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The thermal cloak has special thermal insulation performance because of its unique
anisotropic thermal conductivity tensor. Constrained by simplistic geometric designs,
traditional thermal cloaks face limitations in achieving precise thermal regulation for
complex structures with different shapes. The hexagonal and dodecahedral thermal
cloaks are quite rare, largely due to their complex transformation equations. In this
study, the transformation equations for the hexagonal and dodecahedral cloaks are
derived by the rotation matrix, and their thermal conductivity tensors are further
obtained according to the theory of transformation thermotics. The derivation method
is applicable to any two and three-dimensional thermal invisibility cloaks with geometric
symmetry. Furthermore, the numerical verification shows that both hexagonal and
dodecahedral thermal cloaks could avoid heat flow in their thermal invisibility region.
This proves the correctness of the derivation method and the thermal conductivity tensor
calculated. The hexagonal and dodecahedral thermal cloaks obtained in this paper could
provide uniform temperature field for different applications preventing the field of non-
uniform stress and deformation in actual.
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INTRODUCTION

Thermal metamaterials make it possible to actively manipulate heat phenomena of artificial systems
and govern heat diffusion processes [1]. Various thermal metamaterials with different functionalities
have already been demonstrated due to the development of transformation thermotics [2]. Thermal
cloak, as one of the thermal metamaterials, provides a zero-temperature gradient inside a central
region without disturbing the temperature distribution in the surrounding region. So, such cloak is of
an application in hiding or protecting objects from being detected or destroyed [3]. The thermal
cloaks have been extensively studied since Pendry et al. [4] designed an artificial metamaterial based
on the formal invariance of Maxwell’s equation and achieved electromagnetic invisibility. Fan et al.
[5] introduced the concept of electromagnetic cloak into the thermal field for the first time and
predicted the thermal invisibility cloak theoretically. Narayan et al. [6] synthesized two materials
with very different thermal conductivity into a spiral multilayer structure and made a prototype of a
thermal cloak. Various cloak has been studied, such as the bifunctional cloak [7], switchable thermal
cloak [8] and the microstructured thermal cloak [9]. Realizing anisotropic thermal conductivities as
expected is essential for thermal cloak. Jian Z et al. [10] found that periodic dimpling of silicon film
could reduce thermal conductivity and constructed a rectangular cloak in this way. Yang S et al. [11]
proposed a single-particle structure to effectively manipulate the thermal conductivity by
appropriately adjusting the form factor or area fraction of the single particle. Sha et al. [12] took
the local thermal conductivity tensor as input, carried out the free form design of topological
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functional units by topology optimization, and then directly 3D
printed and assembled them to design three free-form thermal
devices. Ji et al. [13] propose a machine learning based thermal
cloak consisting of a finite number of layers with isotropic materials.
Han et al. [14] demonstrate the design of full-parameter
omnidirectional thermal metadevices with anisotropic geometry,
which is experimentally confirmed via three proof-of-concept
experiments. Li et al. [15] suggest a de-homogenization approach
that uses optimal multi-rank laminates to provide closed-form
solutions for any imaginable thermal manipulation device and
create thermal cloaks, rotators, and concentrators. A forward
conformality-assisted tracing method is proposed, which uses a
conformal mesh composed of orthogonal streamlines and
isotherms to produces free-form metamaterials using only
isotropic media [16]. At the microscopic level, how to adjust the
thermal conductivity is also a research hotspot [17–20], which
provides a new idea for the actual preparation of thermal
invisibility cloak.

Hexagon has been used in elastic metamaterials [21] dual-band
terahertz metamaterial absorber [22] and mechanical metamaterials
[23]. Dodecahedron is one of the densest known packings of the
non-tiling Platonic in three-dimensional Euclidean space [24]. The
mechanical metamaterials [25] of dodecahedron is widely
researched such as their topology-property relationships [26] and
mechanical properties [27–32]. However, rare researchers have
deduced the thermal insulation performance of hexagonal and
dodecahedral thermal cloaks. In this study, the thermal
conductivity tensors of hex-agonal and dodecahedral thermal
cloaks are derived to provide uniform temperature field for
different applications to prevent non-uniform stress and
deformation from nonuniform heat flow in actual situation. The
method in this paper could be applied to any two-dimensional or
three-dimensional cloak with geometric symmetry.

HEXAGONAL THERMAL CLOAK

Derivation of the Hexagonal Cloak’s
Thermal Conductivity Tensor
If there is no heat resource and at steady state, the heat
conduction equation is:

∇ · λ0∇T( ) � 0 (1)
where λ0 represents the thermal conductivity of the medium, T is
the temperature. Since the heat conduction equation has formal
invariance [33], Equation 1 could be transformed in other space
as Equation 2:

∇′ · λ′∇′T′( ) � 0 (2)
where λ′, T′ represent the thermal conductivity coefficients and
temperatures in the transformed spaces. According to the theory
of transformation thermotics [34], the relationship between
transformation space and original space is:

λ′ � A · λ0 · AT

det A( ) (3)

where A is the Jacobian transformation matrix, reflecting the
geometric changes from the original space to the transformation
space, and its components are:

Aij � ∂xi′
∂xj

(4)

where x′
i denotes the three coordinate components x’, y’, z’ in the

transformation space, xj represents the three coordinate
components x, y, z in the original space.

Three steps would be carried out to obtain the thermal
conductivity of the thermal cloak. Firstly, the geometric
transformation equations of the cloak with complex shape
should be established based on the rotation matrix which is
obtained by the specific rotation method. Secondly, the
Jacobian transformation matrix A could be formed according
to the geometric transformation equations. Finally, the thermal
conductivity coefficients λ′ of the cloak could be obtained
by Equation 3.

The thermal conductivity tensor of hexagonal thermal
invisibility cloak designed as Figure 1 is derived as follows.
The cloak with anisotropic thermal conductivity tensors is set
in the pink region so that the gray region in the middle is heat
stealthy. The width of the hexagonal cloak and the middle
invisibility region are 2s2 and 2s1, respectively. Furthermore,
the cloak is divided into six regions Ω1−6 because of the
geometric symmetry.

The transformation formula of region Ω1 is easily
established as Equation 5:

x′
y′[ ] �

s2 − s1
s2

0

0
s2 − s1
s2

+ s1
x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ x
y

[ ] + s1
0

[ ] (5)

FIGURE 1 | The sketch map of the hexagon thermal invisibility cloak
(region Ω1−6).
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The corresponding Jacobian matrix of region Ω1 could be
calculated as Equation 6:

A1 �
s2 − s1
s2

0

−s1y
x2

s2 − s1
s2

+ s1
x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

Then the thermal conductivity relationship of region Ω1

between transformation space and original space is established
as Equation 7 according to Equations 3, 6:

λ1
′ �

1 − s1
x′ −s1y′

x′2

−s1y′
x′2

x′4 + s1
2y′2

x′4 − s1x′3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦λ0 (7)

FIGURE 2 | (A,B) The distribution of temperature and heat flow lines with and without the cloak effect. (C,D) The isotherms of the hexagon thermal cloak with and
without the cloak effect.

FIGURE 3 | The temperature distribution on the center line along the
X-axis of the hexagon with and without the thermal cloak effect.
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The regionΩ2 could be obtained by the rotating the regionΩ1

with 60° anticlockwise. The transformation equation of regionΩ2

could be set up by multiplying the transformation equation of

region Ω1 by the rotation matrix P �
1
2

-

�
3

√
2�

3
√
2

1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

x′
y′[ ] �

s2 − s1
s2
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2

s1
x + �

3
√

y
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3

√
2

s1
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3
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y
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�
3
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2

s1
x + �

3
√

y

s2 − s1
s2
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2

s1
x + �

3
√

y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x
y

[ ]

+
1
2
s1�
3

√
2
s1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

FIGURE 4 | (A) The sketch map of the rhombic dodecahedron thermal invisibility cloak (region Ω1−12). (B,C) are two facets of the cloak.

FIGURE 5 | The schematic diagram of region Ω1 of the rhombic
dodecahedron cloak.

FIGURE 6 | The schematic diagram of region Ω1−4.
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The corresponding Jacobian matrix and the thermal
conductivity of region Ω2 could be calculated as Equation 9
and Equations 10–13 according to Equations 3, 4, 8 as regionΩ1:

A2 �

s2 − s1
s2

+ 2
�
3

√
s1y

x + �
3

√
y( )2 − 2

�
3

√
s1x

x + �
3

√
y( )2

− 2s1y

x + �
3

√
y( )2

s2 − s1
s2

+ 2s1x

x + �
3

√
y( )2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

λ2
′ � λ211

′ λ212
′

λ212
′ λ222

′[ ]λ0 (10)

λ211
′ � x′ + �

3
√

y′ − 2s1
x′ + �

3
√

y′ + 4
�
3

√
s1y′

x′ + �
3

√
y′( )2

+ 12s12 x′2 + y′2( )
x′ + �

3
√

y′( )3 x′ + �
3

√
y′ − 2s1( ) (11)

λ212
′ � λ221

′ � −2s1 y′ + �
3

√
x′( )

x′ + �
3

√
y′( )2 − 4

�
3

√
s12 x′2 + y′2( )

x′ + �
3

√
y′ − 2s1( ) x′ + �

3
√

y′( )3
(12)

λ222
′ � x′ + �

3
√

y′ − 2s1
x′ + �

3
√

y′ + 4s1x′
x′ + �

3
√

y′( )2
+ 4s12 x′2 + y′2( )

x′ + �
3

√
y′( )3 x′ + �

3
√

y′ − 2s1( ) (13)

In the same way, the left regions’ transformation equations
could be established by multiplying the rotation matrix P
in turn. Their Jacobian matrixes could be calculated. Finally,
the thermal conductivities could be deduced as
Equations 14–26.

λ3
′ � λ311

′ λ312
′

λ321
′ λ322

′[ ]λ0 (14)

λ311
′ �

�
3

√
y′ − x′ − 2s1�
3

√
y′ − x′ + 4

�
3

√
s1y′�

3
√

y′ − x′( )2
+ 12s12 x′2 + y′2( )�

3
√

y′ − x′( )3 �
3

√
y′ − x′ − 2s1( ) (15)

λ312
′ � λ321

′ � 2s1 y′ − �
3

√
x′( )�

3
√

y′ − x′( )2 + 4
�
3

√
s12 x′2 + y′2( )�

3
√

y′ − x′ − 2s1( ) �
3

√
y′ − x′( )3

(16)
λ322
′ �

�
3

√
y′ − x′ − 2s1�
3

√
y′ − x′ + −4s1x′�

3
√

y′ − x′( )2
+ 4s12 x′2 + y′2( )�

3
√

y′ − x′( )3 �
3

√
y′ − x′ − 2s1( ) (17)

λ4
′ �

1 + s1
x′

s1y′
x′2

s1y′
x′2

x′4 + s1
2y′2

x′4 + s1x′3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦λ0 (18)

FIGURE 7 | (A) Regions Ω5, Ω8, Ω9,Ω11 are obtained by rotating region Ω1. (B) Regions Ω6, Ω7, Ω10,Ω12 are obtained by rotating region Ω2.

FIGURE 8 | The rotation of region Ω5 (the axis of rotation u5 is marked
in red).
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TABLE 1 | The rotation axis and rotation matrix of the region obtained by rotating region Ω1.

Regions obtained by rotating region Ω1 Rotation axis Rotation matrix

Region Ω5
u5 � (

��
6

√
3

,

��
3

√
3

, 0)

P5 �

1
2

��
2

√
2

−1
2��

2
√
2

0

��
2

√
2

1
2

−
��
2

√
2

−1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Region Ω8
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√
3

,−
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√
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√
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2
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√
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TABLE 2 | The rotation axis and rotation matrix of the region obtained by rotating region Ω2.

Region obtained by rotating region Ω2 Rotation axis Rotation matrix

Region Ω6
u6 � (−

��
6

√
3

,−
��
3

√
3

,0)

P6 �

1
2

��
2

√
2

−1
2��

2
√
2

0

��
2

√
2

1
2

−
��
2

√
2

−1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Region Ω7

u7 � (−
��
6

√
3

,

��
3

√
3

,0)

P7 �

1
2

−
��
2

√
2

−1
2

−
��
2

√
2

0 −
��
2

√
2

1
2

��
2

√
2

−1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Region Ω10

u10 � (−
��
6

√
3

,−
��
3

√
3

, 0)

P10 �

1
2

��
2

√
2

1
2��

2
√
2

0 −
��
2

√
2

−1
2

��
2

√
2

−1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Region Ω12

u12 � (−
��
6

√
3

,

��
3

√
3

, 0)

P12 �

1
2

−
��
2

√
2

1
2

−
��
2

√
2

0

��
2

√
2

−1
2

−
��
2

√
2

−1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Zhejiang University Press | Published by Frontiers October 2025 | Volume 3 | Article 149506

Sun et al. Aerospace Research Communications Hexagonal and Dodecahedral Thermal Cloak



λ5
′ � λ511

′ λ512
′

λ521
′ λ522

′[ ]λ0 (19)

λ511
′ � x′ + �

3
√

y′ + 2s1
x′ + �

3
√

y′ − 4
�
3

√
s1y′

x′ + �
3

√
y′( )2

+ 12s12 x′2 + y′2( )
x′ + �

3
√

y′( )3 x′ + �
3

√
y′ + 2s1( ) (20)

λ512
′ � λ521

′ � 2s1 y′ + �
3

√
x′( )

x′ + �
3

√
y′( )2 − 4

�
3

√
s12 x′2 + y′2( )

x′ + �
3

√
y′ + 2s1( ) x′ + �

3
√

y′( )3
(21)

λ522
′ � x′ + �

3
√

y′ + 2s1
x′ + �

3
√

y′ − 4s1x′
x′ + �

3
√

y′( )2
+ 4s12 x′2 + y′2( )

x′ + �
3

√
y′( )3 x′ + �

3
√

y′ + 2s1( ) (22)

λ6
′ � λ611

′ λ612
′

λ621
′ λ622

′[ ]λ0 (23)

λ611
′ � x′ − �

3
√

y′ − 2s1
x′ − �

3
√

y′ − 4
�
3

√
s1y′

x′ − �
3

√
y′( )2

+ 12s12 x′2 + y′2( )
x′ − �

3
√

y′( )3 x′ − �
3

√
y′ − 2s1( ) (24)

λ612
′ � λ621

′ � 2s1 x′ − �
3

√
y′( )

x′ − �
3

√
y′( )2 + 4

�
3

√
s12 x′2 + y′2( )

x′ − �
3

√
y′ − 2s1( ) x′ − �

3
√

y′( )3
(25)

λ622
′ � x′ − �

3
√

y′ − 2s1
x′ − �

3
√

y′ + 4s1x′
x′ − �

3
√

y′( )2
+ 4s12 x′2 + y′2( )

x′ − �
3

√
y′( )3 x′ − �

3
√

y′ − 2s1( ) (26)

Thermal Flux Insulation Numerical
Verification of the Hexagonal Cloak
The correctness of the above thermal conductivity tensors of
hexagonal thermal cloak will be verified directly in the numerical

FIGURE 9 | (A,B) The schematic diagram of the whole and half section of the rhombic dodecahedron thermal cloak with the background. (C,D) The half section’s
temperature distribution of the background and the rhombic dodecahedron with the cloak or not.
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simulation. We take one example of the hexagonal thermal cloak
model with s1 � 12m, s2 � 16m, embedding in the square
background filed with length of 60 m, which are established in
the heat transfer module of the COMSOL Multiphysics software.
For the hexagon with thermal cloak effects, the calculated thermal
conductivity tensors λ′ of the cloak shell are input in the material
properties setting module. The thermal conductivity coefficient of
the original space λ0 , the background and the region inside the
cloak are set to 1 W ·m-1K-1 to highlight the role of the derived
anisotropic thermal conductivity tensor. Besides, the hexagon
without thermal cloak effects, whose thermal conductivity
coefficient of the whole region is 1 W ·m-1K-1, is set as a
comparison. The boundary conditions are set as 400 K for the
left boundary and 300 K for the right boundary of the
background. Other boundaries of the background are set to
thermal insulation.

The distribution of temperature with heat flow lines and
isotherms are shown in Figure 2. At the case of the hexagon
with cloak effect, it could be seen in Figures 2A,C that the heat
flows from the left boundary to the right boundary, parallel to

each other in the background filed and concentrates in the cloak
shell so that both the heat flow and the temperature gradient
inside the cloak are zero because of the anisotropic thermal
conductivity of the cloak shell. However, the heat flux passes
through the whole hexagon without the cloak effect as Figure 2B
and a gradient temperature is shown in Figure 2D. The
temperature of the center line along the X-axis of the hexagon
with and without the cloak is displayed in Figure 3, which further
illustrated that the uniform temperature field inside the cloak
with more obvious temperature gradient in the cloak shell region
because of the hexagonal cloak effect. Both Figures 2, 3
demonstrate that the background temperature field remain
consistent with the cloak effect or not. This is attributable to
the fact that after the heat flux bypasses the cloak, it reverts to its
original path in the external region of the cloak. This indicates
that the hexagonal thermal cloak derived in this paper could
effectively redirect heat flux without exerting influence on the
background temperature field, which proves the correctness of
the calculation method of the hexagonal thermal invisibility cloak
and its thermal conductivity tensors.

FIGURE 10 | (A,B) The isothermal surface distribution of the rhombic dodecahedron with the thermal cloak effect or not. (C,D) Temperature distribution of the
rhombic dodecahedron’s tangent plane with and without the cloak effect.
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DODECAHEDRAL THERMAL CLOAK

Derivation of the Dodecahedral Cloak’s
Thermal Conductivity Tensor
Different from the derivation of two-dimensional hexagonal
thermal cloak, dodecahedron is a three-dimensional thermal
cloak. Figure 4 illustrates the sketch map of rhombic
dodecahedron thermal cloak. The rhombic dodecahedron
thermal invisibility cloak is divided into 12 regions called as
Ω1−12 according to the symmetry. In Figure 4A, the regions
marked in blue are facing us and the regions marked in orange
are the faces facing away. Figures 4B,C are two facets of the
cloak. The yellow shell indicates the cloak setting region and
the purple region in the middle is the heat hiding region. The
location of region Ω1 is special which is parallel to the Y-Z
plane and the X-axis passes through its midline point as
Figure 5 shown.

The green and pink diamonds represent the inner boundary
R1(θ,φ) and outer boundary R2(θ,φ) of the rhombic
dodecahedron thermal cloak in region Ω1, respectively. In
triangles OO2Q and OAQ, Equation 27 is obtained by
trigonometric functions:

cosφ � a

l
, sin θ � l

r2
(27)

Therefore, the inner and outer boundaries of region Ω1 could
be expressed as Equation 28:

R1 � b

sin θ cosφ
, R2 � a

sin θ cosφ
(28)

For a three-dimensional heat cloak, the transformation
equation of compressing region 0< r<R2(θ,φ) into region
R1
′(θ′,φ′)< r<R2

′(θ′,φ′) is Equation 29:

r′ � R2 θ,φ( ) − R1 θ,φ( )
R2 θ,φ( ) r + R1 θ,φ( )

θ′ � θ

φ′ � φ

(29)

The region Ω1 is chosen as the minimum rotation element
because the transformation equation of it is easily to set up in
Cartesian coordinates:
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The transformation equations of region Ω3, Ω2, Ω4 could be
set up by rotating the region Ω1 clockwise about the Y-axis with
90°, 180°, 270° as Figure 6 noted. Using regionΩ2 as an example,
the transformation equation of region Ω2 could be calculated by
multiplying Equation 30 by the relevant rotation matrix P2 �
-1 0 0
0 1 0
0 0 -1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ as Equation 31:
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The rotation of the remaining regions is more special, no
longer around the axis. They are divided into two categories,
one by region Ω1 rotation as Figure 7A shown, and the other
by region Ω2 rotation as Figure 7B. Use region Ω5 as an
example. The axis of the rotation of region Ω5 is an edge of
region Ω1, as Figure 8 shown. The region Ω5 could be got by
rotating region Ω1 with 120° clockwise about the specified axis
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. The transformation equations of

region Ω5 is Equation 32:

FIGURE 11 | The temperature distribution on the center line of the
background and the rhombic dodecahedron with and without the thermal
cloak effect.
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In the similar way, the transformation equations of remain
regions could be obtained by rotating the region Ω1 and
region Ω2 with 120° counterclockwise or clockwise about
their edges in the X-Y plane. Tables 1, 2 are the
corresponding rotation axis and matrix of the region
obtained by rotating region Ω1 and region Ω2, respectively.
Similarly, their Jacobian matrixes could be obtained by the
transform equations. Finally, their thermal conductivity
tensors could be calculated. The calculating progress is
achieved by MATLAB.

For the thermal cloak with less regular geometries or non-
symmetric shapes, the present method is applicable too. For an
any unregular region, the cloak could be divided into n sub-
regions Ωi�1,2,3..n. , which are no longer obtained by rotating the
same “region Ω1” that really exists. The “region Ω1” of the sub-
region Ωi could be set as a dummy region with the same shape of
Ωi, and its position should be perpendicular or parallel to the
coordinate axis to establish the transformation equations of
Ω1 easily.

Thermal Flux Insulation Numerical
Verification of the Dodecahedral Cloak
The dodecahedral cloak with a � 50m, b � 30m, embedding in
a cube background, is established in the heat transfer module of
the finite element software as Figure 9A shown. Taking the
thermal conductivity of the original space λ0, the middle stealth
zone and the background as 1 W ·m-1K-1, the calculated
anisotropic thermal conductivity tensors λ′ of the
dodecahedral cloak shell are set for the case of dodecahedron
with cloak effect. For comparison, the dodecahedron without
the cloak effects is considered by setting the thermal
conductivity coefficient of the whole region is 1 W ·m-1K-1.
Set the upper and lower boundary of the background as 400 K
and 300 K, respectively. Other boundaries are set to thermal
insulation.

The temperature distribution of the half section, which is
taken parallel to YZ plane as Figure 9B, is given to facilitate the
observation of the temperature distribution inside the rhombic
dodecahedron thermal cloak. The uniform temperature filed is
illustrated with the cloak effects in Figure 9C, which is different
from the central gradient temperature without the cloak effects
in Figure 9D.

The isothermal surface distribution of the rhombic
dodecahedron with and without cloak effects is given in
Figures 10A,B, respectively. Besides, Figures 10C,D show
the temperature distribution of the rhombic dodecahedron’s
tangent plane with and without the cloak. The temperature
distribution on the center line of the rhombic dodecahedron
and the background is illustrated in Figure 11. Without the
heat cloak, it could be seen in Figure 10B that all isothermal
surfaces are parallel to each other and the whole region is a
gradient temperature filed from high to low. Figure 10A
illustrates that the isothermal surfaces changes and buckle
around the central invisibility region when the heat cloak is
applied. The temperature gradient is concentrated at the cloak
shell so the slope of the temperature line in the cloak setting
region is greater than the absence of the cloak in Figure 11, and
the central region in the dodecahedron is a uniform
temperature field as Figure 10C shown. Moreover, in
Figures 10, 11, the temperature filed of the background is
identical whether the rhombic dodecahedron has the cloak
effect or not, which proves that the dodecahedral thermal
invisibility cloak doesn’t affect the background’s temperature
filed. This proves that the dodecahedral thermal invisibility
cloak plays a role in avoiding heat flow while the background
filed isn’t disturbed, and the calculated thermal conductivity
tensors are correct.

CONCLUSION AND PERSPECTIVES

In summary, the thermal conductivity tensors of hexagonal and
dodecahedral thermal invisibility cloaks are derived in this work.
The numerical verification shows that both hexagonal and
dodecahedral thermal invisibility cloaks can avoid heat flow,
and the temperature gradient in their thermal invisibility
region is zero. This proves the correctness of the derivation
method and the thermal conductivity tensors calculated and
lays the foundation for adjusting thermal fields with complex
structures.

3D morphologic mechanical metamaterials with specific
functions have extraordinary properties due to their 3D
building blocks. Researchers have been studying exotic
static mechanical properties such as stiffness and
strength close to theoretical limits [25], high mechanical
elasticity or energy absorption [35–37] or negative Poisson
ratios [38, 39]. However, the mechanical properties of the
combination with the thermal field are still limited. The
thermal conductivity tensors of hexagonal and dodecahedral
thermal cloaks calculated in this paper aim to provide a
uniform temperature field for the applications and
prevent the mechanical properties from being affected by
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the non-uniform stress and deformation caused by the heat
flow in the actual work. Furthermore, geometric
configurations and deformation effects may change the
thermal pathway [40–42], which could provide an effective
way to adjust the anisotropic thermal conductivities of the
thermal cloak.
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