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Cryptosporidium, the most frequently reported parasite in Scotland, causes gastrointestinal
illness resulting in diarrhoea, nausea and cramps. Two species are responsible for most
cases: Cryptosporidium hominis (C. hominis) and Cryptosporidium parvum (C. parvum).
Transmission occurs faecal-orally, through ingestion of contaminated food and water, or
direct contact with faeces. In 2020, the COVID-19 pandemic led to global restrictions,
including national lockdowns to limit viral transmission. Such interventions led to decreased
social mixing, and reduced/no local and international travel, which are factors associated
with transmission of multiple communicable diseases, including cryptosporidiosis. This
report assessed the impact of the pandemic on Scottish cryptosporidiosis cases, and
identified changes in circulating molecular variants of Cryptosporidium species. Molecular
data generated using real time PCR and GP60 nested-PCR assays on laboratory-confirmed
cryptosporidiosis cases reported during 2018–22 were analysed. The ScottishMicrobiology
Reference Laboratories (SMiRL), Glasgow, received 774 Cryptosporidium-positive faeces
during 2018–22, of which 486 samples were successfully subtyped. During this time period,
C. hominis (n = 155; 21%) andC. parvum (n = 572; 77%)were themost commonly detected
species. The total number of cases during 2020, which was greatly affected by the
pandemic, was markedly lower in comparison to case numbers in the 2 years before
and after 2020. The most predominant C. hominis family detected prior to 2020 was the Ib
family which shifted to the Ie family during 2022. Themost commonC. parvum variant during
2018–22was the IIa family, however a rise in the IId family was observed (n = 6 in 2018 to n =
25 in 2022). The dominant C. hominis subtype IbA10G2, which accounted for 71% of C.
hominis subtypes in 2018–19 was superseded by three rare subtypes: IeA11G3T3 (n = 15),
IdA16 (n = 8) and IbA9G3 (n = 3) by 2022. Frequently reported C. parvum subtypes in
2018–19 were IIaA15G2R1 and IIaA17G1R1, accounting for 59% of total C. parvum
subtypes. By 2022, IIaA15G2R1 remained the most common (n = 28), however three
unusual subtypes in Scotland emerged: IIdA24G1 (n = 7), IIaA16G3R1 (n = 7) and
IIaA15G1R2 (n = 7). Continuous monitoring of Cryptosporidium variants following the
pandemic will be essential to explore further changes and emergence of strains with
altered virulence.
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INTRODUCTION

Cryptosporidium is the most common parasitic aetiological agent of
gastrointestinal infections reported in Scotland, United Kingdom [1].
The infective stage, known as the oocyst, is transmitted through
ingestion of contaminated food or water, or by direct contact with
infected faeces from human and/or animal sources [2]. Infection
results in symptoms including diarrhoea, nausea, cramps, fatigue and
weight loss, which are often self-limiting in the immunocompetent,
however can be chronic and potentially life-threatening in the
immunocompromised and young children [2]. Throughout the
UK, the majority of human cryptosporidiosis cases are caused by
two Cryptosporidium species; the anthroponotic Cryptosporidium
hominis (C. hominis), and the zoonotic Cryptosporidium parvum (C.
parvum) [3]. The oocysts of C. parvum and C. hominis appear
morphologically identical by microscopy, therefore molecular-based
detection methods are required to fully speciate this parasite [1, 4].
Over the past few decades, the ability to determine molecular
variants of Cryptosporidium at a genotypic level has become
possible using sophisticated laboratory tools. Most recently, a
multi-locus variable number of tandem repeats analysis (MLVA)
scheme has been developed of high discriminatory power which has
yet to be implemented globally [5]. The majority of specialist
laboratories currently amplify a parasite-specific 60 kDa
glycoprotein gene (GP60), to determine the barcode of this
hypervariable microsatellite region when subtyping
Cryptosporidium [6]. Possessing the ability to subtype this
parasite has proven to be indispensable for monitoring circulating
molecular variants within communities, and managing local,
national and international outbreaks.

The onset of the Coronavirus disease, COVID-19 pandemic
caused by the SARS-CoV-2 virus, resulted in sudden, major
change to everyday life on a global scale, with the first
confirmed COVID-19 case in Scotland occurring on 1st
March 2020 [7]. The UK and Scottish Governments applied
measures most notably, regional and national lockdowns, in a
bid to impede viral transmission. By 29th May 2020, Scotland
began its route map out of lockdown, which over time, permitted
pre-pandemic activities to gradually recommence. However
further shorter lockdowns were implemented both at a
regional and national level in response to rising COVID-19
levels [7]. Implementation of such measures resulted in
decreased social mixing, closure of non-essential businesses
such as food and drink venues, a ban on international travel,
and improved hand hygiene, all of which had the potential to
impact on the number of cases, and molecular subtypes of
Cryptosporidium within the population.

This report highlights the changing dynamics of
Cryptosporidium at a molecular level from 2018–22 in
Scotland to gain a better understanding of the impact of
COVID-19 restrictions and human cryptosporidiosis.

MATERIALS AND METHODS

During 2018–22, a total of 2063 cases of laboratory-confirmed
cryptosporidiosis were reported to Public Health Scotland (PHS)

(5-year average n = 611; range 502–786 cases; personal
communication). Of those laboratory-confirmed cases, a total
of 744 faecal samples positive for Cryptosporidium oocysts,
antigen or DNA were received at the Scottish Microbiology
Reference Laboratories (SMiRL) Glasgow, UK for molecular
analysis. Faeces were sent from National Health Service (NHS)
Diagnostic Microbiology Laboratories across Scotland as part of
the Scottish Government-funded Cryptosporidium Surveillance
and Outbreak Service. As funding was not available to subtype
every positive sample, a selection of faeces from rural, semi-rural
and urban areas were subtyped to give a useful indication of
circulating types within Scotland. Multiple samples received from
the same case within a 4-week period were classed as one sample.

Samples were transported and stored at room temperature. On
arrival, faeces were concentrated using Parasep concentrators
(Apicor, Berkshire, United Kingdom), and Cryptosporidium
DNA extracted on the automated NucliSENS EasyMag
platform (BioMerieux, Basingstoke, United Kingdom). To
determine if samples were C. hominis or C. parvum, a
previously described real-time PCR assay was employed using
the Light Cycler® 480 platform (Roche Diagnostics, West Sussex,
United Kingdom) [8]. The molecular profile of each sample was
assigned by amplifying a region of the GP60 gene followed by bi-
directional sequencing on the Applied Biosystems 3500XL
(ThermoFisher Scientific, Inchinnan, United Kingdom), as
previously described [1]. Sequences were aligned to reference
databases (EMBI and NCBI BLASTn) and repeat sequences
determined manually.

RESULTS

Of the 744 faecal DNA samples speciated, the majority were
found to be either C. hominis (n = 155; 21%) or C. parvum (n =
572; 77%). Other species accounted for less than 3% of the total
(C. cuniculus n = 5; C. ubiquitum n = 6; C. meleagridis n = 2; C.
canis n = 1; C. erinacei n = 1; mixed infection with C. parvum and
C. hominis n = 2).

For C. hominis, a total of 54 cases were identified in 2018 and a
further 54 cases in 2019, with the expected late summer/autumn
rise observed in September (Figure 1A). In 2020 and 2021 which
were greatly impacted by lockdowns and restrictions, only five
cases were identified with no autumn peak evident. During 2022,
when COVID-19 lockdowns and restrictions had ended, the total
number ofC. hominis cases (n = 42) were similar to pre-pandemic
levels (Figure 1A).

For C. parvum, 120 cases and 88 cases were reported during
2018 and 2019 respectively, with the expected rise occurring over
springtime (April-May) and again in August (Figure 1B). Whilst
fewer C. parvum cases were reported in 2020 (n = 70), an
additional, small peak was observed in November 2020 (n =
14 cases), which had not occurred in the previous 2 years
(Figure 1B). This increase was also evident during 2021 and
2022 (Figure 1B). In 2021, the total number of C. parvum cases
was 172, where the expected springtime increase during April-
May was observed, but the number of cases were 1.8-fold and 2.8-
fold greater than those identified in the same months during
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2018 and 2019, respectively. In 2022, 124 C. parvum cases were
reported, and the spring peak occurred, similar to 2018 and 2019
(Figure 1B).

Of the 744 faecal DNA samples speciated, 486 (65%) were
successfully subtyped. Sixty-eight (14%) were C. hominis
subtypes, and 415 (85%) were C. parvum subtypes. A further
three samples identified as C. cuniculus were successfully
subtyped (data not shown).

There was a shift in the most predominant C. hominis subtype
family where the Ib family was most frequently reported in 2018
(n = 29), with only one case each of the Ie and Id variants.
However, by the end of 2022, only three cases of the Ib family
were identified, compared to nine cases of the Id, and 15 of the Ie
families (Table 1).

Before the implementation of 2020 COVID-19 lockdowns and
restrictions, a total of 25 cases of the common C. hominis
IbA10G2 subtype were identified in 2018–19 (71% of total C.
hominis subtyped in 2018–19). In 2020, only two cases of C.
hominis were subtyped (IbA10G2 n = 1, IaA24R2 n = 1). During
2021–22, there were no reports of the common IbA10G2 subtype
but the emergence of three rare subtypes in Scotland were
documented; IeA11G3T3 (n = 15); IdA16 (n = 8) and IbA9G3
(n = 3) (Table 2). Of the 415 C. parvum samples successfully
subtyped, the three most commonmolecular families were the IIa
(n = 329), IId (n = 78) and the IIc (n = 8) (Table 1). Whilst the IIa
family remained the most common family throughout 2018–22,
of interest, there was a gradual increase in numbers of the IId
family (Table 1). Of note, for C. parvum, the total number of
different subtypes identified in the springtime peak (April-May)
throughout 2018–22 varied. During 2018–2020, there was an
average of eight different subtypes. However in 2021, the number
of different subtypes increased to 18, and remained elevated in
2022 with 13 different subtypes identified.

The most common subtypes in 2018–19 were IIaA15G2R1 (n =
30 and n = 19, 2018 and 2019, respectively) and IIaA17G1R1 (n =
20 and n = 13 in 2018 and 2019, respectively), which accounted for
59% of cases subtyped. In 2020, whilst IIaA15G2R1 remained the
most frequently reported subtype (n = 15; 29% of all C. parvum
subtypes), the second most common was a IId subtype, namely,
IIdA22G1 (n = 6), which accounted for 12% of all C. parvum

FIGURE 1 | Laboratory-confirmed cases of Cryptosporidium hominis (A) and Cryptosporidium parvum (B) in Scotland from 2018–22.

TABLE 1 | Most commonly detected Cryptosporidium hominis and
Cryptosporidium parvum molecular families from 2018–22.

C. hominis C. parvum

Year Ib Id Ie Ila Ilc Ild

2018 29 1 1 62 1 6
2019 2 0 0 56 2 11
2020 1 0 0 30 2 19
2021 0 0 1 116 1 17
2022 3 9 15 65 2 25
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isolates typed that year. In 2021, the IIaA15G2R1 and
IIaA17G1R1 subtypes were most frequently observed (n =
54 and n = 24, respectively), accounting for 40% and 18% of
the total. However, during 2022, the IIaA15G2R1 remained the
most common (n = 28; 30%), but numbers of more unusual
subtypes IIdA24G1 (n = 7), IIaA16G3R1 (n = 7) and
IIaA15G1R2 (n = 7) were similar to the common
IIaA17G1R1 type (n = 6) (Table 2).

DISCUSSION

In this report, we highlight that during the past 5 years, C. hominis
only represented around one-fifth of those cases that were
successfully typed, with C. parvum accounting for almost 80%.
This is in contrast to previously published data from Scotland
during 2012–13 and unpublished data from 2014–17 (data not
shown), where similar numbers of C. hominis and C. parvum cases
were reported [1]. This change in recent years is likely to reflect the
altered human behaviours as a result of the pandemic restrictions,
which included improved hand hygiene, reduced social
interactions, a reduction in dining out at food and drink
establishments, and reduced or no local/international travel [7, 9].

Similar to published data [1], this study found that human
cryptosporidiosis cases normally occurred seasonally, with a peak
in late-Spring of mainly zoonotic C. parvum infections coinciding
with the lambing/calving season and open farm outbreaks, and a
second peak occurring in late-Summer/early-Autumn mainly
comprising of C. hominis infections assumed to be associated
with an increase in human to human transmission locally, and
also international travel [10].

Further, more in-depth analysis of epidemiological data for
each case is necessary to ascertain what exposure(s) were likely to

have resulted in each infection, but with the demand for limited
resources within Public Health Scotland to support and prioritise
COVID investigations, this has not been possible in recent times.

During 2020, which was greatly impacted by restrictions and
lockdowns implemented to limit transmission of COVID-19,
cases of cryptosporidiosis were markedly lower which is a
similar pattern for the incidence of other gastrointestinal (GI)
illnesses in the United Kingdom [11, 12]. A recent report on the
effects of COVID-19 restrictions on cryptosporidiosis cases in
England and Wales described similar findings to that observed in
Scotland, where the incidence of C. hominis and C. parvum
decreased markedly from the onset of COVID-19 restrictions
[13]. These finding differed to that of a study from New Zealand,
which reported an absence of C. hominis cases within the first few
months of COVID-19 restrictions, yet C. parvum cases continued
to be reported at a similar level [14].

Indirect effects of the national lockdown and imposed COVID-
19 restrictions are likely to have impacted on the observed decrease
in cryptosporidiosis cases during 2020. The closure of all non-
essential businesses, including those previously linked to
cryptosporidiosis outbreaks, such as swimming pools, open
farms, food outlets and restaurants, may have contributed to
lower cases being observed during this time [9, 12, 15].
Improved hand hygiene was encouraged throughout the
pandemic, which is also an important measure in minimising
transmission of GI infections, and is therefore likely to have
decreased human-to-human transmission [16]. Starting 29th
May 2020, the route map out of lockdown commenced in
Scotland, which gradually permitted more socialising and pre-
pandemic activities. However during this period of returning to
normality, regional lockdowns were implemented in areas of
Scotland identified to have high numbers of COVID-19 cases
[7]. On implementation of the route map out of lockdown, there
was a general reluctance to travel which is likely to have impacted on
the number of cases, especially C. hominis during late-Summer/
early-Autumn of 2020 [17]. Perhaps the potential loss in confidence
to book holidays for fear of cancellations, and the need to be fully
vaccinated when travelling to certain areas, impacted on numbers
not fully returning to pre-pandemic levels by 2022 [18]. Whilst this
study reported a decrease in laboratory-confirmed cryptosporidiosis
cases during 2020, the true number of cases within the community is
likely to be under-represented as a result of the public being advised
to only contact healthcare providers in emergencies. Although this
alleviated pressures on General Practitioners (GPs) and hospitals
during the pandemic, it is likely to have resulted in individuals being
reluctant to contact GPs with gastrointestinal illness.

The large spike in C. parvum cases observed in April and May
of 2021, is likely to reflect the reopening of non-essential
businesses including swimming pools, food outlets, petting
farms/open farms, which enabled mixing of groups of
individuals, and increased exposure to infected humans and
animals, especially direct contact with young animals.

Over the time period covered in this study, the most
predominant C. hominis family detected changed from the Ib
family, which is the most common C. hominis family in Europe
[19], to the Ie family followed by the Id family, both of which are
commonly found in low/middle income countries [19]. The three

TABLE 2 | Cryptosporidium hominis and Cryptosporidium parvum subtypes
detected from 2018–22.

Year

2018 2019 2020 2021 2022

C. hominis IbA10G2 23 2 1 0 0
IeA11G3T3 1 0 0 1 15
IbA12G3 5 0 0 0 0
IaA24R2 0 0 1 0 0
IdA16 0 0 0 0 8
IbA9G3 0 0 0 0 3

C. parvum IIaA16G2R1 0 1 0 1 1
IIaA17G1R1 20 13 5 24 6
IIaA15G2R1 30 19 15 54 28
IIdA24G1 0 2 2 0 7
IIaA18G2R1 2 1 1 3 0
IIcA5G3 1 2 2 1 2
IIaA13G1R2 0 1 0 5 1
IIdA17G1 3 0 4 5 5
IIaA21G4R1 0 5 1 0 0
IIdA22G1 1 0 6 3 3
IIaA19G1R1 1 0 0 5 0
IIaA15G1R2 2 3 2 1 7
IIaA16G3R1 1 1 1 1 7
IIdA19G1 1 1 4 3 5
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rare C. hominis subtypes identified, namely, IeA11G3T3, IdA16 and
IbA9G3 were likely to have been imported to Scotland once
international travel began after the easing of pandemic
lockdowns. One of the three rare C. hominis variants, namely,
IeA11G3T3, is associated with infection in Asia, Africa and South
America, and was previously identified in Scotland, with
epidemiological links to a contaminated swimming pool [1,
20–22]. Subtype IdA16 has been previously identified in
England, with most recent infections associated with a
swimming pool outbreak [23]. To our knowledge, this is the first
account of the IdA16 subtype within the Scottish population. A
recent study found IdA16 infections identified in Sweden were
associatedwith travel from Sri Lanka and China [24]. Lastly, the rare
IbA9G3 subtype has been reported from Malawi, Kenya and India
[19]. It has been previously reported that detection of rare C.
hominis subtypes is associated with international travel [25].
Therefore, detection of these rare C. hominis subtypes post-2020
within the Scottish population was likely associated with increased
travel beyond Europe following the pandemic, although as
international travel had not yet reach pre-pandemic levels,
consideration for possible imported contaminated consumables
should be given [18].

In this report, the most predominant C. parvum family was IIa,
in particular, IIaA15G2R1 which has also been reported from
calves and geese in Scotland [26, 27]. Of interest, there was an
increase in the number of IId family cases which is found
throughout Europe, and is associated with infection of
ruminants, including sheep, goats and calves [19, 27].
Throughout the pandemic, an increase in outdoor exercise and
leisure activities e.g., wild water swimming was observed. Spending
more time in green spaces is likely to have resulted in greater
exposure to farmed animals and/or their faeces, resulting in an
increase in the incidence of infection with the IId family [28, 29].
This may have also contributed to the increase in number of
different C. parvum subtypes observed between April-May in
2021 and 2022. One of the more unusual C. parvum subtypes
commonly observed post-pandemic namely, IIdA24G1, was
previously identified in European hedgehogs (Erinaceus
europaeus), Spanish lambs and humans in Sweden and
Australia [30–33]. Although of interest, to our knowledge, the
IId family has not been identified from animals within Scotland
(Personal communications, Moredun Institute, Scotland). There is
the possibility that the emergence of the IId family in Scotland is via
an imported consumable as certain variants including the
IIdA24G1 subtype have been associated with European
outbreaks involving salad items [34]. The rare IIaA16G3R1, has
previously been associated with cattle infections [19], and
IIaA15G1R2, has been reported from UK outbreaks involving
open farms [35]. As only a proportion of Cryptosporidium-
positive faeces are typed in Scotland, due to the limited funds
available, combined with the presence of PCR inhibitors in faeces,

only 44% of C. hominis positive samples and 73% of C. parvum
positive samples were subtyped.

This work represents an advance in biomedical science because
it highlights that Cryptosporidium continues to be a significant
cause of gastrointestinal disease, and the COVID-19 pandemic has
resulted in changes to both the dominant species and subtypes
circulating within the Scottish population. It will be crucial to
monitor themolecular variants over the coming years to see if these
changes remain stable, and if new and emerging strains appear with
altered virulence as we exist in the post-pandemic era.
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