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Adolescent alcohol drinking is linked to high rates of adult alcohol problems and

alcohol use disorder (AUD). The Neurobiology of Alcohol Drinking in Adulthood

(NADIA) consortium adolescent intermittent ethanol (AIE) models adolescent

binge drinking, followed by abstinent maturation to adulthood to determine the

persistent AIE changes in neurobiology and behavior. AIE increases adult

alcohol drinking and preference, increases anxiety and reward seeking, and

disrupts sleep and cognition, all risks for AUD. In addition, AIE induces changes

in neuroimmune gene expression in neurons and glia that alter neurocircuitry

and behavior. HMGB1 is a unique neuroimmune signal released from neurons

and glia by ethanol that activates multiple proinflammatory receptors, including

Toll-like receptors (TLRs), that spread proinflammatory gene induction.

HMGB1 expression is increased by AIE in rat brain and in post-mortem

human AUD brain, where it correlates with lifetime alcohol consumption.

HMGB1 activation of TLR increase TLR expression. Human AUD brain and rat

brain following AIE show increases inmultiple TLRs. Brain regional differences in

neurotransmitters and cell types impact ethanol responses and neuroimmune

gene induction. Microglia are monocyte-like cells that provide trophic and

synaptic functions, that ethanol proinflammatory signals sensitize or “prime”

during repeated drinking cycles, impacting neurocircuitry. Neurocircuits are

differently impacted dependent upon neuronal-glial signaling. Acetylcholine is

an anti-inflammatory neurotransmitter. AIE increases HMGB1-TLR4 signaling in

forebrain, reducing cholinergic neurons by silencing multiple cholinergic

defining genes through upregulation of RE-1 silencing factor (REST), a

transcription inhibitor known to regulate neuronal differentiation.

HMGB1 REST induction reduces cholinergic neurons in basal forebrain and

cholinergic innervation of hippocampus. Adult brain hippocampal neurogenesis

is regulated by a neurogenic niche formed from multiple cells. In vivo AIE and

in vitro studies find ethanol increases HMGB1-TLR4 signaling and other

proinflammatory signaling as well as reducing trophic factors, NGF, and

BDNF, coincident with loss of the cholinergic synapse marker vChAT. These

changes in gene expression-transcriptomes result in reduced adult
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neurogenesis. Excitingly, HMGB1 antagonists, anti-inflammatories, and

epigenetic modifiers like histone deacetylase inhibitors restore trophic the

neurogenesis. These findings suggest anti-inflammatory and epigenetic

drugs should be considered for AUD therapy and may provide long-lasting

reversal of psychopathology.
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Introduction

Individuals who begin drinking in their early teen years and

during puberty have very high rates of adult alcohol problems

and alcohol use disorder (AUD) [1]. However, causally relating

early adolescent human adolescent drinking to high rates of adult

AUD is confounded by multiple environmental and genetic

factors that impact adolescent development, peer and family

influences as well as emerging personality disorders and

progressive increases in drinking trajectories into adulthood.

Preclinical studies in rodents allow hypothesis testing on the

impact of exposure to alcohol during adolescence that control for

genetics and environment and can limit exposure to adolescent

ages (i.e., without continuous alcohol exposure into adulthood).

This design allows selective determination of the impact of

ethanol on adolescent brain that persists into adulthood. The

Neurobiology of Alcohol Drinking in Adulthood (NADIA)

consortium designed the adolescent intermittent ethanol (AIE)

exposure rat model to fit patterns of underage binge drinking.

AIE involves alcohol exposure across what is equivalent to the

teenage years in humans; in rats, this is approximately postnatal

day 25 (P25) to P55, with females having puberty a bit before

males, similar to humans. Following AIE, rats are allowed to

mature to adulthood, usually P80–P90, equivalent to 30- to 40-

year old humans, without any further alcohol exposure. The AIE

model tests the hypothesis that AIE causes long-lasting persistent

changes in adults that increase risks of adult alcohol problems

and AUD. This model tests the impact of adolescent drinking

while avoiding the human confounds, particularly genetic

inheritance, that complicate understanding the strong

relationship of adolescent drinking and later life AUD. In

males, multiple AIE studies find increases in adult alcohol

drinking [2–11]. AIE-induced adult rat drinking is increased

after adolescent ethanol exposure in adults of both sexes, with

females drinking more than males [12]. AIE ethanol self-

administration and AIE ethanol vapor exposure also promote

increases in adult operant responding for ethanol self-

administration and reduce extinction [4, 13]. AIE ethanol

exposure without adult ethanol exposure also increases adult

anxiety and reduces behavioral flexibility and responses to acute

alcohol, consistent with widespread changes in multiple

cognitive-behavioral domains. Learning studies find AIE does

not change young adult learning ability [4, 14–17], although

complex operant tasks with rule changes and set-shifting show

deficits [4] and as does some spatial–temporal object recognition

[18]. Studies using the Morris water maze and the Barnes maze

find initial learning is intact and not altered, but reversal learning,

a measure of behavioral flexibility assessed by changing the goal

location, reveals reversal deficits [18–23] due to perseveration

and loss of executive function [24]. Adult rat responses in a

probability discounting task that changes the ratio of arm

pressing to food pellet reward find AIE increases risky choices

[14, 25, 26] and enhances reward seeking in adulthood [27–30].

Another effect of AIE is heightened social anxiety in adulthood

[31], particularly in males [32–34]. AIE also increases adult

anxiety-like behavior using the elevated-plus maze [6, 35–37]

or the light–dark box [5, 6, 37–39] or the marble-burying test [5],

as well as the open-field test [21, 40]. These findings are

consistent with the finding that AIE increases amygdala CRF

[14]. Other reviews provide more details on the impact of AIE on

persistent changes in adults behavior [24, 31, 41–44] as well as

the review specifically on the role of sex in AIE [45]. In summary,

adolescent alcohol exposure as modeled by AIE causes changes

that increase risk factors for AUD that persist long after

adolescence without additional alcohol exposure in adulthood.

The mechanisms of these persistent AIE-induced changes could

explain the link between age of drinking onset, lifetime AUD and

alcohol-related problems.

The long-lasting changes in adult mood, cognition and

reward following AIE are likely related to changes in neuronal

networks that underlie self-reflection, attention and self-control

mechanisms developing during adolescence. Understanding

cellular mechanisms involved in adolescent maturation of

brain neuronal networks and the impact of binge drinking

provides important information for prevention efforts as well

as targets for treatment and diagnosis. Both human [46–48] and

preclinical studies [1, 24, 49] have found adolescent maturation

alters brain physiology, networks, structure and function.

Chronic adult binge drinking models, as well as the

adolescent intermittent binge models, find changes in gene

expression. Adolescent sensitivity to alcohol induced long-

lasting changes in adults without further alcohol exposure in

the NADIA AIE model [24, 49] in general are exaggerated

responses occurring with less alcohol exposure than is needed

in adult models. Proinflammatory neuroimmune genes are

generally increased across models as well as in post-mortem
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brain of individuals with AUD. Proinflammatory genes have

been linked to AUD. Transcriptome studies find changes in large

numbers of gene classes that consistently include neuroimmune and

epigeneticmodiflying genes.More recent transcriptome studies have

established the importance of single cell studies that allow links to

cell and network function. Emerging studies have identified

neuroimmune triggered epigenetic modifications in microglia,

astrocytes, and neurons that impact neuronal networks related to

mood, cognition, and salience. Epigenetic changes are reversible,

providing opportunities for new therapies. However, all cells

respond to their surrounding cells in different limbic and cortical

brain regions that likely contribute to variation. This review will

touch on epigenetic mechanisms in response to neuroimmune

signaling. It introduces a complex cytokine-like molecule, high-

mobility group box 1 (HMGB1), as a key brain proinflammatory

signal linked to alcohol-induced changes. Microglia are the innate

immune cells of brain and are primed or sensitized by alcohol-linked

HMGB1 proinflammatory signals. Microglial and astrocyte changes

during cycles of alcohol exposure are proposed to interact with

neurons through signals altering gene expression through complex

mechanisms. AIE-induced changes in cholinergic (ChAT) basal

forebrain neurons and hippocampal dentate gyrus neurogenesis

are reviewed as examples of how neuronal networks linked to

cholinergic arousal and new neuron formation undergo persistent

adult cognitive deficits that can be restored through reversal of

proinflammatory-epigenetic signaling.

Epigenetic mechanisms of AIE-
induced AUD-like pathology

The mechanisms of AIE-induced changes in adult rat brain

are linked to increases in neuroimmune gene expression across

neurons, microglia, astrocytes and likely other brain cell types.

Epigenetics has emerged as a mechanism of persistent, long-

lasting changes in gene expression in response to environment,

including enriched, stressful or trauma-induced changes [36, 49,

50]. Epigenetic gene regulation includes histone and DNA

methylation and microRNA regulators of gene expression and

cell phenotype reprogramming that have emerged as

mechanisms of alcohol-induced changes in brain that are

linked to proinflammatory signaling. Epigenetics shifts

transcription through silencing or enhancing gene

transcription [51–53]. Although neurons connect across brain

regions, glial-neuronal signals regulate synapses and other

interactions within each brain region. Studies of AIE find

reduced trophic factor expression with increased

proinflammatory gene expression which are persistent shifts

in cellular transcriptomes lasting to adulthood, and which are

reversible with anti-inflammatory or epigenetic modifying drugs.

Binge alcohol exposure was first discovered to induce long-

lasting changes in brain neuroimmune gene expression

[54–57]. Chronic ethanol exposure of mice was discovered to

increase brain Toll-Like receptors (TLR) and sensitize brain

TLR4 [58] and TLR3 proinflammatory responses [59] that has

emerged as mechanism regulating alcohol self-administration

and preference in mice [60, 61], as well as following AIE in rats

[24, 49]. Cycles of alcohol-induced innate immune memory

processes increase TLR expression in brain, priming microglia

and other cells and thereby increasing proinflammatory

responses [62–64]. There are a large number of genes

associated with the immune system, including adaptive

immunity T and B cell lymphocytes, as well as innate

immunity tissue-specific and blood monocytes [65]. Healthy

brain does not have T or B lymphocytes or their associated

antibodies and there are low levels of expression of innate

immune genes with some being expressed transiently in

neurons during development or initiation of synaptic

plasticity. A large number of studies currently link ethanol

drinking and preference to neuroimmune signaling using

transcriptomic models [66–68], transgenic animal models [69,

70], post-mortem human brain immunohistochemistry and PCR

[71–74], and AUD models [75]. In general, brain neuroimmune

gene expression refers to genes associated with innate immune

signaling, particularly proinflammatory cytokines such as TNFα,
IL1β, and IL6. In healthy brain, these genes are expressed at very

low levels but are sensitive to drugs, stress, and other

environmental factors. A characteristic of proinflammatory

innate immune signaling is that an initial signal from one cell

activates multiple other cells and itself to increase expression of

multiple proinflammatory cytokines, chemokines, and other

genes. This results in many proinflammatory signaling

molecules being involved in the lasting changes induced by

chronic ethanol exposure. This review will focus on HMGB1,

an endogenous protein expressed in all brain cells that has both

nuclear and immune signaling proinflammatory functions [76].

High-mobility group (HMG) proteins were first identified as a

class of nonhistone proteins that contribute to packaging DNA

into chromosomes, with high-mobility group box 1 (HMGB1),

emerging as an actively released protein with a key role in

immune signaling [76, 77]. HMGB1 was discovered to bind

neuroblasts and called amphoterin, but has emerged as an

endogenous cytokine-like molecule that can activate multiple

TLRs, previously discovered to respond to complex bacterial

products in the immune system, but rarely studied in sterile

brain. Examples of AIE-altered HMGB1 signaling and persistent

changes in adult brain include adult hippocampal neurogenesis,

microglial priming, and loss of basal forebrain cholinergic

neurons. The mechanisms of AIE-induced persistent changes

in HMGB1 and neuroimmune signaling are linked to lasting

changes in adult perseveration, cognition, and AUD risk

behaviors. (See Table 1).

HMGB1 expression in increased in post-mortem human

AUD hippocampus as well as ethanol-exposed rats and mice

and AIE-treated adult rats [71, 100]. AIE also induces subtle but

persistent increases in hippocampal expression of the
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TABLE 1 Select articles on HMGB1, adolescence, and alcohol.

Preclinical and clinical alcohol exposure effects on HMGB1 primary literature

Species Exposure Assessment Results Reference

Rat (Wistar) AIE Prefrontal cortex (PL, IL) ↑HMGB1 (IHC, mRNA), also TLR4, TLR3
(mRNA) in P56 and P80 adult rats.
HMGB1 colocalizes with neurons (NeuN).
AIE rats also exhibit reversal learning
deficits.

[23]

Human AUD Orbitofrontal Cortex ↑ HMGB1 correlated with earlier age of
drinking onset (IHC), also ↑ RAGE

[74]

Rat (Wistar) AIE Orbitofrontal Cortex ↑ HMGB1 (IHC) and ↑RAGE [74]

Rat (Sprague) CE (7% liquid diet, 15 days), or CIE (7%
liquid diet intermittent)

Cortex (whole brain) ↑ HMGB1 (mRNA) during CE and CIE
withdrawal but not intoxication; also
increased TLR4 (mRNA) but no change in
MyD88 (mRNA) or NFĸB (mRNA)a ↑
HMGB1 (mRNA) during CE and CIE
withdrawal blocked by CRF1 antagonist
(CP154,526: 10 mg/kg) and ethyl pyruvate
(75 mg/kg) but not the HMGB1 antagonist
glycyrrhizin

[78]

Human AUD Orbitofrontal Cortex ↑ HMGB1 correlates with TLR and age of
drinking onset

[72]

Rat (Wistar) 0 → 100 mM EtOH hippocampal- entorhinal cortex
organotypic slice culture

↑ HMGB1 (mRNA), ↑ HMGB1 released
into media (ELISA)

[72]

Rat (Wistar) 0 → 100 mM EtOH hippocampal- entorhinal cortex
organotypic slice culture

Ethanol dose dependently ↑ HMGB1
(mRNA) and ↑ HMGB1 released into
media (ELISA). Acetyl-HMGB1 is released;
HDAC inhibitors also increase acetyl-
HMGB1 release into media

[79]

Rat (Wistar) AIE Hippocampus ↑ HMGB1 (mRNA) [80]

Human AUD Hippocampus ↑ HMGB1 (WB) ↑ HMGB1/1L-1β
complexes (WB)

[81]

Mouse Acute 6 g/kg i.g. Whole brain Cortex Plasma Liver ↑ HMGB1 (ELISA, IHC, WB) ↑ HMGB1/
1L-1β complexes (Western blot, IHC) ↑
HMGB1 (ELISA) ↑ HMGB1 (WB)

[81]

Human AUD Hippocampus ↑ HMGB1 in Human AUD Hippocampus
(ELISA)

[82]

Rat 25–100 mM ethanol (48 h) hippocampal- entorhinal cortex
organotypic slice culture

↑MV-HMGB1 (ELISA) andmiRNA Let7 ↑
HMGB1/Let7 complexes in MV (ELISA)

[82]

Rat (Wistar) AIE Hippocampus ↑ HMGB1, TLR4, TNFα, IkBα (mRNA)
and loss of neurogenesis (DCX, IHC)
aPrevented with concurrent voluntary
exercise or indomethacin

[83]

Human (young
adult) \ _

Binge Drinkers Serum ↑ HMGB1 (ELISA) in female but not male
subjects following acute binge alcohol

[84]

Rat (Wistar) AIE Hippocampus ↑ HMGB1 (IHC), ↑ RAGE, ↑ TNFRSF25,
cleaved caspase-3, pNFĸB-p65
aHMGB1 changes not reversed with
donepezil; other proinflammatory markers
reversed by donepezil

[85]

Mouse/Human cell
line

100 mM EtOH (24 h) BV2, SH-SY5Y BV2+ SH-SY5Y co-
culture

24 h EtOH did not impact HMGB1
(mRNA) in BV2, SH-SY5Y or co-culture
24 h EtOH ↑HMGB1 release into media in
BV2 and SH-SY5Y cultures but not in co-
cultured BV2+SH-SY5Y preps. IL-4 and

[86]

(Continued on following page)
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TABLE 1 (Continued) Select articles on HMGB1, adolescence, and alcohol.

Preclinical and clinical alcohol exposure effects on HMGB1 primary literature

Species Exposure Assessment Results Reference

IL13 mRNA increased in co-culture EtOH
EtOH ↑ TLR4 (mRNA)in co-culture BV2/
SH-SY5Y, but co-culture attenuated EtOH
TLR3/TLR7 (mRNA) and iNOS (mRNA)

Human (AUD) AUD Orbitofrontal Cortex AUD increases multiple TLR and NFĸB
genes that correlate with increased
expression of HMGB1

[73]

Rat (Wistar) AIE Basal Forebrain ↑ HMGB1 (IHC) with ↑TLR4, ↑ pNFĸB
p65, and ↑ RAGE as well as ↑
H3K9me2 and decreased ChAT by AIEa

Galantamine prevented/reversed AIE-
induced changes in adulthood

[87]

Rat (Wistar) AIE Dentate gyrus of the hippocampus ↑ HMGB1 (IHC) and other
proinflammatory markers including CCL2,
COX2 and cleaved Caspase-3 while
decreasing neurogenesis (DCX)
agalantamine prevented/reversed

[88]

Human \ _ AUD, ALD Serum ↑ HMGB1 in ALD relative to AUD
(ELISA); predicts mortality in AUD.

[89]

Rat (Wistar) In vivo: AIE Ex vivo: dsHMGB1 and
rHMGB1, 100 mM EtOH for 4 days

In vivo: Basal Forebrain Ex vivo: BFCN
organotypic slice culture

In vivo: ↑ HMGB1 (mRNA) Ex vivo:
dsHMGB1 and rHMGB1 both reduce
ChAT. Ethanol releases HMGB1 into
media. REST and G9a induction lead to
ChAT gene silencing. Loss of ChAT
blocked by HMGB1 antagonist
glycyrrhizin

[90]

Rat (Wistar) \ _ AIE Dentate gyrus of the hippocampus ↑ HMGB1 (IHC) aIndomethacin reversed
AIE-induced loss of neurogenesis and
cholinergic markers and reduced
HMGB1 (IHC)

[91]

Other HMGB1-RELATED primary literature

Species Exposure Assessment Results References

Rat (unspecified) 0–5 mM Glutamate; 0–100 µM NMDA hippocampal- entorhinal cortex
organotypic slice culture

Glutamate dose-dependently ↑
HMGB1 release into media parallel to ↑
cell death (exclusion dye propidium
iodide). NMDA similarly dose-
dependently ↑ HMGB1 release into media
parallel to ↑ cell death (exclusion dye
propidium iodide).

[92]

Vglut2-Cre/ChR2-
eYFP mice

ChR2 stimulated In vivo: DRG Ex vivo: DRG neuronal
culture

↑ HMGB1 cytoplasmic translocation
(IHC) ↑ HMGB1 release (WB/ELISA)

[93]

Syn-Cre/HMGB1fl/
flMice

Neuronal HMGB1 ablation DRG Neuronal HMGB1 ablation reduced
hyperalgesia following sciatic nerve injury
and attenuated proinflammatory cytokine
and chemokine responses (ELISA: TNFα,
CXCL1, IL18)

[93]

Rat (Wistar) In vivo: LPS (1 mg/kg, i.p.); Ex vivo: LPS
(100 ng/mL), dsHMGB1

Basal forebrain (in vivo); BFCN
organotypic slice culture (ex vivo)

dsHMGB1 and LPS trigger
TLR4 induction of REST and G9a gene
silencing to cholinergic transcriptome.

[94]

CD-1 mice Radioactive labeled HMGB1 Whole brain Serum HMGB1 is transported across the BBB in
both directions. LPS exposure
↑HMGB1 transport in part by disrupting

[95]

(Continued on following page)
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proinflammatory signaling factors chemokine C-Cmotif ligand 2

(CCL2), cytokines TNFα and IL1β, and cyclooxygenase-2 as well
as expression of innate immune signaling Toll-like receptors

(i.e., TLR1, TLR2, TLR4, TLR5, TLR6, TLR7, and TLR8) [73] and

the receptor for advanced glycation end products (RAGE) and

other proinflammatory signaling cytokines signal through feed-

forward amplification innate immune receptors and their

activating ligands. Interestingly, HMGB1 is actively released

following acetylation [101] and we found ethanol, histone

deacetylase inhibitors, and glutamate increase hippocampal

brain slice culture release of HMGB1 into the media [79].

Studies in culture find ethanol releases HMGB1 from neurons

[79] and microglia [82]. HMGB1 can form monomers as well as

dimers and heteromeric complexes that function as a pan-

TABLE 1 (Continued) Select articles on HMGB1, adolescence, and alcohol.

Other HMGB1-RELATED primary literature

Species Exposure Assessment Results References

the BBB and in part through a transport
mechanism.

Swiss albino or
transgenic Thy1-
ChR2- YFP and
hGFAP-GFP adult
mice

optogenetic stimulation or pinprick for
cortical spreading depolarization

Cortex ↑ HMGB1 nuclear translocation (IHC)
and ↑ HMGB1 extracellular vesicles with
some indication of astrocyte-HMGB1 but
not microglial-HMGB1 interactions

[96]

HMGB1-Related review articles

Findings Reference

This review covers the rapid release of HMGB1 from neurons during a seizure, increasing astrocyte and
microglial IL-1β/HMGB1 synthesis and release. Long lasting decreases in seizure threshold are linked to
persistent increases in these signals.

[97]

Proposed the hypothesis that neuroimmune signaling contributes to the neurobiology of alcohol and
substance use disorders.

[55]

The review covers evidence supporting drug induced increases in TLR in brain, particularly microglia, that
respond to HMGB1 and microRNAs (miRNAs). Studies supporting ethanol enhanced TLR innate immune
signaling changes gene transcription through epigenetic mech anisms alternating synapses and neuronal
networks. Addiction involves progressive stages of drug binge intoxication and withdrawal that are linked to
progressive increases in TLR signaling.

[71]

This review discusses HMGB1 oxidation-reduction and changes activities through multiple cell surface
receptors. Also, this review discusses recent discoveries indicating that HMGB1 released from neurons
mediates inflammation via the TLR4 receptor system.

[98]

The studies reviewed support roles for neuroimmune signaling as well as epigenetic reprogramming of
neurons and glia, which create a vulnerable neuro- environment. Some of these changes are reversible, giving
hope for future treatments to prevent many of the long-term consequences of adolescent alcohol abuse.

[99]

AIE increases adult alcohol drinking, risky decision-making, reward-seeking, and anxiety as well as reducing
executive function that increase risks for AUD. AIE causes persistent increases in adult brain neuroimmune
signaling high-mobility group box 1 (HMGB1), TLR, RAGE and other innate immune genes. These genes are
also increased in human AUD brain. HMGB1 release by ethanol, both free and within extracellular vesicles
shifts transcription and cellular phenotype. For example, RE-1 silencing transcript blunts cholinergic gene
expression, shifting neuronal phenotype. Inhibition of HMGB1 neuroimmune signaling, histone methylation
enzymes, and galantamine, the cholinesterase inhibitor, both prevent and reverse AIE pathology. These
findings provide new targets that may reverse AUD neuropathology as well as other brain diseases linked to
neuroimmune signaling.

[1]

This is a review of HMGB1 immune cell functions including promoting DNA damage repair in the nucleus,
sensing nucleic acids and inducing innate immune responses and autophagy and stimulating
immunoreceptors. Signaling, cellular functions and clinical relevance of HMGB1 in various diseases are
discussed.

[77]

aAIE, adolescent intermittent ethanol; AUD, alcohol use disorder; ALD, Alcohol-related Liver Disease; BBB, blood brain barrier; CCL2, c-c motif ligand 2; COX2, cyclooxygenase-2; DCX,

doublecortin; DRG, dorsal root ganglion; dsHMGB1, disulfide high mobility group box 1; ELISA, enzyme-linked immunosorbent assay; EtOH, ethanol; IHC, immunohistochemistry; IL,

infralimbic; NeuN, neuronal nuclear protein; LPS, lipopolysaccharide; MV, microvesicle; pNFĸB, phosphorylated nuclear factor kappa-light chain enhancer of activated B cells; PL,

prelimbic; RAGE, receptor for advanced glycation end products; TNFRSF25, tumor necrosis factor receptor superfamily 25; WB, western blot.
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proinflammatory amplifying factor. HMGB1 heteromeric

complexes form with cytokines, extracellular DNA, RNA, and

damage-associated molecular pattern (DAMP) molecules [93].

HMGB1 heterocomplexes are able to activate TLRs, making

TLRs an important proinflammatory signal [102]. For

example, TLR7 is activated by RNA, including endogenous

miRNA let7 and HMGB1-let7 dimers, which are both potent

agonists. Interestingly, ethanol releases HMGB1-let7 dimers in

extracellular vesicles (EVs) from microglia, triggering TLR7-

mediated pathology [82]. Multiple studies suggest TLR7 is

linked to increases in preclinical alcohol drinking and

preference [103, 104]. The ability of HMGB1 to activate and

amplify proinflammatory signals positions it as a key target to

block proinflammatory gene induction (Figure 1). Alcohol and

substance abuse disorders involve a progression of increased

drug taking with activation of reward centers, followed by mood

dysfunction and limbic involvement with increasing involvement

of prefrontal and other cortical dysfunction [107] that could

represent progressive increases in HMGB1 and/or other

neuroimmune signals. It is nearly impossible to measure all

FIGURE 1
HMGB1 activates multiple receptors spreading neuroimmune signaling. Shown is the HMGB1 (yellow) molecule with two yellow Box sections,
known as Box A and Box B, that bind to different molecules and receptors. The Box sections aggregate-stabilize (dimerize) receptor subunits,
increasing activation. HMGB1 can stimulate TLR4 receptors directly and as heteromers with other TLR agonists. TLR receptors are members of the
TLR-IL1 receptor family that are activated by agonist dimerization. Receptors are drawn as active dimers with HMGB1 bridging dimers, the
hypotheticalmechanismof HMGB1 potentiating receptor responses. Shown is HMGB1 alone stimulating TLR4 and RAGE receptors. HMGB1 is known
as a “sticky” protein binding to lipids, RNA, DNA, and chemokine proteins. On the right is shown HMGB1-CXCL12 heteromers bridging G-protein
receptors. HMGB1 has been found to enhance the potency of CXCL12 at CXCR4 receptors, G-protein-linked chemokine receptors [105] activated by
dimerization. Another example involves IL1β-ILR receptors (TLR/ILR receptor family) which act through HMGB1/IL1β heteromers, increasing potency
at the ILR over that of IL1β alone [100]. Similarly, studies findmicroglial activation releases HMGB1 as a heteromer inmicrovesicles withmicroRNA let-
7, an endogenous TLR7 agonist that when combined with HMGB1, that is able to activate TLR7 in adjacent neurons [106]. HMGB1 complexes can
activate essentially all TLRs [102], contributing to HMGB1 as a proinflammatory signal. HMGB1 has broad neuroimmune stimulating activity crossing
multiple innate immune receptors.
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proinflammatory signals, with most studies focusing on TNF,

IL1B, IL6 or CCL2. The classical acute phase innate immune

systemic blood response to infection involves these and other

proinflammatory cytokines and chemokines, consistent with all

being representative of neuroinflammation. This is an

oversimplification since neurons, astrocytes, microglia and

other brain cells respond to an initial proinflammatory

response with different cytokines that vary dependent upon

the surrounding mileu and brain region that alters the spread

of proinflammatory signaling. One example linking HMGB1,

proinflammatory signaling and ethanol pathology is sensitization

to pain. Pain as assessed by tactile allodynia increases following

nerve injury due to changes in neurons and the local microglia

[108]. Spinal cord microglia are activated contributing to pain

sensitization [108]. In models of pain, nociception sensory

neurons have increased HMGB1 and increases in

HMGB1 release with increased pain. Antibodies to

HMGB1 have been block neuropathic pain [109]. Neuronal

activation using optogenetic mechanisms increases release of

HMGB1 [93] that can activate microglia. Further, silencing of

HMGB1 protects against both nerve injury and proinflammatory

pain models [93]. These findings are consistent with ethanol

induction and neuronal release of HMGB1 contributing to local

microglial sensitization that persists and amplifies

proinflammatory responses that impact neurocircuitry. Studies

finding HMGB1 release from multiple brain cells is consistent

with initiating proinflammatory signaling, although the details

on reward, affect, and cognitive neurocircuitry is not known.

Understanding the mechanisms of progressive increases in brain

HMGB1-TLR proinflammatory signaling across brain regions,

neurocircuits, and components of psychopathology will benefit

both prevention and treatment efforts.

Microglia, HMGB1, and alcohol

Microglia are brain-specific monocyte-like cells that are long-

lived but can also divide from endogenous progenitors

throughout the lifespan [110]. Microglia within each brain

region is relatively stable and if altered, microglia proliferate

to return to the “homeostatic” density, suggesting local

regulatory microglial niche mechanisms [111]. Microglia are

suggested to control the escalation of drinking in mouse

models of alcohol dependence [112], consistent with

escalation of drinking being linked to amplification of

HMGB1 -proinflammatory signaling increases with repeated

exposure [71, 100]. During striatal development microglia

regulate dopamine receptors, with male sex-specific microglial

elimination of striatal synaptic dopamine D1 receptors through

microglial-transcytosis, i.e., synaptic receptor specific

phagocytosis, that precedes the development of male specific

adolescent play behaviors [113]. In transgenic mice with depleted

numbers of microglia, there is reduced adolescent synaptic

pruning, resulting in more synapses but reduced cortical

function [114]. Interestingly, cortical microglial gene

expression correlates with cortical thickness during childhood

and early adolescence [115], and cortical thickness is linked to

development of adult characteristics [116, 117]. Though

microglia are critical for neurodevelopment during

adolescence, in general, little is known about microglia and

their role in specific neurocircuitry. What is known is that

microglia have multiple phenotypes that are regulated through

epigenetic mechanisms [118] and adolescent ethanol exposure

causes long lasting sensitization and other alterations in brain

microglia [49, 119, 120].

Microglia contribute to acute alcohol responses [82, 121, 122]

and become sensitized to proinflammatory signals like HMGB1.

Sensitization or priming of microglia by stressors or TLR agonists

persists [123, 124], and priming increases expression of

complement pathways that regulate synaptic plasticity [125].

For example, AIE adolescent binge ethanol exposure followed

by 45 days of abstinence increases adut restraint stress Cd11b+

microglia activation in frontal cortex and amygdala [121].

Adolescent stress also increases adult microglia responses to

lipopolysaccharide (LPS) [126], consistent with studies finding

ethanol sensitizes to LPS [127]. Another adolescent binge ethanol

exposure study found disruption of novel object learning and

hippocampal long-term synaptic depression are blocked by

microglial inhibitor minocycline and TLR4 antagonist TAK-

242, as well as the anti-inflammatory drug indomethacin

[128]. Another AIE study found increased pain sensitivity in

adults that was alleviated by minocycline [129]. These studies

support AIE priming of microglia, although stress can also prime

microglia; adolescent alcohol and stress sensitize and synergize to

increase proinflammatory responses in some brain regions but

not others [121]. Recent studies report blood monocytes of

individuals with AUD are primed to TLR4 proinflammatory

responses [130]. These studies suggest microglial priming

contributes to increases in alcohol drinking and AUD

psychopathology.

Immune signaling and acetylcholine

Although in general microglia and proinflammatory

signaling are linked to the mechanisms that underlie the

development of AUD, proinflammatory responses are

complex. One example is the pain circuit, which has both

central and peripheral components and the anti-inflammatory

actions of acetylcholine [131, 132]. Both adult and adolescent

AIE are found to sensitize pain responses [133, 134]. HMGB1,

microglia and proinflammatory signals are linked to pain

sensitivity. Acetylcholine inhibits microglia and the vagus

nerve sends projections to the organs that inhibit

proinflammatory responses with acetylcholine [135–137]. The

inflammatory reflex signals are anti-inflammatory nerve signals
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that stimulate a subset of immune cells to secrete acetylcholine,

which interacts with alpha 7 nicotinic acetylcholine receptors to

inhibit proinflammatory mediators [138, 139]. Thus,

acetylcholine is known to reduce proinflammatory signaling

and brain regions with high levels of acetylcholine will show

less proinflammatory induction by ethanol and other insults than

brain regions without any cholinergic anti-

inflammatory signaling.

HMGB1 and epigenetic regulation of
forebrain cholinergic neurons

Forebrain cholinergic neurons projection to multiple cortical

and limbic brain regions, including the cortex, hippocampus, and

amygdala. Cholinergic neurons modulate arousal, cognitive and

emotion [140, 141]. AIE reduces expression neuronal choline

acetyltransferase (ChAT) in the medial basal forebrain and

shrinks remaining ChAT + IR cholinergic neurons size [18,

20, 22, 40, 142–145]. The vesicular ACh transporter

(VAChT), and the high- and low-affinity nerve growth factor

receptors TrkA and NGFR, all cholinergic neuron markers are

also decreased [22, 83, 142]. The AIE-induced loss of basal

forebrain cholinergic neurons is accompanied by diminished

ACh prefrontal cortical efflux during maze performance [144].

The forebrain ChAT+ cell loss is selective, since parvalbumin

GABAergic neurons in the basal forebrain are not reduced by

AIE [20]. AIE deficits in reversal learning are linked to the ChAt

loss by anti-inflammatory indomethacin, exercise, and

galantamine treatments during AIE that prevent the loss of

ChAT+ neurons and cognitive deficits [22, 142, 145]. The

TLR4 agonist lipopolysaccharide (LPS) activates brain

proinflammatory signaling and treatment during adolescence

mimics the AIE-induced loss of ChAT [40, 145]. AIE induces

forebrain TLR4 and RAGE receptors, HMGB1, and the nuclear

transcription factor pNFkB p65 proinflammatory signaling

transcription factor [40, 145]. Rat voluntary wheel running

exercise, and indomethacin prevent AIE induction of

HMGB1-TLR4/RAGE-pNFκB p65+IR within ChAT + IR

neurons, their loss and shrinkage [145]. Historically, loss of

terminally differentiated ChAT+ neurons was interpreted as

cell death and considered irreversible. However, emerging

studies find brain proinflammatory signals are induced by

epigenetic changes in microglia and neurons that are

reversible. Studies found that reduced ChAT+ neurons, and

shrunken ChAT+ neurons could be restored after AIE

treatment. Exercise running wheels reversed AIE increased

forebrain HMGB1-TLR4 and RAGE-as well as the loss of

ChAT+, TrkA+, and NGFR+ cholinergic neurons and somal

shrinkage. There were no changes in total NeuN+ neuron

numbers and no neurogenesis, suggesting neurons did not die

but only lost the cholinergic phenotype, allowing restoration [22,

142]. These findings were extended with anti-inflammatory

treatments indomethacin and galantamine, which acts through

enhanced acetylcholine as an anti-inflammatory treatment. More

recent studies have discovered transcriptional repressor RE1-

silencing transcript (REST; also known as neuron-restrictive

silencer factor [NRSF]) [146, 147] regulate cholinergic gene

expression [147] and is known to bind methyltransferase G9a,

increasing histone H3K9 dimethylation that represses gene

expression [148, 149]. HMGB1 signaling was discovered to

increase REST-G9a silencing of multiple genes that define a

cholinergic neuron, and that reversal of REST-G9a silencing

restored the cholinergic neurons [90]. The findings that

adolescent binge ethanol exposure and neuroimmune

induction have epigenetic components that are reversible

create promise for new AUD therapies [1, 52, 150–153].

The hippocampal neurogenic niche
and alcohol

The hippocampal dentate gyrus subgranular zone is a unique

brain region where new neurons are formed well into adulthood.

New neurons form from proliferating progenitors that become

mature neurons which functionally integrate into neurocircuitry

in adulthood [154, 155]. The local environment is a “neurogenic

niche” regulating the birth, differentiation, and functional

integration of hippocampal newborn neurons. The niche is

sensitive to disruptions that alter trophic support due to

increased proinflammatory signaling [156]. Ethanol exposure

reduces hippocampal neurogenesis due in part to changes in

the neurogenic niche [156]. Models of AUD binge drinking in

adults find ethanol inhibits hippocampal neurogenesis

transiently that recovers during abstinence [54, 119, 157];

however, adolescents which have about 4-fold more

neurogenesis than adults [158, 159] show a persistent loss

following AIE adolescent AIE exposure, far greater than that

with identical adult alcohol treatment [160]. Further, the AIE-

induced loss of neurogenesis persists for months, likely for life

[80]. AIE inhibition of hippocampal neurogenesis following AIE

is associated with adult reversal learning impairments, increased

perseveration and/or loss of cognitive flexibility, which persist at

least to middle age in rodents [80, 161]. The niche is disrupted by

AIE. AIE increases hippocampal proinflammatory HMGB1,

COX2 and other proinflammatory genes [83, 85, 88]. And

reduces expression of trophic factors, specifically BDNF [37].

Interestingly, the AIE-induced loss of adult neurogenesis is

reversible. Exercise and anti-inflammatory drugs (e.g.,

indomethacin, donepezil, and galantamine), as well as the

epigenetic histone deacetylase inhibitor, trichostatin A (TSA)

prevent and/or restore the AIE-induced loss of neurogenesis as

well as the lasting perseveration and loss of behavioral flexibility

[37, 83, 85, 88]. AIE increases HMGB1 and other

proinflammatory genes [83] and decreases in the trophic

factor BDNF [37], suggesting that AIE disrupts the
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neurogenic niche through a transcription shift increasing

proinflammatory genes while reducing trophic gene

expression through epigenetic gene silencing and enhancer

mechanisms. The proinflammatory HMGB1 reduced trophic

expression changes in gene expression and the loss of

neurogenesis that are reversed by anti-inflammatory

treatments like indomethacin [91] as well as the histone

deacetylase inhibitor TSA [37] supports the hypothesis of

epigenetic shifts driven by proinflammatory signals that

reduce neurogenesis. More specifically, indomethacin, the

non-steroidal anti-inflammatory drug and the cholinesterase

inhibitors galantamine and donepezil reverse AIE-induced loss

of neurogenesis and increases in hippocampal HMGB1 [85, 88].

TSA, a histone deacetylase inhibitor that reverses epigenetic

proinflammatory activation in microglia as well as other cells,

restores hippocampal BDNF and AIE-neurogenesis [37]. TSA

also reverses AIE-induced changes in amygdalar histone

acetylation, reverses AIE adult anxiety, and reverses AIE

induced increases in ethanol self-administration [6].

Restoration of neurogenesis also restores cognitive flexibility

deficits during reversal learning on the Morris water maze

[83]. The changes in the niche are complex. For example, AIE

reduces cholinergic innervation of the niche, and anti-

inflammatory treatment restores cholinergic innervation with

the return of neurogenesis (for review see [156]. Although the

folklore of Alcoholics Anonymous is “Once an alcoholic, always

an alcoholic,” thereby arguing AUD is a chronic disease, the

findings that the AIE-induced AUD-like pathology is reversible

provide a foundation for AUD cures. Understanding the brain

region-specific mechanisms of AIE persistent pathology could

lead to new and novel therapies for AUD.

Discussion and summary

Adolescent drinking is known to result in high rates of

adult alcohol problems and lifelong AUD. To tests hypotheses

on the lasting impact of adolescent drinking, the AIE

adolescent binge drinking model assesses behavior and

neurobiological mechanisms after several weeks of

abstinent maturation to adulthood. AIE increases alcohol

drinking and preference, anxiety, reduces adult social

interaction, increases pain sensitivity and other

hyperkalifia-like symptoms, as well as altering decision

making while increasing perseveration and reversal learning

deficits. Environment and access to alcohol contribute to the

development of AUD; increased alcohol drinking,

hyperkalifia, and reduced executive function following AIE

are consistent with increasing risks of developing AUD in

adulthood. The high rates of lifetime AUD following

adolescent binge drinking have been suggested to be due to

a lower adolescent intoxication response to alcohol, resulting

in greater and sometimes extreme binge drinking that insults

the developing adolescent brain. Adolescent brain is more

sensitive to acute binge alcohol exposure [162, 163]. Although

brain cellular damage is increased in models of adolescent

binge drinking [162] and human AUD brain is generally

smaller than moderate drinking controls, AIE studies

indicate that the persistent, long-lasting impact of

adolescent binge drinking is far broader than cellular

damage due to changes in cells and neurocircuits induced

by alcohol that persist long after alcohol exposure.

The discovery that neuroimmune signaling is linked to

alcohol use disorder and alcohol drinking has emerged during

the past decade. This review focuses on HMGB1, a molecule that

is expressed in all brain cells, is localized in the nucleus, and that

is actively released from cells following acetylation by histone

acetylases. Ethanol increases neuronal histone acetylation in

brain [164], and in brain slice cultures, ethanol releases

acetylated HMGB1 into the media. HMGB1-histochemistry

shows increases in neuronal cytoplasm consistent with active

neuronal release [165]. Although poorly understood and

confounded by cell death-triggered release, ethanol likely

releases HMGB1 from multiple brain cell types, which

sensitizes microglia and astrocytes to progressive increases in

a large number of proinflammatory genes. Dependent upon

brain region, each acute binge drinking episode can amplify

and spread proinflammatory signaling. Proinflammatory

signaling is associated with sickness behaviors that fit well

with the negative emotional, hyperkatifeia [166, 167] affect

stages of the development of AUD. Interestingly, ethanol

acutely blocks monocyte responses that change within hours,

increasing proinflammatory gene expression; that is, alcohol

withdrawal coincides with increases proinflammatory

cytokines [54, 121]. Binge drinking and associated acute

withdrawals are proposed to prime microglia, and likely

astrocytes, sensitizing and amplifying proinflammatory genes.

Repeated withdrawals drive hyperkatifeia responses that

promote further drinking that progressively involves altered

neurocircuitry across reward, negative affect-hyperkatifeia

linked and finally executive control dysfunction, leading to

perseverative compulsive craving. Although it is poorly

understood how various neurocircuits become progressively

involved in the development of AUD, some insight is

provided by studies of HMGB1 and hippocampal seizures.

Hippocampal seizures induce persistent increases in HMGB1-

TLR4 and IL1β which increases excitability, reducing seizure

thresholds, i.e., sensitizing to future seizures, due to increases in

HMGB1 and IL1β [97]. Similarly, cycles of chronic intermittent

ethanol that progressively increase anxiety and negative effect are

linked to HMGB1 amplification of amygdala TLR4 and changes

in CRF with multiple withdrawals that are blocked by CRF1A

and HMGB1 antagonists [78]. Although adolescents are

proposed to be more sensitive to the impact of repeated

exposure to ethanol than adults, HMGB1 is induced by

ethanol at all ages, which could contribute to epigenetic
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mechanisms altering microglial phenotypes that impact synapses

and neurocircuits. Adolescent intermittent ethanol is known to

induce anxiety and increase alcohol drinking through reversible

epigenetic mechanisms that alter synaptic proteins [52, 151].

These findings are consistent with multiple studies finding

neuroimmune activation promotes alcohol drinking which

FIGURE 2
Hypothetic mechanism of ethanol-induced changes in cellular phenotypes related to changes in aud behavioral phenotypes. The studies
reviewed find repeated cycles of binge drinking prime microglia, increase proinflammatory HMGB1, and alter brain and behavior that increases risk
for AUD. Shown are microglia, astrocytes, and neurons. Left side green healthy microglia are trophic and release factors supporting a local growth
repair milieu with other brain cell types including astrocytes, that help maintain synapses, and neurons. Chronic ethanol exposure “primes”
microglia, that over repeated cycles converting them to a proinflammatory phenotype with increases in expression of CD68, a dark microglial
phagocytic protein stain, and secretion of TNFα that persist for long periods andmay impact synapse phagocytosis. Chronic studies of adolescent AIE
find astrocytes also undergo a phenotype change, with alterations in GFAP and soma as well as reduced astrocyte-excitatory synapse
PSD95 contacts. These long-lasting changes in astrocytesmay represent a phenotype shift. Under healthy physiological conditions, astrocytes close
synaptic contact with glutamatergic terminals where they regulate the synaptic environment and mediate glutamate homeostasis. This can be
visualized using a combination of excitatory synaptic markers, glial-fibrillary actin protein (GFAP), and virus mediated astrocyte labeling with GFP. AIE
causes hippocampal astrocytes to increase GFAP immunoreactivity in both sexes, indicating a shift towards a reactive phenotype, coupled with
retractions of astrocytic processes from contact with excitatory synapses. These changes have critical functional implications for the role of
astrocytes on mediating glutamate transmission, innate immune activation, and excitotoxicity. As described in the text, cholinergic neurons also
change phenotype, some neurons lose the cholinergic phenotype and others show shrinkage of soma and loss of cholinergic markers in frontal
cortex and hippocampal projections. Some neurons are no longer cholinergic, and remaining neurons have small soma suggest neuronal phenotype
changes. These changes are associated with cognitive deficits, suggesting altered neurocircuitry. Evidence supports epigenetic mechanisms
persistently shift cellular phenotype, but are reversible by exercise and other anti-inflammatory treatments. Reversal of phenotype changes also
reverses behavioral deficits. Studies in the text support proinflammatory activation as altering cellular phenotypes from healthy growth repair to
survival phenotypes that associate with ethanol induced changes in cognition and reward seeking, behavioral phenotypes with increased risks for
AUD. Taken together, these results support that ethanol-induced changes in neuroimmune signaling mediate changes neurocircuitry that increase
risks for AUD, but that are reversible.
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induces additional glial activation and epigenetic shifts in

phenotypes across brain regions and cells (Figure 2).

Cholinergic neurons and hippocampal neuronal stem cells

are two cell types presented as examples of how HMGB1-TLR

proinflammatory signaling can directly alter neurocircuitry. AIE-

induced loss of both ChAT+ neurons and hippocampal

neurogenesis are prevented by indomethacin, an anti-

inflammatory drug, and anti-cholinesterases, which increase

acetylcholine and inhibit inflammation. Anti-inflammatory

drugs are under investigation for treatment of AUD [63].

HMGB1-TLR4 signaling causes partial cholinergic neurons

loss with remaining neurons shrunken due to induction of

epigenetic silencing mechanisms. AIE-induced loss of ChAT+

neurons persists long into adulthood, likely for life, unless

inhibited by anti-inflammatory or epigenetic drugs. This

represents a phenotypic change in cholinergic phenotype.

Although it is not clear, forebrain cholinergic-GABAergic

neurons are common and lost ChAT+ neurons may remain

GABAergic, altering target region circuitry. Cholinergic neurons

respond to NGF, which is an important trophic factor reduced by

AIE in target regions that could contribute to the reduced

cholinergic transcriptome. This is consistent with

proinflammatory-trophic transcription shifts in reducing

cholinergic cellular phenotype. Interestingly, in vivo and

in vitro reversal by anti-inflammatory, TLR4 antagonist or

drugs that block epigenetic changes supports persistent

proinflammatory signaling as maintaining epigenetic shifts in

cholinergic phenotype. The reversal of epigenetic changes offers

great promise for treatment of the chronic disease AUD. Changes

in hippocampal neurogenesis similarly suggest proinflammatory

increases and reduced BDNF trophic support alter the

neurogenic niche, reducing adult hippocampal neurogenesis.

Multiple cell types regulate the neurogenic niche and the

proposed proinflammatory-induced shifts in phenotype are

proposed for multiple cell types (Figure 2). Additional studies

of how proinflammatory changes in cell transcriptomes and

phenotypes contribute to progression to AUD across various

brain regions will provide opportunities to develop improved

treatments the have the promise of a cure through anti-

inflammatory and epigenetic reversal of transcriptome shifting

brain cell phenotypes.
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