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Introduction 

Infection with the Gram-negative spiral organism
Helicobacter pylori is well known to infect chronically up to
50% of the world’s population.1 Infection is always followed
by chronic gastric inflammation,2,3 which is usually
asymptomatic. Duodenal and gastric ulceration occurs in
approximately 15% of infected individuals.4

It is recognised that there are several aetiologies for gastric
cancer, with one of the predominant causes being infection
with H. pylori.5 Of the patients infected chronically with 
H. pylori, approximately 1% develop either gastric carcinoma
or mucosa-associated lymphoma.6

Early epidemiological studies implicate the organism in
the development of gastric adenocarcinoma,7,8 and many
attempts have been undertaken to determine the
pathophysiology of H. pylori.9 Carcinogenesis in H. pylori
infection has been attributed to several potential candidates,
including an increase in epithelial cell proliferation,10 a
suppression of epithelial cell apoptosis,11 and oxidative
damage arising from chronic immune infiltration.12

Recently, however, research has demonstrated DNA
damage in gastric mucous epithelial cells6,13 and mouse
lymphoma cells14 following in vitro incubation with 
H. pylori sonicates. Bagchi and co-workers15 also
demonstrated the synthesis of reactive oxygen species (ROS)
in gastric cells following in vitro incubation with live 
H. pylori. It is the production of these ROS and reactive
nitrogen species that may play a role in the modification to
DNA bases that can be a marker of oxidative DNA damage,
and may lead to inflammation-mediated carcinogenesis.16

Studies demonstrate that the cagA and VacA toxins of 
H. pylori are associated with cellular damage and alterations
to the cell cycle.1

Following these observations, this study aims to assess the
ability of three toxin-producing clinical isolates of H. pylori to
induce oxidative DNA damage in colon adenocarcinoma cell
lines utilising fragment length analysis using restriction
enzymes (FLARE) assays.

Materials and methods

Cell culture
A colon adenocarcinoma cell line (HT29; ECACC), a robust
model of mammalian cell response to H. pylori infection, was
cultured in Minimum Essential Medium (Gibco)
supplemented with 10% fetal bovine serum (Gibco), 
2 mmol/L L-glutamine (Gibco) and 1% non-essential amino
acids (Gibco) at 37˚C in 5% CO2. Use of a primary cell line
was discounted due to survival issues following exposure to
H. pylori strains.

Bacterial culture
The cagA+ve and VacA-producing H. pylori strains J238
(cagA+ve, VacA s1/m1), J223 (cagA+ve, VacA s1/m2), both of
which were clinical isolates from a patient with gastritis, and
A101 (cagA+ve, VacA s1/m2), a clinical isolate from a patient
with non-ulcer dyspepsia, were cultured and maintained in
brain-heart infusion broth (Oxoid) supplemented with 10%
laked horse blood (Oxoid). Clinical isolates of Campylobacter
jejuni were grown under similar culture conditions to act as
negative controls. Inoculated cultures were incubated in a
microaerobic environment using a gas jar and Campypacks
(Oxoid) at 37˚C.

Cell/bacteria co-culture
HT29 cells were seeded at a concentration of 2 x 105 cells/mL
in 12-well microtitre plates (Falcon) and left to adhere
overnight. Harvested H. pylori strains were washed and

Induction of oxidative DNA damage
by Helicobacter pylori in HT29 cells

M COFFILS*, A. P. JEWELL†, L. A. JONES* and M. D. FIELDER*

*School of Life Science, Kingston University, Penrhyn Road, 

Kingston upon Thames; and †Faculty of Health and Social Care Sciences, 

Kingston University and St. George’s University of London, London, UK

ABSTRACT

Infection with Helicobacter pylori has been associated with
the development of gastric adenocarcinoma in humans.
Several routes have been implicated, the main one being
oxidative DNA damage resulting from chronic
inflammation, which accompanies infection. However,
DNA has been demonstrated in human cells after in vitro
incubation with H. pylori sonicates. Using the fragment
length analysis using restriction enzymes (FLARE) assay,
this study investigates the DNA damaging potential of
three clinical isolates of H. pylori on cultured HT29 cells.
Significant amounts of oxidative DNA damage were
detected in HT29 cells following a 72-hour incubation with
each H. pylori isolate. As tumour induction is a known
consequence of oxidative DNA damage, chronic infection
with the organism may lead to the development of
adenocarcinoma of the stomach.

KEY WORDS: DNA damage.
FLARE assay.
Helicobacter pylori.
Oxidative stress.

Correspondence to: Dr. Mark Fielder

School of Life Sciences, Kingston University, Penrhyn Road, Kingston-Upon-Thames

Surrey, KT1 2EE, UK. 

Email: m.fielder@kingston.ac.uk

ORIGINAL ARTICLE 149

BRITISH JOURNAL OF BIOMEDICAL SCIENCE 2007  64 (4)



resuspended in phosphate-buffered saline (PBS) to give a
suspension of 6 x 108 colony-forming units (cfu)/mL.
Suspensions were added to HT29 cells at a final
concentration of 6 x 107 cfu/mL and incubated for 72 h at
37˚C in 5% CO2.

In vitro micronucleus test using the FLARE assay
The protocol followed was adapted from those used by
Trevigen Inc. and Collins et al.17 Following a 72 h incubation,
cells were trypsinised and washed once in PBS. After
removing as much supernatant as possible, the cell pellet
was vortex-mixed. Samples (400 µL) of 1% molten low-
melting-point (LMP) agarose (Sigma) at 42˚C were mixed
with 10 µL of each cell suspension. Duplicates of the
cell/agarose suspension were then run evenly down a
microscope slide precoated with a thin layer of 1% normal-
melting-point (NMP) agarose (Sigma). Slides were
refrigerated for 5 min to allow the agarose to solidify before
immersing in lysis solution for 2 h at 4˚C.

Following removal from the lysis solution, the slides were
washed (x3, each wash 5 min) with FLARE buffer at 4˚C.
Formamidopyrimidine-DNA-glycolase (Fpg; Trevigen Inc.)
was diluted 1 in 50 in enzyme reaction buffer, and 32-µL
volumes (containing 2 units of protein) were added to each
slide. Control slides were treated with an equal volume of
reaction buffer only. After applying coverslips, slides were
incubated in a moist box for 30 min at 37˚C. Coverslips were
then removed and the slides placed in an electrophoresis
subtank containing electrophoresis solution at 4˚C. The
DNA was left to uncoil for 40 min.

The electrophoresis module was packed in ice during
uncoiling and electrophoresis, in order to optimise sample
adherence and decrease background damage (Trevigen
protocol). Then, 25 V was applied for 45 min. Slides were
then washed (x3, each wash 5 min) in neutralisation buffer
at 4˚C, flooded with 70% ethanol for 5 min, and allowed to
dry in the air. Ethidium bromide (50 µL, 5 µg/mL) was
pippetted onto each slide and a coverslip applied to ensure
even coverage.

Slides were stained for 10 min before destaining in PBS
washes (x3, each was 5 min). New coverslips were applied.
Viewing was carried out using a fluorescence microscope
(Zeiss-Axioskop, 100 W mercury lamp) with integral digital
camera (Nikon Dn100) and imaging software (Nikon,
Eclipse-net). Tail length was used as a measure of DNA
damage.

ImageJ (freeware, available from http://rsbweb.nih.gov/ij)
was used to score the gels. This program permits conversion

of the image to binary information, in order to define more
clearly the threshold of fluorescence.

Statistical analysis
Groups of 100 cells were analysed (x400 magnification) for
each triplicate slide. Fpg-treated and -untreated cells from
triplicate H. pylori J238 infected cultures were compared
using Student’s t-test, and mean tail length was found to be
significantly different. Therefore, a hydrogen peroxide
positive control was deemed unnecessary, as activity of the
Fpg enzyme was demonstrated.

The t-test was also used to compare tail length from the
following: non-Fpg-treated, infected and uninfected
samples, to determine any significant difference in strand
break levels without the presence of Fpg; and tail length of
Fpg-treated, infected and non-infected samples, to determine
any significant difference in oxidative damage levels.

Results were considered significant at P≤0.05.

Results

The FLARE assay was used to assess DNA damage levels in
the HT29 gastric cells following incubation with H. pylori. In
addition, this assay permitted assessment of the proportion
of oxidative damage. The genotoxicity of three CagA- and
VacA-producing clinical isolates of H. pylori (strains J238,
A101 and J233) was assessed in two individual, duplicate
experiments after a 72 h incubation with HT29 cells.

To determine the significance of difference in tail length
between Fpg-treated and -untreated cells, triplicate cultures
of HT29 cells infected with H. pylori J238 were assayed, the
data were pooled and then Student’s t-test was applied to
the resulting tail lengths (Table 1). The mean tail length of
Fpg-treated cells was found to be significantly higher than
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Fig. 1. Mean tail length of
comets (as a measure of
DNA damage) after
incubation of HT29 cells with
H. pylori strains J238, A101
and J233, with and without
Fpg treatment. Results
shown are the mean of three
separate cultures, with 100
cells/culture±SEM. Results
are representative of two
individual experiments. 
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Mean tail length
(arbitrary units)

H. pylori strain

Fpg treated

Controls

H. pylori Fpg-treated Significant Untreated Significant
strain at P≤0.05 at P≤0.05  

J238 5.98 Yes 2.21 No

A101 12.16 Yes 0.45 No

J233 5.08 Yes 0.45 No

Table 1. The t-values for the tail lengths of HT29 cells with and
without Fpg treatment following incubation with all three strains
when compared to un-infected controls.



that of non-treated cells (at ∞ degrees of freedom, P≤0.001).
This result demonstrates the activity of the Fpg used in this
study.

Following a 72 h incubation of HT29 cells with three CagA-
and VacA- producing clinical isolates of H. pylori and
subsequent treatment with Fpg, DNA damage was observed
at significantly higher levels than was present in uninfected
controls (Fig. 1). Measurement of the mean tail length of
infected cells when treated with enzyme buffer alone was
not found to be significantly different from that of non-
infected cells (Fig. 1).

The significance of these results was tested using
Student’s t-test. Comet tail length after incubation of HT29
cells with strains J238, A101 and J223 was found to be
significant at P≤0.05 (Table 1) when compared to controls.

Discussion

The alkaline single-cell gel electrophoresis assay is a highly
sensitive detector of single and double DNA strand breaks,
even when present at very low levels.17 With the inclusion of
Fpg, a molecule that cleaves DNA at sites of oxidative
adducts (e.g., 8-oxo-deoxyguanosine [8-oxo-dG]), this study
demonstrated a highly significant increase in damage in 
H. pylori-infected cells compared to control cells after a 
72 h incubation. Without Fpg, no significant damage was
detected, suggesting that the majority of the damage present
was due to the formation and subsequent removal of
oxidative adducts.

Oxidative stress is considered to be the most likely
mechanism for the induction of tumour growth in the
stomach of infected individuals,18 as H. pylori is chronically,
but largely unsuccessfully, attacked by the immune system.19

The present study shows, however, that H. pylori has the
ability to cause a significant increase in oxidative DNA
damage in a human gastrointestinal cell line, without the
involvement of immune cells. This effect may play a central
role in tumour induction. 

Oxidative adducts in mammalian cell DNA are removed
via a base excision repair pathway20 by DNA glycosylases
homologous to the Escherichia coli-derived Fpg enzyme used
in this study. Without the addition of repair enzymes, the
comet assay can only detect single-strand breaks that have
occurred transiently as a result of this pathway. This explains
the lack of any significant increase in tail length between
infected and non-infected cells. The addition of large
amounts of Fpg to the cells permitted any oxidative adducts
present to be converted to strand breaks, which then could
be visualised in the FLARE assay.

The most abundant and mutagenic oxidative adduct is 
8-oxo-dG.21 If DNA replication occurs prior to the repair of
this adduct, a GC↔TA mutagenic transversion often
results.22 GC↔TA transversions frequently have been
detected in the p53 gene and the ras proto-oncogene in some
primary tumours.23 Both genes are known hotspots for free-
radical damage.24 It has been shown that p53 is a specific
target for oxidative DNA damage in H. pylori-positive biopsy
samples.25

A possible contributing factor to this oxidative damage is
the large amount of superoxide (O2

–) that H. pylori generates.26

This has a protective effect on the bacterium in vivo, as it reacts
with and thus deactivates the bactericidal nitric oxide (NO)

present in gastric juice. The product of this reaction is
peroxynitrite (ONOO–), a further metabolite of which is the
hydroxyl radical (OH–). These highly cytotoxic molecules,
along with superoxide itself, may be responsible for a large
amount of the oxidative damage seen in H. pylori-infected
gastric epithelia from biopsy samples.27

Another explanation is that the gastric cells produce ROS
in response to H. pylori infection. This effect has been studied
in vitro by Bagchi et al.,15 who reported enhanced production
of ROS in gastric cells after incubation with H. pylori.
Following this, O’Rourke et al.28 used endonuclease III
knockout mutants of H. pylori, which have an impaired
ability to cleave DNA at internal sites and thus repair
oxidative DNA damage, to show that, in response to
infection, host cells can induce lethal oxidative adducts in
the H. pylori genome. Other studies also show the
importance of H. pylori, when damage is directed towards
epithelial cells and leucocytes.29–31

In an in vitro study such as the one reported here,
oxidative damage to the DNA of infected gastric cells may be
attributed largely to the superoxide radicals generated by 
H. pylori, meant to aid the organism’s survival in the
stomach, and to the ROS generated by the gastric cells as a
protective response against the bacteria. With regard to the
latter, the investigation of other enteric bacteria is important
in order to elucidate whether or not ROS are produced
generally by gastric cells in response to infection, and, if so,
what potential this effect has in inducing DNA damage. 

Human cells contain several natural antioxidants that are
the cell’s main defence against ROS. Glutathione (GSH), a
major cellular antioxidant, is transcribed continuously at a
basal level.32 Although an up-regulation of transcription can
be sustained temporarily in response to high levels of ROS
within the cell,33 this cannot continue indefinitely. Thus,
chronic attack by large numbers of these molecules
eventually may deplete GSH levels and overwhelm the cell’s
natural antioxidant defence.34 Glutathione is largely depleted
in H. pylori-infected cultured gastric epithelial cells.35 In
addition, H. pylori infection has been associated with a
significant reduction in ascorbic acid in gastric juice.36

Although the persistent direct formation of ROS in gastric
cells by H. pylori may be a major route to the induction of
gastric tumours, this undoubtedly is a multifactoral process.
The immune response to infection also contributes to the
amount of ROS with which the infected gastric cells are
challenged, and the accompanying depletion of the cell’s
intrinsic antioxidant defence system, and one of the major
dietary antioxidants, can only augment the resulting
damage. 

At present, no screening process is in place to detect 
H. pylori carriers. Presence of the organism is only
investigated by serology or the urea breath test if a patient
presents with gastritis or peptic ulcer disease, with
antimicrobials then used to eradicate the infection. 

The results of the present study highlight the importance
of antioxidants as a dietary supplement for the general
population, and also substantiate the need for free-radical
scavengers as adjuvant therapy in the eradication of H. pylori
infection. 5

The authors wish to thank Professor J. Atherton, Division of
Gastroenterology, Nottingham University, UK, for provision of the
H. pylori strains used in this work.
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