal cord
damage, and corticospinal fluid leaks. Catheter-related
complications are reported in 5%–15% of cases and usually
happen within the first 3 months. It includes catheter
migration, disconnection, kinking, and occlusion. Dose-
dependent tiredness is the most common drug-related side
effect, followed by urinary retention, constipation, and
hypotonia that can affect daily functions. These side effects are
dose-related and reversible (97).

Sudden cessation of ITB can cause a “baclofen withdrawal
syndrome,” which is a life-threatening medical emergency.
Baclofen withdrawal can occur in children taking both oral
baclofen and ITB. Patients typically experience withdrawal
symptoms within hours to days following drug interruption
often due to malfunction of their ITB system (98). In general,
withdrawal from oral baclofen is associated with mild symptoms
including the reappearance of baseline level of spasticity/
dystonia, pruritus, sweating as well as neurogenic pulmonary
edema, anxiety, and disorientation. More severe symptoms (seen
more frequently with withdrawal from ITB) include
hyperthermia, myoclonus, seizures, rhabdomyolysis,
disseminated intravascular coagulation, multisystem organ
failure, cardiac arrest, and death. (99–101) Baclofen
withdrawal syndrome is a clinical diagnosis and should be
considered and promptly treated in every child with ITB who
presents with increased hypertonicity or irritability.

DEEP BRAIN STIMULATION IN PEDIATRIC
DYSTONIA
Introduction to Pediatric Deep Brain
Stimulation
Pediatric dystonia can be refractory and pose a significant
challenge to healthcare providers and families. While
pharmacological management is typically the mainstay of
treatment, poor efficacy and high rates of adverse drug
reactions contribute to the increased interest in neurosurgical
approaches and particularly DBS (34). DBS for dystonia should
be considered as a treatment option once it has become clear that
medical therapy is insufficient to control symptoms. In 1999,
Coubes et al were among the first to report chronic stimulation of
globus pallidus pars interna (GPI) in an 8-year-old child with

generalized dystonia (102). Since then, DBS gained increased
popularity in the pediatric population because of the dramatic
positive outcomes reported in the genetic dystonia and a
consensus that DBS is generally safe and effective in many
adult dystonias (103, 104). Furthermore, recent advances in
DBS technology made it more suitable for the pediatric
population (105). Smaller batteries, longer battery life, and the
development of rechargeable systems made this technology
applicable to children. Some of the current DBS systems allow
simultaneous local field potential (LFP) recordings. The DBS
programming process can be very challenging in non-verbal
children and LFP recordings can ease and expedite the
process (106).

The data pertaining to DBS in children is limited to small case
series. During the last few years, there were several systematic
reviews published summarizing the existent literature related to
DBS in pediatric dystonia (107–109). In the following section, we
will review some of these studies and make practical
recommendations for patient selection, DBS- targets, and use
of DBS in status dystonicus.

Deep Brain Stimulation Targets
Bilateral GPI is the most common target in pediatric dystonia. In
a systematic review focusing on DBS in pediatric dystonia, Hale
et al showed that 91% of children were treated with bilateral GPI-
DBS. The remainder of the published cases received unilateral
GPI-DBS with or without contralateral GPI lesioning (109). A few
case reports described good dystonia outcomes in children post
subthalamic nucleus (STN) DBS (110–112). STN has been chosen
often in children with GPI lesions (metabolic strokes) or post-
failed GPI-DBS. Limited data is available on the use of DBS of the
thalamic nuclei ventralis oralis posterior (Vop) and ventralis
intermedius (Vim) for the treatment of acquired dystonia in
the pediatric population. Small studies in adults (113, 114)
showed that combined Vop/Vim stimulation can affect the
inputs from the cerebellum as well as from the globus pallidus
leading to more effective treatment of secondary dystonia.
Luciano et al. (115) reported variable dystonia outcomes in
four individuals (three children and one young adult) who
underwent Vop/Vim DBS for secondary dystonia. All the
participants experienced an improvement in their disability
and quality of life scores.

Overall, bilateral GPI-DBS is considered the most appropriate
target for pediatric dystonia, and certainly more studies are
needed to characterize the role of other targets.

Assessment of Deep Brain Stimulation
Outcomes
Pre-treatment evaluation aims at characterizing the severity and
topography of motor symptoms and their impact on activities of
daily living and provides a baseline reference for post-treatment
evaluations. The quality and accuracy of the pre-treatment
assessment and the choice of assessment tools are crucial, as
they will affect all subsequent post-treatment comparisons (116).
The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) is a
well-accepted rating scale for generalized dystonia in adults (117).
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It is composed of two clinician-rated subscales: a movement
subscale (BFMDRS-M), based on patient examination, and a
disability subscale (BFMDRS-D), based on the patient’s report of
disability in activities of daily living. Although, there are no
validity and reliability studies to assess this scale in children
many pediatric DBS trials use the BFMDRS scores to measure the
outcomes. This scale has significant limitations specifically in the
pediatric population. It does not account for normal development
dystonic-like movements patterns that are frequently
encountered in normally developing children and the disability
sub-score is hard to apply to the younger age groups (5, 118).
Furthermore, it does not account for the important quality of life-
related elements including preoperative functional goals and the
Canadian Occupational Performance Measure functional goal
area (outcome measure designed to assess performance and
satisfaction with occupation (119)). These elements can
improve even in an absence of significant BFMDRS benefits
(120, 121). Pinter et al. (122) established the minimal clinically
important difference for the BFMDRS in the adult population
with generalized or segmental dystonia at 16.6%. Similar studies
were not conducted in children.

Other frequently used dystonia scales in the pediatric population
include Barry-Albright Dystonia Scale (BADS) (123) and the
Movement disorder -Childhood Rating Scale (MD-CRS)
(124,125). Despite the widespread use of these scales, none was
rigorously tested across a broad range of development.

Patient Selection and Prediction Factors
Careful patient selection is extremely important. Expectations
should be set based on patient-related factors including the type
of dystonia, genetic cause, target symptoms, age at the time of
surgery, disease duration, and presence of fixed skeletal
deformities (126). Assessment of the sources of social and
mental family support is also warranted (Table 4).

Age and Timing of the Surgery
The effect of patient age and timing of intervention on children’s
outcomes were assessed in a few studies (127, 128). Lumsden et al.
(127) followed 63 children with generalized dystonia for 1 year
after GPI-DBS. No significant correlation was seen between
motor outcomes (change in BFMDRS) and age at surgery or
age at dystonia onset. Within the primary dystonia group, a
negative correlation between dystonia duration and outcomes at 6
and 12 months was observed (Spearman’s correlation coefficient
−0.425 and −0.472). A stronger negative correlation was found
between disease duration to the age of surgery ratio (DD/AS) with
Spearman’s correlation coefficient −0.614 (6 months) and −0.559
(12 months). Within the secondary dystonia group, no

correlation was found between motor outcomes and dystonia
duration, however, a negative correlation was found between DD/
AS and improvement in BFMDRS at 6 and 12 months
(Spearman’s correlation −0.251 and −0.416). A recent
systematic review demonstrated that age at dystonia onset, and
not age at surgery, is associated with treatment response. The
duration of life with dystonia (i.e., shorter life between diagnosis
and DBS) was a significant outcome predictor (107).

DBS was reported in children as young as 4 years of age, (104)
and there are few unpublished cases even younger. Nevertheless, the
majority of the reported cases are done in teenagers. In a recent
systematic review, themean age at DBS surgerywas 13.8 ± 3.9 (109).

Etiology of the Dystonia
Children with genetic dystonias without central nervous system
pathology have overall favorable outcomes after DBS. This notion is
specifically true forTOR1A-,KMT2B-, and SCGE-related dystonia in
particular (107, 129, 130). Children with inherited dystonia with
clear structural brain damage, such as PKAN and LNS can
experience clinically significant improvement post-DBS, although
the response can be very variable and with limited impact on
patients’ functionality (131–135). Children with dyskinetic CP
have an inferior response to DBS with only 27% experiencing a
clinically significant improvement (24, 107, 109). This is usually due
to the occurrence of additional DBS-resistant neurological signs,
such as weakness, ataxia, and spasticity. Thus, isolated dystonia
responds better than acquired combined dystonias.

Mobile Versus Tonic Dystonia
Hyperkinetic movements respond more rapidly and better than
tonic or fixed postures. Patients who had little, or no
improvement tended to have severe tonic posturing (136).
EMG studies in adults suggested that repeated bursts could
indicate an earlier and better response to DBS (137).

Body Distribution
Dystonia distribution can also help with predicting the clinical
outcomes. Significant improvement can be seen in the neck, arm,
and leg regions; the trunk can also improve in absence of spine
deformities and with time, while speech and other bulbar
symptoms tend to be less responsive (136).

Neurophysiological Markers
McCelland et al. (138) evaluated the somatosensory evoked
potentials (SEP) and central motor conduction times (CMCT)
in children with dystonia who underwent GPI-DBS. Better DBS
outcomes were seen in children with normal SEP and CMCT.
These findings were independent of dystonia etiology and MRI
findings. Further studies are needed to validate these findings and
incorporate these assessments into clinical practice.

Deep Brain Stimulation for Monogenic
Dystonia
The genetic understanding of dystonia has expanded with
advances in next-generation sequencing. An increasing
number of dystonia genes have been identified during the last

TABLE 4 | Factors predicting good DBS outcomes in children.

Short duration of life with dystonia
Monogenic dystonia > neurodegenerative dystonia > acquired dystonia
Mobile dystonia
Dystonia affecting mainly the neck, trunk, upper and lower extremities (lack of bulbar
involvement)
Absence of fixed skeletal deformities
Absence of significant neurological comorbidities (ataxia, spasticity, weakness, etc.)
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decade (9, 10). The identification of causative genes has reduced
the number of so-called “idiopathic” cases. The responsiveness to
DBS appears to vary between different monogenic forms of
dystonia, with some improving more than others. We will
briefly review the most common monogenic dystonias in the
pediatric population and their response to GPI-DBS.

DYT-TOR1A- related dystonia is one of themost common causes
of young-onset familial dystonia and typically begins between 9 and
12 years of age. Lower extremities are commonly the first affected
area followed by generalization with relative sparing of cervical and
bulbar areas (139). Children with DYT-TOR1A dystonia respond
very well to GPI-DBS with 93% demonstrating some
improvement and 88.2% showing significant clinical
improvement (>20% in the BFMDRS scores) (107). The
median change in dystonia scores was 76% (movement) and
70% (disability). These findings are consistent with the results
seen in adults with DYT-TOR1A (140).

DYT-SCGE-related dystonia is another autosomal dominant
disorder with paternal expression and reduced penetrance with

the maternal transmission. It presents in childhood with upper
extremities myoclonus and dystonia causing writer’s cramps and
cervical dystonia (Myoclonus- Dystonia’). Children commonly
experience psychiatric comorbidities including anxiety and
obsessive-compulsive disorder (141, 142). DBS significantly
improves both dystonia and myoclonus. All the reported children
in the literature showed significant improvement after DBS with a
median improvement of 68% in their BFMDRS-M scores (107).

DYT-KMT2B-related dystonia is emerging as one of the most
common causes of early-onset genetic dystonia. Key features of
the disease include focal motor features at the disease
presentation, evolving in a caudocranial pattern into
generalized dystonia with prominent oromandibular, laryngeal,
and cervical involvement (130). Additional features include
dysmorphic features, microcephaly, developmental delay, and
intellectual disability (143, 144). Children with KMT2B-
related dystonia have a very good response to DBS. Cif et al.
(130) reported 18 individuals (15 children) who underwent GPI-
DBS. More than 50% fulfill criteria for optimal response

FIGURE 1 | Proposed algorithm for treatment of status dystonicus (modified from Meijer I.A. & Fasano A). (173) In children with status dystonicus it is essential to
identify and treat the underlying triggers. The first treatment step includes a trial of anti-dystonia medications followed by intravenous midazolam and propofol. In
refractory cases, surgical intervention with GPi-DBS or ITB might be warranted. Abbreviations: C-IV, continuous intravenous; DBS, deep brain stimulation; GPi, globus
pallidus internus; ITB, intrathecal baclofen; IV, intravenous; IPG, implantable pulse generator.
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(BFMDRS-M > 30% improvement). This effect was maintained
in 62% of the long-term follow-up subgroup (follow-up> 5 years).
The authors also concluded that the dystonia improvement was
maintained for the trunk (53.2%), neck (50.5%), and
oromandibular regions (35.7%). Dystonia improvement was
inferior in the lower extremities with only 16.3% maintaining
motor improvement.

GNAO1-related dystonia is caused by heterozygous mutations
in GNAO1, a gene involved in a spectrum of disorders including
early-onset epileptic encephalopathy, neurodevelopmental delay,
and movement disorders (145, 146). DBS was found to be effective
in children withGNAO1-related dystonia and hyperkinesia. Data is
limited to case reports and small case series. Koy et al. (147)
reviewed 12 children who underwent DBS. All had a good to
excellent clinical response with the greatest effect on the
hyperkinetic movements and prevention of status dystonicus. In
the majority of the children, the beneficial response sustains for a
long period of time (reported follow-up of up to 10 years).

THAP1- related dystonia is an autosomal dominant condition
caused by mutations in the THAP1 gene (148). Onset typically
occurs during childhood or adolescence with frequent
involvement of the craniocervical, laryngeal and
oromandibular areas. Generalization was reported in about
45% of the mutation carriers (149, 150). Initial case series
reported only moderate response to DBS in this condition
(151, 152). Recent retrospective, multicenter case series (153)
of 14 individuals (12 with disease onset <18 years; 7 underwent
GPI-DBS before the age of 18 years) demonstrated a median of
58% BFMDRS-M improvement. Overall, the effect was greater in
the trunk and limbs as compared to the craniocervical and
oropharyngeal areas. The authors did not find a correlation

between disease duration, age at surgery, and preoperative
disease burden. More research is needed to understand the
role of DBS in children with this condition.

Deep Brain Stimulation for
Neurodegenerative Disorders
Lesch-Nyhan syndrome (LNS) is a rare X-linked disorder
characterized by a deficiency of the hypoxanthine-guanine
phosphoribosyltransferase enzyme. Boys with this condition
manifest with compulsive self-mutilation, generalized dystonia,
and dyskinesia (132). Overall children with LNS respond well to
DBS with clinically significant improvement in dystonia (107).
Some children might also experience a decrease in self-
mutilation. Several authors suggested a combination of
anteromedial and posteroventral GPI stimulation to control
dystonia as well as behavioral problems (138). A recent study
by Visser et al. (154) followed 14 children with LNS who
underwent GPI-DBS. Patient-centered outcome measures
demonstrated substantial variability among individual patients
suggesting that response might be less positive than previously
reported. Children with LNS experience higher rates of DBS-
related complications, such as infections and hardware-related
complications. Thus, high vigilance for possible complications is
warranted in this population.

Pantothenate kinase-associated neurodegeneration (PKAN) is
a rare recessively inherited disorder. Typical PKAN presents in
children younger than 6 years with a progressive course. Dystonia
is typically the early manifestation with subsequent generalization
and involvement of cranial, limb, and trunk muscles. Up to 90%
of children present with gait difficulties followed by pyramidal

FIGURE 2 |Overview of the therapeutic approach to dystonia in the pediatric population. It is recommended to enroll children with dystonia in formal physiotherapy
and psychological support programs. The first-line treatment in generalized pediatric dystonia is oral medications. Levodopa should be tried in every child with idiopathic
dystonia <18 years. If no significant improvement is seen on levodopa other anti-dystonia medications should be used (most robust evidence for anticholinergic
treatment). Individuals who are refractory for pharmacological treatment should be considered for neurosurgical procedures including DBS and ITB. At any point
during the implementation of this algorithm BoNT can be considered in cases of incomplete effect in some body parts or to improve specific issues such as pain.
Abbreviations: DBS, deep brain stimulation; GPI, globus pallidus internus; ITB, intrathecal baclofen; mov, movements.
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features, movement disorders, neuropsychiatric involvement, and
visual abnormalities (155, 156). Elkaim et al. (107) identified in the
literature 36 children with PKAN who underwent GPI DBS. In
general, these children experienced a significant clinical
improvement in dystonia (median improvement of 27% in
BFMDRS-M). Timmermann et al. (157) reported 14 individuals
(children and young adults) who experience significant improvement
in the severity of dystonia and quality of life up to 15months post-
DBS implantation. A recent meta-analysis confirmed these data but
also showed limited benefits in terms of functional gains (119).

Deep Brain Stimulation for Acquired
Dystonias
Recent systematic review and meta-analyses evaluated the effect of
DBS on children with CP and dystonia (24). Overall the outcomes
in these individuals are inferior to monogenic dystonias and
neurodegenerative etiologies. The systematic review included
19 non-randomized studies. The meta-analysis (total number of
included patients: 173) suggested an overall improvement in
dystonia. Studies reporting on BFMDRS-M outcomes
demonstrated 16.8% improvement, a figure just above the
minimal clinically important difference established among
individuals with primary dystonia (122). The follow-up ranged
between 6 months and 4 years and 5 months. Eleven studies
(number of included patients: 109) reported motor function
outcomes. These studies demonstrated an improvement in
motor function while no change in the BFMDRS-D was observed.

Five studies (number of included patients: 78) reported
validated measures of pain and discomfort demonstrating
improvement in these outcomes. There is a limited amount of
evidence supporting the improvements in the achievement of
individualized goals and quality of life.

In conclusion, although modest, recent evidence suggests that
DBS may improve dystonia, motor function as well as pain and
discomfort in children with CP. There might be a possible
positive effect on the quality of life and the achievement of
individualized goals.

Deep Brain Stimulation for Status
Dystonicus
Status dystonicus (SD) is a movement disorder emergency
characterized by severe episodes of generalized or focal
hyperkinetic movements that have necessitated urgent hospital
admission because of direct life-threatening complications of
these movements, regardless of the patient’s neurological
condition at baseline (158, 159). Sixty to 80 percent of SD
occurs in children and adolescents and the majority are male,
with dystonia duration of an average of 6 years (160, 161). Garone
et al. (162) described 34 pediatric cases from a cohort of 336
dystonic children who experienced 63 acute exacerbations,
suggesting that SD may affect up to 10% of children with
dystonia. The most common underlying conditions in children
with SD include CP followed by monogenic dystonias and
degenerative conditions such as PKAN (163, 164). The
mortality rate in SD ranges from 10.3% to 11.4% hence early

recognition and aggressive intervention are warranted (161, 165).
Pharmacologic treatment is the first-line treatment of SD and its
complications; however, many refractory patients will still require
further treatment. Whenever SD is not controlled with oral
medications escalation to more aggressive sedation may be
required. This is typically done with intravenous (IV)
midazolam. If severe dystonia persists, anesthetic agents (e.g.,
IV propofol) should be considered (166).

Multiple case reports have shown that DBS can be an effective
treatment for SD with rapid improvement of symptoms following
the surgery (165, 167, 168). Nerrant et al. 173described 40 patients
who underwent GPI DBS for SD (60% children). DBS was
efficient in resolving 90% of episodes. 56.6% of children
experienced a long-term improvement in their dystonia
following DBS for SD, while 36.7% returned to baseline.
Currently, there are no standard algorithms to treat children
with SD, but we believe that surgical interventions should be
considered early in the course of pediatric refractory SD. Figure 1
summarizes an updated proposed algorithm.

Side Effects in Pediatric Deep Brain
Stimulation
Complication rates of pediatric DBS are higher than in the adult
population (107). This notion is also seen in children with other
implant procedures such as ventriculoperitoneal shunts (169).
The most commonly reported complications include infections
and mechanical failure. Kaminska et al. (169) analyzed
complications in a prospective study and included 129
pediatric cases. The overall risk of surgical site infection was
10.3% for new implants with 86% of these requiring complete
removal of hardware. Another 69 revisions were gathered, mostly
due to battery changes and technical problems.

DBS may result in an increased risk of adverse events in
children with CP. Overall reported rates of adverse events are
ranging from 0% to 40%. The most common events included
infections requiring hardware removal (7%–40%) and
stimulation-induced dysarthria (17%–30%). (24)

CONCLUSION

Childhood-onset dystonia is a clinically and etiologically
heterogeneous disorder. Despite the wide use of anti-dystonia
medications in pediatric dystonia, the evidence is very limited.
Levodopa should be tried in every child with an unknown cause of
dystonia as its effect in DRD is remarkable. Trihexyphenidyl is
considered a first-line treatment while benzodiazepines and
tetrabenazine can be used in selected cases. Neuroleptics—once
part of the so-called Marsden’s cocktail—are rarely used nowadays
due to the recognized risk of inducing tardive dystonia.

Yet, many children tend to be refractory to standard
pharmacological treatments. BoNT is safe and widely used in
children to treat upper and lower extremity spasticity, but studies
to assess its use in dystonia are limited. Recent evidence supports
the notion that BoNT can improve dystonia and motor function,
decrease pain as well as help with caregiving and achievement of
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individualized goals in a selected group of children. It is suggested
to follow the established pediatric doses to avoid side effects and
complications. The use of sedation or other pain-reducing
techniques is recommended to increase patients’ comfort and
long-term compliance.

DBS has revolutionized the field of pediatric dystonia. Children
with genetic mobile dystonia involving the axial and appendicular
muscles should be referred early for DBS consideration to avoid
fixed contractures and assist with motor development. SD is a
common underrecognized life-threatening condition with high
mortality rates in the pediatric population. Early consideration
of DBS for the super refractory cases is warranted. Complication
rates are higher in children with infections and hardware-related
problems being the most prominent ones.

Figure 2 summarizes the therapeutic approach to dystonia in
the pediatric population.

Despite the recent advances in the treatment of pediatric
dystonia, there is a need for larger standardized multi-center
trials as currently the treatment guidelines are largely based upon
small clinical trials and expert opinion.
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