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Physics-informed neural networks (PINNs) have emerged as an effective tool for solving
both forward and inverse partial differential equation (PDE) problems. However, their
application in large-scale problems is limited due to their expensive computational
cost. In this study, we employed an overlapping domain decomposition technique to
enable the spatial-temporal parallelism in PINNs to accelerate training. Moreover, we
proposed a rescaling approach for PINN inputs in each subdomain, which is capable of
migrating the spectral bias in vanilla PINNs. We demonstrated the accuracy of the
PINNs with overlapping domain decomposition (overlapping PINNs) for spatial
parallelism using several differential equations: a forward ODE with a high-
frequency solution, a two-dimensional (2D) forward Helmholtz equation, and a 2D
inverse heat conduction problem. In addition, we tested the accuracy of overlapping
PINNs for spatial-temporal parallelism using two nonstationary PDE problems, i.e., a
forward Burgers’ equation and an inverse heat transfer problem. The results
demonstrate (1) the effectiveness of overlapping PINNs for spatial-temporal
parallelism when solving forward and inverse PDE problems, and (2) the rescaling
technique proposed in this work is able to migrate the spectral bias in vanilla PINNs.
Finally, we demonstrated that the overlapping PINNs achieve approximately 90%
efficiency with up to 8 GPUs using the example of the inverse time-dependent heat
transfer problem.

Keywords: parallel PINN, domain decomposition, overlapping, multi-GPU, forward and inverse PDEs

INTRODUCTION

Physics-informed neural networks (PINNs) [1] have drawn extensive attention in a wide range of
disciplines as a new scientific computing paradigm [2-10]. For instance, Cai et al. solved heat transfer
problems using PINNs [11], Mao et al. proposed an adaptive sampling method based on the
predicted gradients and residues to improve the accuracy of PINNs for PDEs with sharp solutions
[12], and Lu et al. employed the PINNs for topology optimisation with partial differential equation
(PDE) constraints [13, 14], just to name a few.
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Despite the success of PINNs in solving both forward and
inverse PDEs in various disciplines, their application to real-
world, large-scale problems has been limited due to their high
computational cost, especially in cases described by time-
dependent PDEs [15]. Numerous approaches have been
developed to accelerate the training of PINNs. Yu et al
proposed using the gradient of the equation to reduce the
number of training points in PINNs, and thus enhance their
convergence [4]. Jagtap et al. employed an adaptive activation
function to accelerate the convergence of PINNs [16]. Another
way to enhance the computational efficiency of PINNS is parallel
computing. Inspired by the parallel computing approaches such
as domain decomposition in conventional numerical methods,
several PINN approaches based on the domain decomposition
have also been developed [17]. Meng et al. developed parallel
PINNSs which enable the temporal parallelism of PINNs to solve
long-term integration problems [18]. Furthermore, Jagtap et al.
proposed conservative PINNs (cPINNs), which used a non-
overlapping domain decomposition to enable spatial
parallelism in PINNs when solving large-scale PDE problems
[19]. Moreover, Jagtap et al. developed extended PINNs
(xPINNs)  based on the non-overlapping domain
decomposition to enable spatial-temporal parallelism when
solving forward and inverse PDE problems [20]. In cPINNS,
the coupling condition at interfaces that separate different
subdomains is the continuity of the data along with the
normal flux. In the original xPINNSs, only the continuity of the
data is imposed at interfaces that separate different subdomains.
Generally, the computation of the flux in cPINNs depends on the
first derivative of the solution to the PDE at hand, which is
computationally expensive especially for high-dimensional
problems in PINNs if automatic differentiation is used. Hence,
xPINNSs are more attractive than cPINNs because there is no need
to compute the derivative of the solution. However, Hu et al.
pointed out that the imposition of continuity of the first derivative
of the solution improves the training and generalisation of
xPINNs [21, 22].

In addition to the aforementioned non-overlapping domain
decomposition  approaches, the overlapping domain
decomposition is also a popular approach for parallel
computing in conventional numerical methods [23]. Recently,
PINNs with overlapping domain decomposition have been
employed to solve unsteady inverse flow problems with both
spatial and temporal parallelism [24]. However, the effectiveness
of this approach for other PDE problems, such as forward PDEs,
has not yet been demonstrated. Also, the computational efficiency
of PINNs with overlapping domain decomposition has been
tested on multiple CPUs in [24]. Generally, the GPUs are
more efficient and thus more widely used in the training of
PINNs. The efficiency of PINNs with overlapping domain
decomposition on multiple GPUs remains unclear.

In this study, we utilised overlapping domain decomposition
in PINNs (overlapping PINNs) to enable the spatial-temporal
parallelism and enhance computational efficiency in PINN
training. We also proposed a rescaling technique for
overlapping PINNs to address the spectral bias in the vanilla
PINNSs. Furthermore, we tested the computational efficiency of
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overlapping PINNs on multiple GPUs using nonstationary PDE
problems. The rest of the article is organised as follows: we
introduce overlapping PINNs with rescaling in Section
Methodology, a series of numerical experiments are presented
in Section Results and Discussion, and this study is summarised in
Section Summary.

METHODOLOGY

In this section, we first review the physics-informed neural
networks (PINNs) for solving forward and inverse PDE
problems, and we then introduce the overlapping domain
decomposition approach for spatial-temporal parallelism
in PINNs.

Physics-Informed Neural Networks
For any general partial differential equation (PDE) expressed as

Nw[u(x,t)]:f,xeRD, (1)

where A denotes any differential operator, x and t are the spatial
and temporal coordinates, respectively, and w is either a known or
unknown parameter/field that defines the operator. In forward
PDE problems, w is known, and we would like to find the solution
to Equation 1 given the equation and the initial/boundary
conditions; in inverse problems, w is unknown. The objective
is then to find the solution to Equation 1 and infer w given the
data on u and the equation.

Physics-informed neural networks (PINNs) which were
developed as a unified framework for solving both forward and
inverse PDE problems, are illustrated in Figure 1. In PINNs, we have
a feed-forward neural network (FNN) that takes x and ¢ as inputs to
approximate the solution to u. With automatic differentiation, we
can then encode the PDE into the neural networks. The loss function
for training the PINNs can be expressed as shown in Equation 2:

Liotar (0) = /\pdeLpde + AdataLdata

N
LPde = % ZR12’ Ri = (Nw [u (x> t)i] - f(x> t)i)z (2)
i=1

N
1 data

= Ndam z (ui - udata,i)z

where Liora is the total loss, Lpg, is the PDE loss, and Lya, is the
data loss. For forward problems, w44, is the initial/boundary
conditions, while in inverse problems, ug,, are the
measurements on u. Apge and Agq, are the weights used to
balance each term in the loss functions. In general, the loss
function will be minimised using the stochastic gradient
descent approach in both forward and inverse problems. In
forward problems, 0 represents the parameters in the neural
networks. For inverse problems, 8 denotes the parameters in the
neural networks and the parameters used to parameterise w.

Overlapping Domain Decomposition
In the non-overlapping domain decomposition approach, the
entire domain is divided into several subdomains (For example,
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FIGURE 1 | Schematic of physics-informed neural networks (PINNSs).

Non-overlapping Overlapping
Q4 0
= r, an Q,l,
Qz QZ

U; = uy,onl
nq -Vu1 =Ny 'vuz, onTl

u1=u2,0nr=rlur2

FIGURE 2 | Schematic of non-overlapping and overlapping domain
decomposition.

Q; and Q, in Figure 2), and I denotes the interface that separates
the subdomains. The coupling conditions in the non-overlapping
domain decomposition approach are expressed as shown in
Equation 3:

3)

where u; (x,t) and u, (x,t) are from the numerical solvers at Q;
and ), respectively. The first term is to impose continuity of
u(x,t) at I, and the second term represents continuity of the
normal flux at the interface.

In the overlapping domain decomposition, the two
subdomains share an overlap region (Q; [) Q). The interface
of the domain Q; is T'y. It is inside the domain Q, and vice versa.
As the interface properly sets boundary conditions for each
domain, the convergence of the overlapping domain
decomposition only requires data consistency at the interface,

u (x,t) = uy (x,t), ny - Vuy (x,t) = ny - Vi, (%, 1),

ie., u; = uy [23]. In conventional numerical methods [23], the
overlapping domain decomposition is only applied to spatial
domains. However, it should be noted that the two subdomains
here can be spatial-temporal subdomains, since there is no
particular difference in dealing with temporal and spatial
domains in PINNSs.

In the context of PINNs, there are two major differences
between the non-overlapping and overlapping domain
decomposition techniques: (1) the former has no overlapping
domains between two adjacent subdomains while the latter does,
and (2) both the continuity of the solution and the flux related to
the derivative of the solutions are required as the coupling
condition at the interface between two adjacent subdomains,
while the latter does not explicitly require the continuity of the
flux at the interface between two adjacent subdomains, which is
able to reduce the cost of the communication in
parallel computing.

For each subdomain, a physics-informed neural network
(PINN) is assigned as shown in Figure 3. For the Kkth
subdomain (), the total loss Lfoml(()) consists of the PDE
loss (L’;de), data loss (L’;m .)» and interfacial loss (L’f), each with
their corresponding weights /\’;de, Ak . and A%, as defined below:

k k
+ Adum Ldum

—\k 1k
_ApdeLpde

1 2
Lhw =3 2RO Ri= (Wa[u@ 0] - f (1))

L];otal (0) + /\IIELIIE

1 Ndata (4)
k _ 2
Ldata - Nduta - (ui - udata,i)
JRS )
Lf = — Ui —uri) »
T Np ( T, )

i=1

where ur is the prediction at the interface I from the PINN model
in the adjacent subdomain. For the forward problem, u;,, is the
initial/boundary conditions in the subdomain. For the inverse
problem, w4, are the measurements on u in the subdomain. N,
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FIGURE 3 | Schematic of a physics-informed neural network with overlapping domain decomposition.
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Ngata and Np are the number of sample points for their
corresponding loss terms. In the present work, we used the
same number of PINN models as the number of subdomains,
and the PINN model in each subdomain was trained in parallel
on different devices using its own loss, ie., LK .

In general, the loss function will be minimised using the
stochastic gradient descent approach for both forward and
inverse problems. For forward problems, @ represents the
parameters in the neural networks. For inverse problems, 6
denotes the parameters in the neural networks and the
parameters used to parameterise w. In this approach, we did
not require the computation of the first derivative at I'. In the
present approach, each subdomain had a separate PINN model,
and the parameters in each PINN model were updated using their
own loss, which was defined in Equation 4. To ensure
convergence, coupling conditions were imposed on the
interface between adjacent subdomains. Furthermore, the
adjacent subdomains needed to communicate when computing
the loss for the coupling condition. For example, a 1D domain
[0, 1] that is divided into three overlapping subdomains should be
considered: Q° = [0.0,0.4], Q"' = [0.3,0.7], Q* = [0.6,1.0]. Each
subdomain had a PINN model and was assigned to a different
device (rank 0, 1, or 2 respectively). At the overlapping interface
between neighbouring subdomains (e.g, Q° and Q! share
[0.3,0.4]), the PINN predictions at the interface from ranks
0 and 1 were exchanged via a non-blocking send/receive
scheme at each gradient descent step. The frequency of
communication can be adjusted; however, in this study, we
exchanged information between different subdomains at
each iteration.

Furthermore, we applied the following rescaling technique to
the PINN input in each subdomain as shown in Equation 5:

2 (¢ ~ ¢min)

e ©

where ¢, and ¢, can be obtained as we know the boundaries

of each subdomain. In this way, the input for PINNs in each

subdomain will be rescaled to the range of -1 to 1. For problems
with high-frequency solutions, this rescaling will decrease the
frequency in each subdomain, and thus migrates the issue of
spectral bias in vanilla PINNs.

RESULTS AND DISCUSSION

In this section, we present a series of numerical experiments on
both forward and inverse PDE problems to demonstrate the
accuracy of the overlapping PINNs. Furthermore, we test the
speed-up ratio of the overlapping PINNs using an example of an
inverse two-dimensional time-dependent heat transfer equation.
All the training of PINN models was performed on NVIDIA
RTX 3090 GPUs with implementations using the PyTorch
2.3 framework. Details on the computations, e.g,
architectures of neural networks, optimisers, etc., for each
test case are provided in Supplementary Appendix SA in
addition to the first test case.

Forward Problem

1D Forward Problems With High-Frequency Solution
First, we considered the following forward ordinary differential
equation (ODE) problems, which are expressed as shown in
Equation 6:

@ = 607 cos (607x), x € [0,1], (6)
dx

with the boundary conditions u (x = 0) = 0. The exact solution to
this equation is given by Equation 7:

u(x) = sin (607x), (7)

which is a high-frequency function and is difficult to approximate
by DNNss due to the spectral bias [25, 26]. The objective here was
to solve Equation 6 given the data on the right-hand side (RHS)
and the boundary condition.
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TABLE 1 | ODE problem with a high-frequency solution: Details for the training of PINNSs.

Settings Vanilla Overlapping without scaling Overlapping with scaling
# of layers 4 4 4
# of neurons per layer 64 64 64
Activation fun Tanh Tanh Tanh
Optimiser Adam Adam Adam
Learning rate 0.001 0.001 0.001
Training epoch 50,000 50,000 50,000
Collocation points 200 200 200
Xogie 1 1 1
Mata 1 10 10
A - 1 1
# of GPUs 1 4 4
1.1 h o . — Reference
o fl === Vanilla PINN
1.0- . :Il : == Overlapping w/o Scaling
: —- Overlapping w/ Scaling
0.5-
3 00
—0.51 H- . .
_1.0,
~157 %% 0.25 0.50 0.75 1.00
X
FIGURE 4 | ODE problem with a high-frequency solution: Predictions from vanilla PINNs, overlapping PINNs with and without rescaling of the inputs in
each subdomain.

To test the accuracy of the overlapping PINNS, we divided the
entire spatial domain (x € [0,1]) into four subdomains.
Specifically, the subdomains are expressed as

1 [a 143
x €10, R
I 4
, [1+3a 2(1 + 3a)
X" € -, -,
| 4 4
[2(1+3 3(1+3
x> e ( a)—Z(x, ( 00—204,
| 4 4
[3(1+ 3«

where a = 0.2. Each subdomain has a length of 134, and adjacent
subdomains overlap by a uniform length of «. The interface
condition in Equation 4 was applied to ensure continuity of
the solution.

The details for the overlapping PINNs are illustrated in
Table 1. The points used to calculate the PDE loss within
each domain/subdomain were also generated via Latin
Hypercube Sampling. The results from the overlapping PINNs
are depicted in Figure 4, and they agree well with the reference

solution. We also presented the results from the vanilla PINNs
and the overlapping PINNs without scaling for the inputs of each
subdomain. We observed that: (1) the vanilla and overlapping
PINN s without scaling failed to solve this equation accurately due
to the spectral bias as reported in [25, 26]; and (2) the overlapping
PINNs without scaling were more accurate than the vanilla
PINNs for x € [0.25,1], but the predictions still showed
significant discrepancy with the reference solution. For the
overlapping PINNs with scaling for the inputs of each
subdomain, we were able to decrease the frequency of the
target function, which therefore helped mitigate the issue of
spectral bias. We used 2,000 uniformly sampled points across
the entire domain to estimate the relative L, errors when training
PINN models. The relative L, errors for the vanilla PINNs, and
the overlapping PINNs without and with scaling were found to be
99.982%, 82.973%, 0.088%, respectively.

Finally, the loss history of the vanilla PINNs and the overlapping
PINNSs with and without rescaling is shown in Figure 5. As can be
seen the loss for the overlapping PINNs with rescaling decreased the
fastest among the three models. In addition, the loss for the
overlapping PINNs with rescaling at 20,000 training steps was
approximately four orders smaller than the other two models,
which is consistent with the results in Figure 5.
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2D Helmholtz Equation

We further tested the spatial parallelism using overlapping PINNs
based on the two-dimensional Helmholtz equation, which is a
fundamental partial differential equation that arises in various
fields such as acoustics, electromagnetics, and quantum
mechanics. The equation is expressed as:

AV +A)u(x,y)=f(xy), x,yeDD=[0,1]x[0,1]. (8)

The boundary conditions for the equation are specified as
shown in Equation 9:

u(x, y)lap =0, for (x,y) € oD, 9)

where A is the Laplacian operator, oD denotes the boundaries of
D, and A is a constant, which was set as 167% here. The source
term f (x, y) is expressed as shown in Equation 10:

£ (% y) = (=327% + A*)sin (47x)sin (47 y), (10)

and we can then obtain the analytical solution to Equation 8 as
shown in Equation 11:

u(x, y) = sin (4nx)sin (47y). (11)

Similarly, we divided the entire domain into four subdomains,
as shown in Figure 6. The locations for the interfaces that divide
the computational domain into four subdomains in the x— and
y—directions are x =0.525,0.475 and y=0.525, 0.475,
respectively. The details for the overlapping PINN model are
listed in Supplementary Table SA1.

The results from the overlapping PINNs with four
subdomains are shown in Figure 7. It is observed that: (1) the
periodic pattern of the solution was well captured by the proposed
model (Figure 7a); and (2) the predictions of u at two
representative locations, ie., x = 0.125 and y = 0.125 agreed
well with the reference solution as in Figure 7b. In addition,
we used the trained PINNs to predict u at a 1,000 x 1,000
uniform grid across the entire domain to estimate the relative
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FIGURE 6 | 2D Helmholtz equation: Schematic of the domain
decomposition. Different subdomains are denoted by different colours.

L, errors. The relative L, error between the predictions from the
overlapping PINNs and the reference solution was found to be
0.32%, demonstrating the good accuracy of the present approach
for cases with domain decomposition in the spatial domain.

Burgers Equation

We then tested the spatial-temporal parallelism of the overlapping
PINNS. The test case considered here is one of the most fundamental
partial differential equations in fluid mechanics and nonlinear wave
propagation, ie., Burgers’ equation, which takes the following form
as shown in Equation 12:

Uy + Uy, = YUy, X € [-1,1], t € [0,1], (12)

where x and t are the spatial and temporal coordinates,
respectively, u is the solution to the equation, and the viscosity
coefficient v is set to be 0.1/7. The initial condition is given by
Equation 13:

u(0,x) = —sin(nx), x € [-1,1], (13)

and the Dirichlet boundary conditions are imposed on the
boundaries as specified in Equation 14:

u(t,1)=u(t,-1)=0, te[0,1], (14)

Given the equation and the initial/boundary conditions, we
would like to solve this equation with the overlapping PINNS.

Similar to the test case in Section 2D Helmholtz Equation, we
divided the entire spatial and temporal domain into four
subdomains, as shown in Figure 8. In particular, to
demonstrate the flexibility of domain decomposition in the
present method, the locations of the interfaces that divide the
entire domain into four subdomains in the x— and t—directions
were calculated as x = 0.3,-0.3 and ¢ = 0.13,0.07, respectively.
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The obtained four subdomains are of two different sizes in the
spatial-temporal domains. Coupling conditions were imposed at
the interfaces to ensure continuity of the solution. The points that
were used to evaluate the losses of the PDE residue and the
boundary/coupling conditions were randomly generated. More
details are in Supplementary Appendix SA.

The predicted u from the overlapping PINNGs is illustrated in
Figure 9. As can be seen the results from the overlapping PINNs
showed little discrepancy compared to the reference solution. We
further presented the predicted u at two representative times,
ie, t =0.5and 0.7, and the results from the overlapping PINNs
agreed well with the reference solution. We used the trained
PINNs to predict u at a x xt =256 x 101 uniform grid to
estimate the relative L, errors. The relative L, error between
the prediction from the overlapping PINNs and the reference
solution in the entire spatial-temporal domain was found to be
1.74% for this particular case, which demonstrates the capability
of the present approach for spatial-temporal domain
decomposition.

Inverse Problem
We then tested the accuracy of the overlapping PINNS for inverse
PDE problems. In particular, we tested a steady 2D heat
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conduction problem in a complex domain and a time-
independent heat equation.

2D Heat Conduction
We first tested the overlapping PINNs for spatial parallelism
using an example of the heat conduction equation in a
complicated domain. As is well known, PINNs are capable of
handling problems in complex domains since they represent a
mesh-free approach. We demonstrated that the overlapping
PINNs are also able to handle problems in complex
computational ~ domains  effectively. = The  particular
computational domain for the problem considered here is
illustrated in Figure 10, which shows a map of Hunan
Province, China. The steady heat conduction in this domain is
expressed as shown in Equation 15:
9. (K (%, 3)9,T) + 9,(K (x,¥)9,T)
=f(xy), x€0,1], y € [0.1], (15)

where T is the temperature, K is the thermal conductivity, and f
is the source term. The exact solution for the problem considered
here is given by Equation 16:

T (x, y) = sin(x)sin(y). (16)

In addition, K (x, y) = sin(nx) sin(7y), and the source term
f (x, y) can then be derived from the exact solution and K (x, y).

For the inverse problem considered here, we assumed that
measurements of the temperature and the source term f were
available in the computational domain. Furthermore, the thermal
conductivity K (x, y) is an unknown field. The objective was to
determine the K (x, y) given the data on T and f. We tested the
accuracy of overlapping PINNs by decomposing the entire
domain into four subdomains, as shown in Figure 10. The
locations of the interfaces that divide the entire domain into
four subdomains in the x— and y—directions were found to be
x = 0.525,0.475 and t = 0.525,0.475, respectively. The coupling
conditions were imposed at the interfaces to ensure continuity of
the solution. The points that were used to evaluate the losses of
the PDE residue, along with the boundary/coupling conditions
were randomly generated. More details are in Supplementary
Appendix SA.

The interface conditions and sampling points were
generated by the same method used in the Burgers’
equation. The predicted thermal conductivity K (x, y) of the

Zhejiang University Press | Published by Frontiers

September 2025 | Volume 3 | Article 14842


mailto:Image of ARC_arc-2025-14842_wc_f9|tif

Ye et al.

'
+ Domgzin 0
.

e Domainl . . *
Domain 2 A »
e Domain3 .t
0.0 -

FIGURE 10 | 2D Heat conduction: Schematic of the domain
decomposition.

overlapping PINNSs is shown in Figure 11. Interestingly, the
overlapping PINNs predicted the thermal conductivity well,
consistent with the reference solution, even though the
domain was irregular. We used 30,000 randomly sampled
points in the entire domain to estimate the relative L,
error, and the relative L, error was found to be 0.026% for
the overlapping PINNs. The irregular domain did not impede
the PINNs, as the predicted thermal conductivity on
the irregular boundaries was smooth. This is an advantage
of PINNs compared to the traditional finite element method
(FEM), which needs special treatment of irregular
computational domains.
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Time-dependent Heat Transfer Problem
We proceeded to consider a two-dimensional time-dependent heat
transfer problem, which is expressed as shown in Equation 17:

0:T (x,t) + u(x)- VT = KV*T, x = (x, y) = [0,1]%, t € [0, 1],
(17)
where u(x) = (uy,u,) is the advection velocity field, K > 0 is the

constant thermal conductivity. In this particular case, the velocity
field u (x) is defined as shown in Equation 18:

u(x) = (y,-x). (18)

The initial condition for the temperature is prescribed as a
Gaussian distribution centred at (xp,y9) as shown in
Equation 19:

(x=x0)"+ (¥ = y0)
2\

2
T (x,0) = exp , (19)
where A > 0 is the characteristic length scale controlling the width
of the initial distribution, and (x, ) denotes the initial centre of
the field. In this study, xo = 0, yo =0, A = 0.65, and K = 0.1.

According to [27], the exact solution can be obtained as
shown in Equation 20 by imposing the the corresponding
boundary conditions on the above equation:

2 ~ ~
£+ 5

€X]
+2Kt p[ 2(N* +2Kt

T (x,t) = z )] +c (20)

where ¢ = 0.2, x and y are the transformed coordinates, which are
given by Equations 21, 22:
X = x — x cos (t) — yo sin(¢), (21)
y =y +xgsin(t) — yo cos(t). (22)

As in Section 2D Heat Conduction, assuming partial
measurements of the temperature field are available, we aimed

1.0 Y=0.5
' —— Overlapping 1.0 —— Reference
e Reference 0:345 ~—~ Overlapping
0.8 . 0.840
0.735 0.81
06 i 0.630
- 0.525 v 06 ]
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
FIGURE 11 | 2D Heat Conduction: Predicted K (x,y) from overlapping PINNs with four subdomains. Overlapping: Overlapping PINNs with rescaling.
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FIGURE 12 | Time-dependent heat transfer problem: Domain decomposition in overlapping PINNs with eight subdomains.
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o Domain 4
e Domain5
Domain 6
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to infer the thermal conductivity K using the overlapping PINNs.
Specifically, we decomposed the entire spatial-temporal domain
into eight subdomains, as illustrated in Figure 12. The locations
of the interfaces that divide the entire domain into several
subdomains in the x—, y— and t—directions were x = 0.1,-0.1,
y=0.1,-0.1 and t=0.55,0.45, respectively. All the points
employed to compute the loss of the overlapping PINNs were
generated via the Latin Hypercube sampling. Details can be found
in Supplementary Appendix SA.

The predicted T (x, t) at three representative times is shown
in Figure 13. It should be noted that for all spatial-temporal
slices at x=0.5, y=0.5, t=0, t=0.5, and t=1, the
overlapping PINNs agreed well with the reference solution.
We then employed the trained PINNs to predict T on a
X X ¥y xt=200x200x200 uniform grid in the entire
domain. The relative L, error, and the relative L, error
between the predictions from the overlapping PINNs and
the reference solution were 0.018%. In addition, the
predicted K was 0.099653, which was quite close to the
reference solution K = 0.1.

Furthermore, we tested the speed of the overlapping PINNs
as we increased the number of subdomains/GPUs. The
subdomain division was the same as mentioned above. For
the single GPU test, all sample points in the subdomains were
assigned to the single GPU. For multiple GPUs, the sample

points in the subdomains were evenly assigned to multiple
GPUs, meaning each GPU had the same number of sample
points. The results of the speed-up ratio (defined as the ratio of
the computing time of a single GPU to that of multiple GPUs)
of the overlapping PINN are shown in Figure 14. As can be
seen, the speed-up ratio increased almost linearly with the
number of GPU devices. This demonstrates the effectiveness of
parallel computing of the overlapping PINN based on GPUs.
For example, when using 8 GPUs, we were able to achieve a
speed-up ratio of 7.44, leading to approximately 90%
efficiency. The above results demonstrate that the spatial-
temporal parallel overlapping PINNs are promising for
solving large-scale problems.

SUMMARY

In this study, we employed the overlapping domain
decomposition approach to enable spatial-temporal
parallelism when training PINNs to solve both forward and
inverse PDE problems. We proposed a rescaling technique for
the inputs of the PINNs in each subdomain to migrate the issue
of spectral bias in vanilla PINNs. A wide range of forward and
inverse differential equations was used to justify the accuracy
of the PINNs with overlapping domain decomposition
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FIGURE 13 | Time-dependent heat transfer problem: Predicted T (x, t) from overlapping PINNs with eight subdomains.: (a) T at representative times; (b) and (c)
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(overlapping PINNs), including an ODE with high-frequency
solution, a steady Helmholtz equation, a heat conduction
problem in a complex domain, a time-dependent Burgers’
equation, and heat transfer problems. The results
demonstrated that overlapping PINNs were able to achieve
high accuracy with both spatial and temporal domain
decomposition. Furthermore, in the ODE test problem, we
showed that overlapping PINNs with rescaling were able to
achieve better accuracy compared to the vanilla PINNs for
problems with high-frequency solutions. Additionally, we

implemented spatial-temporal parallel PINNs with an
overlapping domain decomposition approach using the
modern Pytorch distributed package, which enabled
distributed training of PINNs on multiple GPUs. The
overlapping PINNs achieved approximately 90% efficiency
with up to 8 GPUs, as demonstrated by an inverse time-
dependent heat transfer problem.

As shown in Sections Burgers Equation and 2D Heat
Conduction, the present approach is flexible enough to
handle subdomains of different sizes with complex geometry.
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FIGURE 14 | Time-dependent heat transfer problem: Parallel efficiency
(Speed-up ratio) of overlapping PINNs with different numbers of
subdomains/GPUs.

In general, more residual points are needed in PINNs when
solving equations with sharp gradients [12], as compared to
equations with smooth solutions. In parallel computing,
balancing the computational load among devices is of great
importance for achieving good computational efficiency. Due to
the flexibility of overlapping PINNs in handling subdomains of
different sizes, we can use (1) small subdomains and dense
residual points in PINNs at locations where the solutions may
have sharp gradients, and (2) larger subdomains but coarse
residual points in PINNs for parts that may have smooth
solutions. In this way, it is easy to balance the computational
cost in different subdomains/devices in order to obtain good
parallel efficiency.

One of the most successful applications of PINNs is the
flow field reconstruction given partial measurements on the
velocity [28] or temperature field [29] from experiments.
Currently, the training of PINNs for these real-world
applications is time-consuming because (1) a large number
of residual points are required in the spatial-temporal domain
(three dimensions in space plus one dimension in time) to
achieve good accuracy, and (2) the governing equations for
fluid dynamics are highly nonlinear, e.g., the Navier-Stokes
equations. Considering the great scalability of overlapping
PINNs on multiple GPUs, the present framework shows
promise in accelerating the training of PINNs for flow field
reconstruction. In addition, the present approach can be
easily adapted to accelerate the training of PINNs for
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