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During pregnancy, the fetal brain undergoes rapid development and is highly

sensitive to environmental influences. Understanding the intricate processes

that underlie fetal brain development will be critical for advancing maternal-

fetal health and mitigating the risks associated with developmental brain

disorders. Nonhuman primate (NHP) animal models provide a unique and

highly translational platform for studying brain development during

pregnancy due to the close anatomical, physiological, and behavioral

resemblance of these animals to humans. Our review explores the use of

NHP models in elucidating key milestones of prenatal brain maturation and

the mechanisms that govern typical and atypical development. We further

examine the impact of environmental insults on fetal brain development,

including air pollution, infection, ionizing radiation, and exposure to

toxicants, and highlight the ways in which these factors can disrupt brain

development and neural circuitry, leading to long-term cognitive and

behavioral deficits. Recent studies demonstrate that the baboon (Papio

hamadryas) animal model provides a fruitful yet underused translational

model for research related to environmental adverse effects on pregnancy.

Lastly, we review the effects of drugs of abuse on the developing fetal brain,

highlighting the underlying biological mechanisms identified through clinical

and laboratory studies. A combined approach offers a comprehensive

understanding of the vulnerabilities of the developing nervous system,

informing new strategies for the treatment and prevention of

neurodevelopmental disorders.
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Introduction to non-human primate
animal model and use of non-human
primates in
neurodevelopment research

A healthy pregnancy supports proper brain development and

reduces the risk of neurodevelopmental disorders [1]. The

similarities of pregnancy in non-human primates (NHPs) and

humans make these animals valuable models for studying human

pregnancy and fetal development [2, 3]. Both species experience a

similar duration of gestation, with close physiological and

hormonal parallels, such as the presence of a placenta that

supports fetal growth and the regulation of maternal immune

responses to prevent rejection of the fetus [2]. NHPs also undergo

similar stages of embryonic and fetal development, including the

formation of key brain structures and organ systems

(Figure 1A) [3–5].

The 1st, 2nd, and 3rd trimesters across species are shown in

Figure 1 using colors (yellow, blue, pink, respectively) [6, 7]. Like

humans, NHPs can be affected by environmental factors,

infections, or stressors during pregnancy, providing insights

into how these exposures influence fetal health and

neurodevelopment [2, 4, 8]. These shared characteristics make

non-human primates a critical model for investigating human

pregnancy-related conditions, fetal development, and the impact

of maternal health on offspring outcomes.

NHP have many similarities in developmental processes,

physiology, neuroanatomy, reproduction, cognition, and social

complexity with humans. [9–11]. As one of the species most

closely related to humans, the baboon offers an excellent

opportunity for comparative studies of neuronal

maturation [12].

Baboons are estimated to share approximately 92% of their

genomic sequence with humans [13, 14]. This genetic closeness

might determine the similarities between the vascular and

neuroanatomical patterns observed in baboon and human

populations [15]. Research suggests that baboons exhibit a

prolonged infancy and juvenile period, a long lifespan, and

complex social behaviour, all of these parallel those of

humans, thus rendering these animals ideal for the

investigation of cerebral development and associated

neurodevelopmental and psychiatric conditions [16]. Baboons

and humans share a brain structural organization, including

gyrencephalic brain structure, which is indicative of complex

neural functions evolved in larger-brained primates [17].This

anatomical feature is further illustrated in Figure 1B. Images

presented in this figure compare the brains of a baboon and a

mouse at similar developmental time-points (third trimester-

equivalent of human pregnancy). Images highlight the presence

of cortical gyrification in the baboon brain and the absence of

such folding in the lissencephalic (smooth) mouse brain.

Brain imaging studies highlight that baboons have a high

heritability of brain volume and cortical surface area and

display a developmental trajectory in the corpus callosum

that closely mirrors that of humans [16, 18] Additionally,

both species exhibit similar ratios of grey matter to white

matter, which is significant for understanding cognitive

processes and potential neurodevelopmental disorders [13]

(pre-print) [19, 20]. Importantly, the development of the

central nervous system in both species has several

similarities. In particular, maturation of the white and grey

matter, including gyral formation, myelination, and cortical

laminar development, shares strong temporary and structural

similarities in baboon and human brains [21]. Baboons are

highly suitable for neuroimaging studies due to their large brain

size, the highest cerebral gyrification index among common

monkeys used in laboratory studies, and the presence of all

primary cortical structures homologous to those in humans.

[22]. Changes in baboon corpus callosum throughout prenatal

(fetal) and postnatal development parallel findings in human

neurodevelopment, thereby underscoring the promise of

baboons in preclinical models focusing on

neurodevelopmental disorders [16]. Baboons and humans

also share several key similarities in prenatal development of

the cerebellum. Particularly, pronounced similarity in the

increase in the thickness of the molecular layer of the

cerebellum during the late gestational and early postnatal

periods indicate comparable structural and functional

development of cerebellar Purkinje cells in the cerebella of

both human and baboon [23]. The developing cerebellum

undergoes rapid and highly coordinated growth, making it

especially vulnerable to various environmental factors

affecting its numerous cellular processes.

The external granule cell layer (EGL) is a crucial area of

cerebellar development, which, together with the rostral

rhombic lip, gives rise to cerebellar granule neurons

exclusively. Due to the vital role of the EGL in the

differentiation and further migration of granule cell

progenitors, changes in cell types may be one of the

important mechanisms by which environmental insults

induce cognitive and motor impairments [24, 25].

Developing EGL is composed of granule cell progenitors

that express Pax6. Proliferating granule cell progenitors

express Ki67. After initiating differentiation, they move to

the inner EGL and express Tag1. All these cell types are crucial

for estimating the development of the EGL in the cerebellum

because they represent different cellular states and processes

(Figure 2). The abundance of Ki67+ granule cell precursors in

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; CBD,
cannabidiol; EGL, external granular layer; ETS, environmental tobacco
smoke; FASD, fetal alcohol spectrum disorders; GCP, granule cell
precursor; IGL, internal granular layer; IUGR, intrauterine growth
restriction; ML, medial layer; NHP, non-human primate; PM, particulate
matter; SGA, small for gestational age; THC, tetrahydrocannabinol.
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the EGL is critical for the production of granule neurons,

responsible for motor control, motor learning, and potentially

cognitive functions. [24, 25, 28]. The thickness of the Tag1+

layer shows the rate of early neuronal differentiation,

indicating the cellular transition from proliferative

precursors to migrating neurons. Pax6, Ki67, and Tag1 are

markers for granule cell precursors, cell proliferation, and cell

differentiation, respectively. Thus, quantification of these cell

FIGURE 1
Embryonic and fetal development in mammalian species. (A) Schematic illustration of the embryonic development from fertilized egg to
morula, blastocyst, and embryo in mice, non-human primates, and humans. While development milestones have not been detailed for baboons,
macaque development is well-studied. Crucial developmental processes occur in a similar manner and timing between humans and primates, but
the brain’s developmental trajectories show considerable differences between humans and rodents. The black dotted line depicts the period of
implantation; the green dotted line depicts the period of neural tube formation; the blue dotted line depicts the period of neural tube closure; e-
embryonic day (e0.5 refers to morning after mating, when vaginal plug was detected in mice); dpf- day post-fertilization (refers to number of days
since the egg was fertilized). Trimesters of pregnancy depicted by colors: yellow-1st trimester; blue-2nd trimester; pink-3rd trimester. (B)
Comparative image of fetal brain collected from a near-term (third trimester-equivalent of human pregnancy) NHP (baboon) and from a postnatal
day 8 (third trimester-equivalent of human pregnancy) mouse.
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types may help to identify developmental abnormalities in the

cerebellum caused by perinatal environmental insults.

In the developing cerebral cortex, human and non-human

primates share an expanded subventricular zone (SVZ) relative

to mice. Histological analysis demonstrated that the macaque

rhombic lip shows significant similarities with the human

rhombic lip, at least at early developmental stages [29].

Developing baboon and human brains exhibit a striking

similarity in the temporal decrease in anisotropy relative to

other neurodevelopmental stages such as cortical folding and

white matter myelination [21]. Since several steps of cerebellar

development occur during gestation in humans and baboons, as

opposed to postnatally in rodents, the baboon model is

particularly important for the study of neurodevelopmental

disorders [23]. Particularly, the mechanisms of development

of prenatal injury in baboons and humans, such as

hippocampal atrophy, loss of cortical grey matter, and

particular sensitivity of the subiculum of the hippocampus are

highly similar [21].

In cerebrovascular system, both humans and baboons exhibit

similarities in cerebrovascular morphology and responses to

various physiological stimuli. Structurally, major cerebral

arteries (anterior, middle, posterior and basilar) are already

distinguishable in baboon fetuses by gestational day 120,

corresponding to the end of the second trimester in humans

(Figure 3A). One crucial aspect of cerebrovascular function is the

FIGURE 2
Markers of developing external granular layer (EGL) in baboon cerebellum (120 days of fetal development). Pax6 antibodies mark the
progenitors of glutamatergic granule neurons, Ki-67 antibodies mark proliferating progenitor cells, and Tag1+ corresponds to differentiated cells in
the inner EGL. Fixation, sectioning, and staining of the Baboon cerebella sectionswere performed as previously described [24, 26, 27]. Pax6, Ki67, and
Taq1 antibodies were used as described in our previous papers [25, 27]. ML- Molecular layer, IGL- internal granular layer. DAPI was used to label
cell nuclei. Scale bar - 25 µm.

FIGURE 3
Cerebral arteries in the developing baboon brain. (A) Diagram of a fetal baboon brain at gestational day (GD) 120, illustrating the four major
cerebral arteries: anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior cerebral artery (PCA), and basilar artery (BA). (B)
Representative trace showing changes in cerebral artery diameter over time. The artery was dissected out from amale fetus at GD 165, cannulated at
both ends and pressurized in an ex vivo system. Following a 10-min incubation at 10 mmHg, pressure was increased to 30 mmHg and
maintained to assess the development ofmyogenic tone, as described [30]. (C) KCl-induced constriction of fetal baboon cerebral arteries. The y-axis
represents the percent change in diameter following exposure to 60 mM KCl compared to a diameter immediately prior to KCl application. Scatter
box plots compare arterial responses between baboon fetal arteries collected at the end of the second versus third trimester-equivalent time-points.
Circles denote arteries collected from male fetuses; diamonds denote arteries from female fetuses.
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development of myogenic tone. By gestational day 165,

equivalent to the third trimester of human pregnancy, baboon

fetal cerebral arteries are capable of exhibiting pressure-induced

constriction in response to an elevated intraluminal pressure of

30 mmHg (Figure 3B). This indicates presence of a myogenic

tone. Moreover, these cerebral arteries also respond robustly to

depolarizing stimuli, such as 60 mM KCl, at both the second and

third trimester-equivalents of human pregnancy (Figure 3C).

Therefore, smooth muscle contractility is also being established

during fetal baboon development. Together, these findings show

that both the structural formation and functional regulation of

cerebral arteries in baboons closely parallel those of humans.

The mechanisms of brain cooling, regulation of blood flow,

and adaptation to environmental changes also appear to be

analogous in the two species, suggesting a conserved

evolutionary pathway for maintaining brain health under

duress [31, 32]. Both species possess a comparable vascular

architecture, primarily relying on the internal carotid and

vertebrobasilar arteries to supply blood to the brain [31, 33].

The anatomy of the carotid system artery, particularly of the

internal carotid artery and thoracic aortic arch, and the degree of

microvascular collaterals are similar in humans and baboons [34,

35]. The composition of the neurovascular unit, which includes

neurons, astrocytes, and endothelial cells, is remarkably

conserved across primate species, including humans [36,

37].This unit is vital for neurovascular coupling, ensuring that

blood supply meets the metabolic demands of active neurons

[37]. The brains of humans and NHPs share similar vascular

organization, responses to ischemic episodes, and a cellular

environment that supports angiogenesis [38, 39]. The parallels

in gene expression and the responsiveness of astrocytes to injury

further emphasize the similarities in angiogenic responses

between humans and non-human primates [40]. For example,

primate-specific responses to stroke, including the roles of

astrocytes in modulating macrophage infiltration, illustrate

how evolutionary adaptations have shaped the angiogenic

process to maintain brain integrity post-injury [39, 40]. The

presence of sophisticated inflammatory responses further

supports these functional similarities observed in non-human

primates and humans [39]. These pathological process such as

inflammation, astrocyte activation, etc., accompany many

neurodevelopmental disorders [41]. It should be emphasized

that the mechanisms of cerebral vascularization and cortical

development in NHPs, are markedly different from those seen

in rodent models. Subtleties of primate brain vasculature, such as

higher vascular density and complexity, suggest a more complex

integration of angiogenic signals associated with cerebral growth

and functionality, which has implications not only for

development but also for the understanding of cognitive

capacities unique to primates, thus making primate model

superior to rodent model [42]. Non-human primates (NHPs)

are characterized by more advanced vascular networks at birth,

supporting prolonged development of the cerebral cortex, which

includes postnatal neurogenesis and cortical gyrification. In

contrast, at birth, rodents exhibit less developed vasculatures

that mature postnatally. These differences emphasize the value of

NHP models for studying human developmental brain disorders

due to their closer vascular and cortical developmental

timelines [42, 43].

NHPs demonstrate considerable similarity to humans in

terms of cardiovascular physiology and thrombogenic

mechanisms. Specifically, baboons offer a significant advantage

in research due to the wide availability of cellular markers and

advanced non-invasive imaging technologies compared to other

large animal models [44]. Moreover, NHP models are used to

evaluate the clinical efficacy of existing drugs and other

therapeutic interventions. Despite rodents being the most used

animal models in biomedical research, treatments shown to be

effective in rodent preclinical trials often fail in clinical trials. This

may be due to underlying differences between rodents and

primates [39]. Thus, the anatomical, structural, and

developmental parallels between NHPs and humans reinforce

the significance of using baboons in research focused on brain

development, genetics, and neurodevelopmental disorders. The

similarities in cerebral injury patterns observed in baboon

models of preterm birth and neonatal intensive care provide

critical insights relevant to human infants that emphasize the

high translational relevance of baboon models in understanding

the onset and progression of neurodevelopmental disorders.

These models allow for a more accurate understanding of how

maternal health and environmental toxins can affect fetal

neurodevelopment. Environmental insults, such as exposure to

pollutants, toxins, viruses, and ionizing radiation, can have

devastating consequences on fetal brain development,

potentially leading to long-term cognitive, emotional, and

behavioral impairments. Research into these environmental

factors will help to identify critical windows of vulnerability

during pregnancy, offering insights into prevention and

intervention strategies to safeguard fetal neurodevelopment

and long-term health.

The impact of environmental insults
on pregnancy outcomes: studies with
non-human primates address
human pathology

Pregnancy is an intricate biological state that allows the fetus

to grow and develop via crucial developmental processes. The

course and outcome of pregnancy, fetal growth, and development

are affected by numerous environmental factors, chemical,

physical, and biological. Most importantly, the intake of

alcohol, tobacco, and other drugs during pregnancy negatively

affects both its course and outcome, as well as fetal growth and

development, especially fetal neurodevelopment [45]. Chemical

environmental insults that affect fetal development include air
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pollution, pesticides and herbicides, and heavy metals, the

physical environmental insults include radiation and excess

heat, and the biological environmental insults include

infectious agents, e.g., viruses, bacteria, and parasites [46, 47].

Notably, maternal intake of alcohol, tobacco, cannabinoids,

opioids, and other drugs represent modifiable lifestyle factors

that can severely affect pregnancy course and outcome, fetal

development and growth, and especially developmental

trajectory of the brain.

Chemical pathogens

Heavy metals
Exposure to heavy metals in pregnancy can lead to severe

adverse outcomes, such as miscarriage, stillbirth, preterm birth,

and infants being small for gestational age (SGA) due to their

ability to cross the blood-placental barrier [48].

Heavy metal exposure during pregnancy is a significant

public health concern due to its potential to cross the

placental barrier and adversely affect both maternal and fetal

health. Several heavy metals have been implicated in negative

pregnancy outcomes and long-term developmental issues in

offspring. Arsenic exposure has been strongly associated with

miscarriage, stillbirth, infant mortality, and intrauterine growth

restriction [48–52]. These outcomes are thought to result from

arsenic’s ability to induce oxidative stress, disrupt endocrine

function, and impair placental development. Cadmium

exposure has been linked to preterm birth and SGA infants

[51, 53–55]. Cadmium may interfere with nutrient transport in

the placenta and contribute to oxidative damage, which impairs

fetal growth and development. Lead remains a critical concern

due to its well-documented effects on pregnancy and fetal health.

High maternal lead levels have been associated with miscarriage,

low birth weight, impaired neurodevelopment, and disrupted

bone formation (impaired osteogenesis) in the fetus [53, 56–60].

Mercury exposure during pregnancy has been shown to

impair neurodevelopment, particularly affecting cognitive and

motor functions in children exposed in utero [61].

Methylmercury, commonly found in contaminated seafood,

readily crosses the placenta and accumulates in fetal tissues.

Manganese isn’t always grouped with heavy metals like lead,

mercury, or cadmium, yet it is often considered a heavy metal in

discussions about environmental health risks and toxic exposure

[62]. Exposure tomanganese in excessive concentrations can lead

to impaired neurodevelopment [63]. Elevated manganese

exposure has been associated with deficits in cognitive

function and motor skills in early childhood [64]. Copper

deficiency has been previously described in savannah baboons

(Papio cynocephalus). Copper deficiency can lead to anemia and

developmental abnormalities in immature baboons [65].

Importantly, studies on pregnant baboons and their fetuses

conducted by Dr. Schlabritz-Loutsevitch and her colleagues

analyzed 40 elements using absorption spectrophotometry

across multiple biological samples, including maternal and

fetal blood, hair, nails, placenta, amniotic fluid, and fetal

tissues [66]. Depending on an accumulating organ of the

maternal or fetal organism as well as a transport mechanism,

elements were found in different concentrations between mother

and fetus and between different maternal and fetal organs

(including placenta), showing both positive and negative

correlation. This study revealed that the amount of these

elements in baboons closely mirrored those observed in late-

stage human pregnancies. It emphasizes that pregnant baboons

serve as a valuable model for studying both normal maternal-

fetal physiology and environmental toxicology. This research

advances the medical field by providing a non-human primate

model that closely parallels human pregnancy, thereby

facilitating a better understanding of nutrient and toxin

transfer during gestation.

Anesthetic-induced developmental
neurotoxicity

Due to neurodevelopmental similarities to humans,

nonhuman primate models offer a valuable translational tool

for studying anesthesia-induced developmental neurotoxicity.

NHP models allow researchers to investigate the effects of

anesthetic exposure on brain development, revealing long-

term behavioral and cognitive impairments. Recent studies in

primates have demonstrated that early exposure to anesthetics

can lead to an increase in anxiety-like and inhibition behaviors.

Moreover, histopathological analysis of NHPs’ brains revealed

that exposure to isoflurane during infancy led to increased

astrogliosis 2 years after the exposure, indicating chronic

astrocyte activation [67]. These studies offer critical insights

into the mechanisms and long-term outcomes relevant to

pediatric anesthesia safety.

Pesticides and herbicides
Exposure to pesticides and herbicides in pregnancy can lead

to severe adverse outcomes, such as miscarriage, stillbirth,

preterm birth, and birth defects [68, 69].

Importantly, even preconception exposure to certain

pesticides has been associated with an increased risk of

stillbirth. Specifically, pesticides linked to stillbirth risk during

the preconception period include zeta-cypermethrin,

organophosphates, malathion, cyfluthrin, and carbaryl [68,

69]. Similarly, exposure to certain pesticides during the first

trimester of pregnancy has also been associated with stillbirth.

These include fenpropathrin, permethrin, organophosphates,

acephate, and formetanate hydrochloride [68, 69]. The toxicity

mechanisms of these pesticides are largely unknown; however,

the metabolites of permethrin and cypermethrin, which are also

shared with zeta-cypermethrin, interact with cellular estrogen

receptors, affecting women’s reproductive cycles, altering cycle

lengths, and impacting the overall quality of the uterine
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environment during pre-implantation. Exposure to herbicides

(glyphosate) is associated with shortened pregnancy lengths and

reduced fetal growth [68–70]. Moreover, it affects

neurodevelopment, as it was demonstrated in rats [69, 71]. A

prolonged exposure to pesticides of Pigtail macaques (Macaca

nemestrina) during pregnancy potentially caused a significantly

increased level of infant mortality (more then 50%) compared to

30% infant mortality in the pigtail macaques groups habituating

in areas not affected by pesticides [72]. Moreover, prenatal

pesticides of baboons and chimpanzees caused congenital

deformities, including cleft palate, as well as abnormal

pigmentation and lowered fertility [73].

Physical pathogens

Ionizing radiation
Radiation exposure in pregnancy can lead to severe adverse

outcomes, such as miscarriage, stillbirth, growth restriction,

abnormal development, especially impaired

neurodevelopment, malformations, and, most importantly,

mutagenesis and carcinogenesis. The risk and type of such

consequences depend largely on the stage of fetal development

(dpf/embryonic day/gestational day) and the radiation dose.

Both embryo and fetus are most sensitive to ionizing radiation

at doses greater than 0.1 Gy (Gy). Even lower acute ionizing

radiation doses can adversely affect both embryonal and fetal

development. Dosage 0.05–0.5 Gy at 0–2 weeks post-conception

may affect implantation of the embryo, and at 2–7 weeks post-

conception may slightly affect organogenesis of the embryo. At

early stages of fetal development (8–15 weeks), such dosage can

cause growth restriction and lowered IQ in the future. Dosage

higher than 0.5 Gy may cause miscarriage at any stage of

embryonal and fetal development and even neonatal death at

38th postnatal week. Moreover, there is a significantly high risk of

growth restriction, severe malformations, and lowered cognitive

function. Higher doses of acute ionizing radiation prenatal

exposure (1–5 Gy) are considered lethal [74–78].

Despite the rarity of environmental radiation exposure,

pregnant women still frequently encounter various forms of

ionizing (x-rays, computed tomography) and non-ionizing

(ultrasound, magnetic resonance imaging) exposures in the

form of medical imaging. Some medical procedures and

imaging techniques exposing patients to low doses of

radiation are generally considered safe. Yet, special

considerations still must be made for their use in pregnancy

to ensure the optimal development of the fetus and maternal

health [79, 80]. The baboon animal model has been used to

investigate biomarkers associated with radiation exposure [81].

The authors aimed to identify biomarkers that distinguish total-

body irradiation and partial-body irradiation. Interestingly, the

key biomarkers found included aspartate aminotransferase,

LDH, urea, Flt3-ligand, iron, creatine kinase, absolute

neutrophil count and neutrophil-to-lymphocyte ratio for the

early period after the radiation exposure, C-reactive protein,

and Flt3-ligand, platelet count, iron, hemoglobin, monocyte

count, absolute neutrophil count and neutrophil-to-

lymphocyte ratio for the acute radiation syndrome phase. In

the study, biomarkers such as aspartate aminotransferase, LDH,

Flt3-ligand, and neutrophil-to-lymphocyte ratio were identified

as early indicators of tissue damage and hematopoietic stress

caused by radiation. During the acute radiation syndrome phase,

biomarkers like C-reactive protein, platelet count, and

hemoglobin reflected systemic inflammation and

hematopoietic impairment. These biomarkers help distinguish

the extent of radiation exposure and the design of

treatment protocols.

Thus, this data obtained using baboons as a clinically relevant

animal model can be integrated into diagnostic and prognostic

strategies to improve medical care for individuals exposed to

ionizing radiation.

Air pollution
Air around the world is polluted by multiple sources. There is

gaseous pollution with increased concentrations of greenhouse

gases such as carbon dioxide (CO2), methane (CH4), nitrous oxide

(N2O), ozone (O3), and fluorinated gases formed from the burning

of fossil fuels. Particulate matter pollution is a mixture of various

solids and aerosols, including particles of metals, dust, soil or dust

particles, allergens, and numerous chemicals, both synthetic and

natural. The diameter of particles being less than 10 μm (PM10) or,

most importantly, less than 2.5 μm (PM2.5) is associated with

adverse outcomes, depositing in the airways, lungs, or even

entering the circulatory system. Critically important is indoor

air pollution, which consists of particles of allergens such as

mold spores and dust mites, smoke from cigarettes and burning

stoves, and volatile chemicals originating in house cleaning

products. Exposure to air pollution in pregnancy is associated

with adverse pregnancy outcomes such as an increased risk of

preterm birth, low birth weight (SGA), increased neonatal

mortality, stillbirth, and miscarriage [82–84].

Excess heat
Excessive heat exposure during pregnancy can lead to

adverse outcomes, including preterm birth, stillbirth, low birth

weight, and congenital abnormalities (such as heart defects,

neural tube defects, and ocular development defects) [85].

Using pregnant baboons as an NHP animal model it was

demonstrated that maternal hyperthermia described as an

absence of fever with body temperature 41–42°C caused a

blood pressure drop and an elevation in heart rate in the fetus

as well as severe acidosis (blood pH less than 7.2), hypoxia and

hypercapnia (partial pressure of carbon dioxide in blood above

45 mmHg) [86, 87]. Moreover, excess heat exposure of the

pregnant baboons causes an increased uterine contractility up

to two-fold of the normal level, which may lead to a preterm birth
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TABLE 1 Adverse effects of viral infection on fetal development and pregnancy outcome in human population.

Virus Abbreviation Virus family Route of infection, and
mode of effect

Effect on pregnancy and
fetus

References

Cytomegalovirus CMV Herpesviridae Intrauterine transmission Congenital infection, abnormal
neurodevelopment, microcephaly,
impaired development of hearing
and vision, stillbirth, IUGR, preterm
birth (human)
Spontaneous abortions (macaque)

[94–99]

Herpes simplex virus 1–2 HSV-1
HSV-2

Herpesviridae Infects decidua, placenta causing
systemic and local changes

Miscarriage, stillbirth, abnormal
neurodevelopment, congenital
disease, preterm birth

[94–96, 100]

Human papilloma virus HPV Papillomaviri-dae Infects placenta Preterm birth, miscarriage, IUGR,
stillbirth

[94, 101, 102]

Zika virus ZIKV Flaviviridae Infects decidua, placenta causing
systemic and local changes

Congenital infection, Severe
developmental abnormalities: Fetal
brain sequence (severe
microcephalia, premature closure of
fontanels, partial scull collapse),
brain abnormalities, ocular
abnormalities, IUGR with “femur-
sparing” profile
Miscarriage, preterm birth, stillbirth
(human)
Miscarriage (monkey)

[94, 95,
100, 103]

Rubella virus (Rubivirus
rubellae)

RuV Matonaviridae Transplacental infection Congenital infection (rare),
abnormal neurodevelopment
Miscarriage, premature birth, IUGR,
congenital rubella syndrome (triade:
cataracts, congenital heart defects,
deafness) (human)
Spontaneous abortion, fetal lesions,
IUGR (monkey)

[94, 96,
104–106]

Influenza virus A IAV Orthomyxoviridae Maternal systemic infection Preterm birth, miscarriage, IUGR,
birth defects such as cleft palate,
neural tube defects, congenital heart
defects (Human)
Influenza infection during
pregnancy affects neural
development, reducing gray and
white matter (monkey)

[94, 107–109]

Severe acute respiratory
syndrome coronavirus 2

SARS-CoV-2 Coronaviridae Possible transplacental infection,
maternal systemic infection

Congenital infection, stillbirth [100, 110, 111]

Hepatitis A, B, C, and E viruses HAV
HBV
HCV
HEV

Hepadnaviri-dae HBV, HCV, HDV- maternal liver
disease consequences
HBV, HCV- mother-to-child
transmission
Transplacental infection

HBV-preterm birth, low birth
weight
HAV-preterm birth
HEV- severe fetal hepatitis,
stillbirth, preterm birth, low-birth
weight
HCV-IUFGR, low birth weight,
stillbirth, preterm birth (human)
Premature delivery and fetal death
(HEV) (macaque)

[94, 100,
112–118]

Human Immunodeficiency
Virus

HIV Retroviridae Mother-to-child transmission Untreated maternal HIV-premature
birth, SGA, low birth weight,
stillbirth, abnormal
neurodevelopment (human)
Developmental delay (macaque)

[100, 119–122]

Varicella zoster virus VZV Herpesviridae Vertical transmission Fetal varicella syndrome (cutaneous
scars, limb defects, eye and brain
abnormalities), IUGR

[96, 123–125]
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[87, 88]. Even a single day of high heat can elevate the risk of

pregnancy complications [85, 89–93].

Microbiology pathogens

Viral infection in pregnancy
The ubiquity of infectious diseases in pregnancy makes this

biological insult a notable special consideration in healthcare.

Viral infection in pregnancy can lead to increased maternal

morbidity and mortality, miscarriage, stillbirth, intrauterine

growth restriction (IUGR), and severe birth defects (e.g.,

microcephalia), congenital infection. Viruses can infect the

decidua and placenta or directly infect the fetus [94, 95].

Table 1 represents studies describing the effects of various

viruses on pregnancy and fetal development, including viruses

such as CMV, Zika (ZIKV), and Rubella (RuV), which cause

congenital infections and severe outcomes like miscarriage,

stillbirth, and IUGR.

As was demonstrated in research conducted on baboons

(Papio hamadryas), viral infection with herpesvirus papio 2

(HVP2) and cytomegalovirus (CMV) affects the placenta and

causes placentitis, leading to adverse effects in pregnancy with a

high prevalence in the baboon population up to 95%

seropositivity [96]. Notably, the baboon model was

successfully used for testing the placental transfer and fetal

metabolism of antiretroviral drugs such as zidovudine (used

in pregnancy to lower maternal-fetal HIV transmission). By

using pregnant baboon dams, it was demonstrated that

zidovudine and its glucuronide metabolite were able to cross

the placenta, with evidence of fetal metabolism [126]. Moreover,

baboons have been used in virology research to study the effects

of the Zika virus infection on fetal development. Importantly, this

study demonstrated that perinatal Zika virus infection can cause

a significant fetal cerebral cortical injury resulting in fetal death in

baboons, underscoring the baboon’s high value as an animal

model of pregnancy and perinatal viral infection affecting fetal

neurodevelopment [127].

Bacterial infection in pregnancy
Bacterial infection in pregnancy can cause fetal congenital

disease, miscarriage, stillbirth, chorioamnionitis (inflammation

of the fetal membranes), preterm birth, and low birth weight.

Oral, sexually transmitted, or commensal bacterial infection in

pregnancy can be transmitted vertically to the fetus and impact

its development as well as pregnancy outcome. Bacterial

vaginosis, caused by multiple bacteria, can also lead to

premature labor and birth [128, 129]. Table 2 outlines the

impact of various bacterial infections on fetal development

and pregnancy. These infections are divided into categories:

sexually transmitted infections (STIs), commensal bacteria,

and those acquired through contaminated food or animal

contact. This helps to emphasize the need for screening, early

treatment, and preventive measures like food safety to mitigate

negative outcomes on pregnancy. As was demonstrated by

research with baboons (Papio hamadryas), bacterial infection

with Ureaplasma urealyticum and Klebsiella spp. caused

placentitis and intrauterine infection, leading to severe adverse

effects on pregnancy, such as stillbirth and intrauterine growth

restriction [96].

TABLE 2 Adverse effects of bacterial infection on fetal development and pregnancy outcome in human population.

Type of infection Bacteria Effects on pregnancy and fetus References

STI Chlamydia trachomatis Preterm birth, congenital infection (human)
Births of weak, low-weight, and vitality-monkey calves were observed in
infected macaques

[96, 129–132]

Neisseria gonorrhoeae Low birth weight, preterm birth [129, 131]

Treponema pallidum Stillbirth, miscarriage, low birth weight [96, 129]

Trichomonas vaginalis Preterm birth, low birth weight [129,
131, 132]

Ureaplasma
urealyticum

Preterm birth, low birth weight [96, 129, 132]

Mycoplasma hominis Preterm birth, low birth weight [96, 129, 132]

Commensal E. coli (bacterial
vaginosis)

Preterm birth, stillbirth [96, 129]

Group B streptococcus Preterm birth [129, 133]

Contaminated food consumption/contact with an
infected animal

Listeria monocytogenes Congenital disease, stillbirth, miscarriage (human)
Stillbirth (monkey)

[129,
134, 135]

Brucella spp Miscarriage, preterm birth, chorioamnionitis [129]
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Endoparasitic infection in pregnancy
Internal parasitic infection in pregnancy includes protozoan

and helminth infection. Helminth infection, amebiasis can affect

pregnancy outcome via systemic maternal adverse effects such as

malnutrition and anemia. Infections such as malaria (caused by

plasmodium) and amebiasis can cause preterm birth in humans

[136, 137]. Notably, the protozoa Toxoplasma gondii causes

toxoplasmosis, which has severe consequences on pregnancy

and fetal development due to vertical transmission of the

infection, causing severe developmental abnormalities of the

neurodevelopment and both ocular and cardiac

systems [96, 138].

The most important and severe biological environmental

insults are separated into the acronym ToRCH, describing the

most notable pathogens causing severe perinatal infection

negatively affecting the fetus and pregnancy outcome. ToRCH

stands for toxoplasmosis, other (Treponema pallidum, hepatitis

viruses, HIV, varicella, parvovirus B19, enteroviruses, Zika virus,

Dengue, MERS, SARS, SARS-CoV-2), rubella, cytomegalovirus,

and herpes simplex virus [139–142]. ToRCH infections are

severe, and some of these pathogens can be transmitted from

mother to fetus and cause severe congenital abnormalities. In

case the pathogen is unable to cross the placenta, it still may

severely affect maternal health to the point of negative

consequences for the fetus [143].

Psychoactive substances

Alcohol (ethyl alcohol)
Ethanol exposure during prenatal development has been

extensively studied using NHP models, including rhesus and

vervet monkeys and notably baboons [144, 145] due to their

close genetic and neuroanatomical resemblance of humans

and the similarities in the developmental processes during

pregnancy. These studies have provided critical insights into

how ethanol affects neurodevelopment, mirroring aspects of

human fetal alcohol spectrum disorders (FASD) [146]. FASD

includes a spectrum of physical, cognitive, behavioral and

neurodevelopmental impairments. Notably, the developing

brain is the most vulnerable to ethanol toxicity

organ [147, 148].

To closely mimic human FASD, researchers have developed

NHP models where pregnant rhesus macaques voluntarily

consume ethanol. These models take advantage of the

similarities between humans and rhesus macaques in

gestational length relative to brain development, as well as

similarities in ethanol self-administration and metabolism

[149–151]. Studies using this model have shown that a daily

ethanol dose of 1.5 g/kg during the first trimester does not

influence pregnancy success rates but does affect drinking

behavior during the second month of pregnancy [149].

Subsequent research using this model aims to describe the

effect of early-gestation ethanol exposure on anatomical and

functional brain development at different gestational ages

[149, 150, 152].

The timing of prenatal ethanol exposure plays a crucial role

in determining its neurodevelopmental outcomes. In a study,

rhesus monkeys were exposed to moderate amounts of ethanol

(0.6 g/kg, voluntary alcohol consumption daily) during different

gestational periods, namely, early gestation (gestational days

0–50), mid-to-late gestation (gestational days 50–135) or

continuous exposure throughout gestation [151]. This

exposure led to blood alcohol levels ranging from 20 mg to

50 mg/dL (~4.3 mM–11 mM). The early gestation exposure to

alcohol significantly reduced neurodevelopmental tests scores,

including diminished infant orientation and motor maturity. In

contrast, mid-to-late gestation exposure primarily affected motor

maturity. These results obtained in non-human primates,

underscored the heightened sensitivity of early gestational

periods to the neurotoxic effects of ethanol [151]. During the

first trimester of pregnancy, rhesus monkeys exposed to ethanol

exhibited reduced placental blood flow, decreased overall growth,

and impaired growth and development of the brain [153]. In

baboons, fetal growth restriction has been documented following

three episodes of maternal intragastric gavage with alcohol

during the second trimester-equivalent of human pregnancy.

Maternal blood alcohol levels were around 80 mg/dL, while the

alcohol level in the amniotic fluid reached 63 mg/dL [30]. While

80 mg/dL (~17 mM) represents the legal blood alcohol

concentration limit for driving a motor vehicle in most of the

United States, a concentration of 63 mg/dL (~13.7 mM) marks

the onset of noticeable behavioral impairment in humans [154,

155]. Near term, baboon progeny that was exposed to alcohol

during the second trimester-equivalent had reduced

circumferences of the abdomen and head without affecting

femur length [145].

Besides growth curves, prenatal alcohol exposure has been

documented to negatively impact neurogenesis and

neurotransmitter systems in the developing brain. In vervet

monkeys, exposure to ethanol, ranging from 13 mM to

29 mM, during the third trimester led to reduced numbers of

hippocampal neurons and loss of hippocampal volume [156].

Moderate prenatal exposure of rhesus monkeys to alcohol,

combined with serotonin transporter gene promoter (rh5-

HTTLPR) polymorphism, altered the function of serotonin in

the central nervous system. This exposure led to maternal blood

alcohol levels of 20 mg–50 mg/dL (~4.3 mM–11 mM). Monkeys

carrying the short allele of the rh5-HTTLPR exhibited reduced

cerebrospinal fluid levels of the serotonin metabolite 5-

hydroxyindoleacetic acid (5-HIAA), suggesting a gene-

environment interaction that may contribute to

neurodevelopmental impairments associated with prenatal

alcohol exposure [157].

Epigenetic mechanisms, including DNA methylation and

histone modifications, have been implicated in the
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neurodevelopmental abnormalities that result from prenatal

ethanol exposure. Temporal lobe samples from the brains of

both humans and NHPS (macaque) with documented prenatal

alcohol exposure exhibited significant decreases in global

methylation of DNA and histones and increased histone

acetylation, indicating that prenatal alcohol exposure can lead

to widespread epigenetic changes that may underlie

neurodevelopmental deficits [152].

Prenatal ethanol exposure also affects both gene expression and

regulation by microRNAs (miRNAs) in the developing brain.

During neurodevelopment, ethanol exposure disrupts miRNA

expression, altering the regulation of genes which are critical for

synaptic development, as well as proliferation, and migration of

neuronal progenitors. Thus, ethanol-induced miRNA expression

disruption results in structural and functional brain developmental

defects [158]. In vervet monkeys, exposure to ethanol during the last

2 months of gestation led to reduced numbers of cortical and

hippocampal neurons, accompanied by upregulation of miRNAs in

the hippocampus [146]. It was significantly correlated with reduced

expression of their predicted targets-messenger RNA (mRNA),

which miRNA typically bind at the 3′ untranslated region,

inducing mRNA degradation or inhibiting their translation.

mRNAs are responsible for the biosynthesis of key proteins

involved in developmental processes such as migration,

differentiation, and proliferation. As it was observed in a

previous study by Gillis et al. [150], mRNA was globally

downregulated in vervet monkeys prenatally exposed to ethanol;

thus, these results suggest that ethanol-induced upregulation of

specific miRNAs may contribute to the downregulation of

expression, potentially leading to neurodevelopmental

impairments. Interestingly, these studies uncovered a previously

unknown link between FASDs and the EFNB1 gene that encodes

ephrin B1, which plays a crucial role in neurodevelopment and the

development of craniofrontonasal syndrome. Considering the

functions of EFNB1, this novel connection suggests a significant

area for further investigation into the etiology and potential

therapeutic targets of FASD [146, 150].

Computational models have been utilized to predict ethanol-

induced neurodevelopmental toxicity across species. One such

model applied mechanistic data from rodent studies to evaluate

the sensitivity of primate species to ethanol-induced inhibition of

neocortical neuronal proliferation. The model predicted that

primates, including humans, are more sensitive to ethanol’s

effects, with significant neuronal deficits occurring at lower

blood ethanol concentrations compared to rodents. For

example, the model predicted a significant decrease in

neocortical neuronal number after prenatal ethanol exposure

in a dose simulating a consumption of one standard drink within

1 hour in human. This increased sensitivity is attributed to the

prolonged rapid growth period, compare to rodents, in the

primate neuronal progenitor population highlighting the

relevance of NHP models in assessing ethanol’s impact on

human neurodevelopment [159].

The development of baboon model of FASD has provided

valuable insights into the effects of prenatal alcohol exposure on

primate development. Baboons (Papio spp.) are particularly

suitable for FASD research because of their close genetic,

anatomical, and physiological similarities to humans. Their

complex brain structure, prolonged gestational period

(approximately 6 months), and advanced social and cognitive

behaviors make them an excellent model for studying the

neurodevelopmental, behavioral, and physical consequences of

alcohol exposure during pregnancy [160].

Approaches used in FASD studies using baboons as a large

animal model typically involve administering ethanol to

pregnant females through controlled dosing, which replicates

human drinking or gastric infusion to maintain stable blood

alcohol levels [30, 161]. One study reported administration of

ethanol to baboon imitating a single binge drinking episode in an

adult human. Ethanol was administered to the pregnant baboon

dam via a gastro-nasal catheter at a dose of 3 gm of ethanol per kg

of weight to approximate a blood-alcohol level concentration of

~0.2%. This dose of alcohol is equivalent to the consumption of

6–8 alcoholic drinks in 2 hours by an adult human imitating a

heavy binge-drinking episode [162]. The timing of fetal alcohol

exposure is carefully managed to correspond to critical periods of

human prenatal brain development, particularly during the first

and second trimesters, when the brain is most vulnerable.

Vasoactive properties of alcohol caused an increased placental

permeability as well as an increased fetal brain perfusion making

fetal brain more vulnerable to toxic insults [162].

In addition to its effects on neurodevelopment, prenatal

alcohol exposure also compromises the fetal cerebral

circulation [30, 145, 162–165]. Using the baboon model, a

study from the Bukiya lab showed that moderate doses of

ethanol (~13.7 mM) administered during the second trimester

of pregnancy can induce significant dilation of the middle

cerebral artery, indicating disrupted regulation of vascular

tone [30]. This period represents a critical window for

cerebrovascular development [166, 167]. A subsequent study

from the Bukiya lab implicated the endocannabinoid system

in mediating this effect. Bukiya et al demonstrated that a

pharmacological block of cannabinoid receptors CB1 and

CB2 effectively reversed the ethanol-induced vasodilation

[145]. Furthermore, proteomic profiling of cerebral arteries

collected in the third trimester from baboon fetuses exposed

to ethanol during mid-gestation revealed long-term molecular

alterations, with the most prominent changes observed in

mitochondrial and cytoskeletal proteins [144]. Such alterations

may impair mitochondrial function, alter fetal cerebral artery

contractility, and compromise vascular integrity. Collectively,

these studies suggest that prenatal ethanol exposure disrupts

both the structural and functional development of fetal cerebral

arteries. However, the specific molecular mechanisms, receptor-

specific contributions and long-term cerebrovascular

consequences remain to be fully elucidated.
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Advancements in neuroimaging and molecular biology will

further enhance the understanding of the mechanisms by which

alcohol disrupts fetal development in primates and may guide

the development of targeted prevention and treatment

strategies for FASD in humans [168] Owing to the long

lifespan [169], baboons offer promising opportunities for

longitudinal studies that can track the long-term effects of

prenatal alcohol exposure and interventional studies to

mitigate the impacts of FASD.

Cannabinoids
The legalization of marijuana is leading to an increased belief

in the “safety” of the product. It led to a consequent growth of

cannabis misuse in the population, including in pregnancy [170].

The most prevalent form of drug misuse during pregnancy is the

maternal use of cannabinoids, with approximately 5% of

pregnant women self-medicating with marijuana [171].

Cannabinoids, including tetrahydrocannabinol (THC) and

cannabidiol (CBD), have been increasingly studied for their

effects on neurodevelopment. NHP models provide critical

insights into the long-term impact of cannabinoid exposure

due to their close genetic and neuroanatomical similarity to

humans [172, 173], and highlight the effects of perinatal

maternal cannabinoid use, which may cause preterm birth

and low birth weight [174].

The endocannabinoid system plays a crucial role in

neurodevelopment, regulating synaptogenesis, neuronal

differentiation, and circuit maturation [175]. Exogenous

cannabinoids, including THC and CBD, can disrupt fetal

endocannabinoid system signaling, potentially leading to long-

term neurodevelopmental consequences [176, 177]. Given the

ethical and methodological limitations of human studies, NHP

models provide valuable insights into the effects of prenatal

cannabinoid exposure on cognitive function and behavior [178].

Prenatal exposure to cannabinoids, particularly THC, has

been linked to alterations in brain morphology [174] and

functional connectivity in humans [179]. Chronic prenatal

exposure to delta-9-tetrahydrocannabinol (THC) in a rhesus

macaque model resulted in significant alterations in fetal brain

development. MRI assessments revealed that THC exposure

affected brain growth in both male and female fetuses

compared to controls. Histological analysis at gestational day

155 indicated signs of brain dysregulation in the THC

group. Additionally, two extracellular vesicle-associated

microRNAs were identified in the cerebrospinal fluid of THC-

exposed fetuses, with pathway analysis suggesting disrupted

axonal guidance and netrin signaling [180].

Cannabinoids exert their effects primarily through CB1 and

CB2 receptors, which are abundantly expressed in the developing

brain. As shown in Figure 4, both CB1 and CB2 transcripts are

detectable in the cerebellum of fetal baboons.

As a partial agonist at CB1 receptors, THC disrupts the

tightly regulated balance of excitatory and inhibitory

neurotransmission, leading to long-term synaptic deficits [182,

183]. Additionally, epigenetic modifications, including DNA

methylation and histone modifications, have been observed

after prenatal cannabinoid exposure, suggesting that effects

may persist in the next-generation (intergenerational effect) or

even across multiple generations (transgenerational effect) [184,

185]. Cannabis exposure during critical developmental windows

can disrupt epigenetic processes, leading to heritable changes in

genes and molecular pathways. These alterations are linked to

psychiatric diseases like autism spectrum disorder, attention-

deficit/hyperactivity disorder (ADHD), schizophrenia, and

addiction. Functionally, prenatal cannabinoid exposure has

been associated with deficits in executive function, aggression,

increased impulsivity, altered social behaviors, and other

psychiatric disorders [186, 187]. Thus, increased cannabis use,

especially during brain development, has been associated with a

rise in mental health issues among adolescents and young adults

in the U.S. [187]. Primate models provide critical insights into the

neurodevelopmental impact of cannabinoid exposure,

highlighting structural, functional, and behavioral

consequences. Under-utilization of NHPs, including baboons,

in research may impede further progress in elucidating dose-

FIGURE 4
Expression of cannabinoid receptors-encoding genes in the
fetal cerebellum of baboons. Cerebellar tissue was collected from
male and female baboon fetuses at gestational day 120 (end of
second trimester-equivalent of human pregnancy) to assess
the expression level of cannabinoid receptor-encoding genes
(Cnr1 and Cnr2 encoding CB1 and CB2 receptors, respectively).
Quantitative PCR (qPCR) was performed using TaqMan Gene
Expression Assays (ThermoFisher Scientific). The y-axis represents
relative gene expression, where Ct is the cycle number at which
fluorescence surpasses the detection threshold. Expression of
Cnr1 and Cnr2 was normalized to β-actin (Actb) in each sample.
Probes used: Cnr1 (Rh02787040_s1), Cnr2 (Rh02913156_m1) and
Actb (Rh02621734_g1). qPCR procedures were performed using
previously published protocols [181]. Sample sizes were n = 4,
except for Cnr2 in male fetuses (n = 3). Each sample was collected
from a separate baboon fetus.
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dependent effects, the role of genetic predisposition, and

potential interventions to mitigate adverse outcomes of

developmental exposure to cannabis.

Tobacco
The impact on fetal neurodevelopment of tobacco exposure

during prenatal and perinatal periods has been extensively

studied in NHPs, particularly rhesus monkeys [188]. Rodents

such as rats and mice are altricial species, so their brain

development at birth corresponds to fetal stages of human

development; therefore, the concentrations of nicotine may

not be correlated with those observed in typical human

exposure scenarios [189].

Studies involving rhesus monkeys exposed to tobacco both as

direct nicotine exposure and as environmental tobacco smoke

(ETS) during the perinatal period have demonstrated significant

alterations in brain development. Perinatal exposure to ETS in

rhesus monkeys resulted in selective upregulation of nicotinic

acetylcholine receptors in the brainstem and cerebral cortex. This

change was selective, with no effects onm [2]-muscarinic or beta-

adrenergic receptors. The upregulation of nicotinic receptors

suggests chronic nicotine stimulation, a hallmark of nicotine-

induced neuroteratogenesis, indicating that perinatal ETS

exposes the fetus and neonate to nicotine levels that can alter

brain development [189, 190].

ETS (also known as involuntary, secondary, or passive smoking)

causes multiple adverse effects on exposed subjects. In particular,

prenatal ETS exposure leads to region-specific neurodevelopmental

damage in primate brains. The neurotoxicity and neuroteratogenic

effects of nicotine exposure disrupt the formation, survival, and

differentiation of brain cells, leading to apoptosis and reduced cell

size in the forebrain, midbrain, and hindbrain. These lead, in turn, to

structural deficits, impaired synaptic function, and behavioral

abnormalities in rats [191, 192]. These findings underscore the

vulnerability of the developing primate brain to nicotine and

highlight the potential for long-term neurodevelopmental

impairments [193].

Bruin et al have examined the enduring effects of fetal and

neonatal nicotine exposure on postnatal health, emphasizing the

increased risk for neurodevelopmental disorders such as ADHD,

anxiety, and depression. These outcomes are linked to alterations

in brain regions like the prefrontal cortex, and hippocampus, and

changes in neurotransmitter systems, including nicotinic

acetylcholine receptors [194].

The parallels between findings in NHP studies and human

epidemiological data are striking. Prenatal tobacco exposure in

humans is associated with an increased risk of behavioral

disorders in children and adolescents, not only ADHD, but

oppositional defiant disorder, and conduct disorder. Studies in

NHPs have been crucial in elucidating the detrimental effects of

tobacco exposure on neurodevelopment. They pave the way to

the development of new strategies of a neurodevelopmental

disorders treatment and prevention.

Discussion, concluding remarks and
future directions

Despite the scientific advantages of usingNHPs, their enrollment

into research entails significant ethical and logistical challenges. Ethical

considerations are paramount in primate research, necessitating strict

adherence to welfare regulations and a clear justification for the use of

NHPs [168]. Moreover, many NHPs (including baboons) have long

lifespans and require complex care, making these studies expensive

and resource-intensive. Despite these challenges, we believe that the

use of NHPs in research is beneficial. NPH is a unique translation

model for human diseases and conditions. NHPs have a complex

brain, allowing them to perform sophisticated behavioral, visual, and

electrophysiological studies for elucidating mechanisms and new

treatment strategies of human neurodevelopmental disorders such

as ADHD, autism spectrum disorders, etc. Environmental insults

adversely affecting pregnancy and fetal development, especially

neurodevelopment, are ubiquitous and numerous, and, as

demonstrated in previous research [160, 195], the NHP animal

model provided by the baboon Papio hamadryas is a great

translational model for the research of pregnancy, placental, and

fetal development. The insights gained from NHP studies are crucial

for advancing preventive and therapeutic strategies to mitigate the

impact of environmental exposures on human development.
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