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The aim of the current study was to determine whether non-nicotine

constituents of cigarette smoke contribute to nicotine dependence in

adolescent and adult male Sprague Dawley rats. For 10 days animals were

given three times daily intravenous injections of nicotine (1.5 mg/kg/day) or

cigarette smoke extract (CSE) containing an equivalent dose of nicotine. Both

spontaneous and mecamylamine-precipitated withdrawal were then

measured. Chronic treatment with CSE induced significantly greater somatic

and affective withdrawal signs than nicotine in both adolescents and adults.

Mecamylamine-precipitated somatic signs were similar at both ages. In

contrast, animals spontaneously withdrawn from chronic drug treatment

exhibited significant age differences: whereas adolescents chronically

treated with nicotine did not show somatic signs, those treated with CSE

showed similar physical withdrawal to those of adults. Mecamylamine did

not precipitate anxiety-like behavior at either age. However, both

adolescents and adults showed significant anxiety in a light-dark box test

18 h after spontaneous withdrawal. Anxiety-like behavior was still evident in

an open field test 1 month after termination of drug treatment, with adolescents

showing significantly greater affective symptoms than adults. Our findings

indicate that non-nicotine constituents of cigarette smoke do contribute to

dependence in both adolescents and adults and emphasize the importance of

including smoke constituents with nicotine in animal models of tobacco

dependence.
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Introduction

Physiological dependence is a key aspect of compulsive drug use [1]. Smoking

cessation can result in both somatic withdrawal signs, including insomnia and

bradycardia, and affective signs such as craving, restlessness, irritability, anxiety, and

difficulty concentrating [2]. These withdrawal signs can emerge within 20 min after

cessation and may persist for months [2, 3].
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Most tobacco use begins during adolescence [3]. Whereas teen

smoking has declined in the United States within the last decade,

the use of electronic cigarettes (e-cigarettes) has escalated [4–6].

Clinical studies report that teens are sensitive to withdrawal from

cigarette use, showing signs of dependence soon after initiation

and before establishing daily use [7, 8]. Teens can also become

addicted to e-cigarettes with dependence correlating highly with

salivary cotinine, a nicotine metabolite [6, 9, 10]. Although there

are limited data on withdrawal from e-cigarettes, there are likely

several common features between cigarette and e-cigarette

withdrawal, such as craving, tolerance, and impaired control

[11]. In one study of adults, ~25% of e-cigarette users had

withdrawal symptoms upon quitting which were less severe

than that caused by quitting tobacco cigarettes [12]. A recent

study of adolescents suggests similar levels of dependence in users

of e-cigarettes and combustible cigarettes [13].

Animal studies have shown that nicotine withdrawal

symptoms in adult rodents are similar to those of humans

smokers [14–16]. However, there are substantial differences in

the findings of clinical and preclinical studies of withdrawal in

adolescents. Whereas teenagers are very sensitive to the effects of

smoking cessation [7, 8], rodent adolescents show fewer somatic

and affective signs of nicotine withdrawal than adults [17–19].

One possible reason for this discrepancy is that most animal

studies use nicotine alone without non-nicotine constituents

found in cigarette smoke. Studies in which tobacco smoke is

chronically administered via inhalation induces physical

dependence in both adult and pre-adolescent rats [20–22].

Others have shown that inhibition of monoamine oxidase, as

occurs with tobacco smoke [23, 24], potentiates nicotine

withdrawal [25, 26]. However, none of these studies have

done systematic comparisons across drugs and ages, as our

current study does.

Use of aqueous cigarette smoke extract (CSE) permits the

study of the collective effects of thousands of cigarette smoke

constituents on withdrawal. In solution form it allows control of

daily drug exposure, which may not be possible via inhalational

exposure. We have previously found that CSE self-

administration is associated with increased stress-induced

reinstatement as compared to nicotine alone [24, 27], which

may indicate that tobacco constituents sensitize animals to stress

responses and to the negative effects of tobacco dependence. The

present study tests this hypothesis by comparing the effects of

daily exposure to CSE and nicotine on both somatic and affective

signs of spontaneous and precipitated withdrawal in adolescent

and adult male rats. This work is part of the dissertation of the

first author [28].

Materials and methods

The materials and methods used in this study have been

described previously [28].

Animals

Male Sprague Dawley rats (Charles River Labs, Hollister CA)

were delivered at postnatal day (P)17 with dam or at P81 and were

housed 2–3 per cage in a humidity- and temperature-controlled

vivariumwith a 12 h light cycle, with lights turned on at 7 a.m. daily.

Pups were weaned at P21 and similarly housed. To reduce surgical

stress, animals were handled for 2 days prior to catheterization

surgery. Adolescents were free-fed while adults were food restricted

to be kept at a 95% free-feeding weight during the duration of

experiments. All experimental procedures followed NIH guidelines

and were approved by the Institutional Animal Care and Use

Committee of the University of California, Irvine.

Drugs

Nicotine hydrogen tartrate (Sigma, St. Louis, MO) was

dissolved in sterile saline and adjusted to pH 7.2–7.4, with

dose calculated as free base. Mecamylamine HCl (Tocris

Bioscience, Bristol, United Kingdom) was dissolved in sterile

saline with dose calculated as salt. CSE was produced by bubbling

commercial cigarette smoke (Camel unfiltered, R.J. Reynolds

Co.) through sterile saline, as described previously [24, 29].

The final CSE solution was adjusted to pH 7.2–7.4 and was

prepared each day immediately before experimental testing to

minimize potential degradation of the constituents. CSE was

regularly analyzed by GC-MS (UCI Mass Spectrometry Facility),

with some samples also sent to an outside facility (UCSF Clinical

Pharmacology Laboratory), to verify nicotine content.

Surgery

Adults (P85–87) and adolescents (P26–28) were anesthetized

with equithesin (0.0035 mL/g body weight) and implanted with

indwelling jugular vein catheters based on previously published

methods [24]. Animals were anesthetized with Equithesin (0.3 mL/

100 g, i.p. for adults, 0.25 mL/100 g, i.p. for adolescents) and a

chronic catheter was passed subcutaneously from the animal’s

back to the jugular vein where the tubing was inserted. Wounds

were closed with clips, antiseptic ointment applied, and Baytril

(0.1 mL/150 g, i.m.) was injected to prevent infection. During the

2–3 days recovery period, and for the remainder of the study,

animals were flushed daily with heparinized saline solution (1 mL

of 1,000 units/mL heparin into 30 mL bacteriostatic saline).

Chronic drug treatment

Following recovery from surgery, adult (P89-91) and

adolescent rats (P30-32) were weighed daily and given passive

intravenous injections of saline, nicotine or CSE in an operant
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chamber programmed to deliver one injection per minute for

15 min (15 infusions per session), to yield a total of 0.5 mg/kg

nicotine (free base) or CSE nicotine content per session [total of

0.5 mg/kg nicotine (free base) or CSE nicotine content per session

(33.33 μg/kg nicotine content/infusion; 70 μL/infusion in 3.92 s for

adults and 35 μL/infusion in 1.96 s for adolescents)]. Rats received

three daily infusion sessions (9 a.m., 12 p.m., 3 p.m.) totaling

1.5 mg/kg/day of nicotine content for 10 consecutive days,

including weekends. The dose of nicotine delivered is within

the range of prior self-administration studies with nicotine and

CSE in adolescents and adults [30].

Spontaneous somatic withdrawal

For spontaneous somatic withdrawal, rats underwent

withdrawal scoring before surgery and drug treatment began,

and 1, 4, 18, and 48 h after the last drug injection. Somatic

symptoms were assessed for 30 min following 30 min

habituation to the open field chamber (17″ × 17″ × 12″) (Med

Associates, St. Albans, VT). An observer blind to drug groups

scored the following symptoms: body shakes, tremors, eye blinks,

genital licks, gasps, head shakes, ptosis, teeth chattering, yawns, and

writhes [30]. Withdrawal was defined as a significant increase in

total withdrawal symptoms as compared to the saline group at the

same time point. Catheter patency was verified by rapid anesthesia

following infusion of 0.1 mL of propofol (Abbott Laboratories,

Chicago, IL) after scoring the 4 h withdrawal time point. Animals

without patent catheters were excluded from analysis.

Precipitated somatic withdrawal

To investigate nAChR involvement in CSE withdrawal, a

separate group of animals received an injection of saline or

mecamylamine (1 mg/kg. s.c.), a non-selective nAChR

antagonist, immediately following the last drug infusion, and

were placed in the open field chamber and scored for somatic

withdrawal symptoms for 60 min. Withdrawal was defined as a

significant increase in total withdrawal symptoms as compared to

the vehicle treated group. Catheter patency was verified for rapid

anesthesia by infusing 0.1 mL of propofol (Abbott Laboratories,

Chicago, IL) immediately following the test. Animals without

patent catheters were excluded from analysis.

Spontaneous affective withdrawal

Spontaneous affective withdrawal was measured 18 h

following the last drug infusion using the light-dark box test

for anxiety-like behavior. Animals were isolated in a plexiglass

cage (16″ × 16″ × 12″) in the behavior testing room for 10 min,

then were placed in the dark side of a light-dark box (17″ × 8.5″ ×

12″ each side) (Med Associates, St. Albans, VT) and the time

spent in the light versus dark chambers was recorded for 5 min

[31]. Anxiety-like behavior was defined as an increase in the time

spent in the dark side as compared to the saline group. The same

groups of animals were tested for anxiety-like behavior using

analysis of center time in an open field 30 days following the last

drug infusion. Animals were isolated in a plexiglass cage in the

behavior testing room for 10 min, then were placed in the center

of an open-field chamber (43.2 cm × 43.2 cm × 30.5 cm) and the

time spent in the center versus the periphery was recorded for

5 min. Anxiety-like behavior was defined as a decrease in the time

spent in the center of the open field chamber as compared to the

saline group.

Precipitated affective withdrawal

To measure precipitated affective withdrawal, animals were

injected with saline or mecamylamine (1 mg/kg, s.c.)

immediately following the last drug infusion and isolated in a

plexiglass cage for 20 min. After isolation, and a 5 min room

habituation, the rats were placed in the dark side of a light-dark

box (Med Associates, CA) and the time spent in the dark versus

light chambers was recorded for 5 min. Anxiety-like behavior

was defined as an increase in the time spent in the dark

compartment as compared to vehicle treated groups.

Data analysis

Age differences in mean total spontaneous somatic

withdrawal symptoms following chronic nicotine or CSE

treatment were analyzed with a 3-way ANOVA for Age ×

Drug × Time, with repeated measures on Time. Significant

main effects were analyzed further with ANOVAs and

Bonferroni-corrected paired or unpaired t-tests, where

appropriate. For spontaneous affective withdrawal, the % time

spent in the dark side and the % time spent in the center were

analyzed with a 2-way ANOVA for Age x Drug. Significant main

effects were analyzed further with Bonferroni-corrected unpaired

t-tests. For precipitated withdrawal, differences in mean total

precipitated somatic withdrawal symptoms and % time spent in

the dark side were analyzed with a 3-way ANOVA for Age x Drug

x Antagonist dose. Significant main effects were analyzed further

with ANOVAs and unpaired t-tests.

Results

Spontaneous somatic withdrawal

3-way ANOVA revealed overall effects of Age (F1,50 = 8.185,

p = 0.006), Drug (F2,50 = 26.626, p = 0.000), Time (F3,150 = 4.698,
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p = 0.004), with Age × Drug (F2,50 = 3.436, p = 0.04) and Time ×

Drug (F6,150 = 3.508, p = 0.002) interactions. Adults treated with

CSE showed significant spontaneous somatic signs earlier than

those treated with nicotine (Figure 1A). Overall ANOVA showed

significant effects of Drug (F2,26 = 14.894, p = 0.001). CSE

withdrawal, defined as significantly different from saline-

treated controls, was evident 4 h after the last CSE infusion

(p = 0.006) and was significantly greater than that of rats

treated with nicotine alone (p = 0.03). Significant nicotine and

CSE withdrawal were seen 18 h (p = 0.029, p = 0.006,

respectively), and at 48 h (p = 0.005, p = 0.001, respectively)

after the last drug infusion.

Spontaneous cessation of CSE, but not nicotine, resulted in

somatic withdrawal in adolescent rats (Figure 1B). There were

significant Drug (F2,24 = 17.041, p < 0.001) and Time effects

(F3,72 = 6.589, p = 0.001), and a significant Time ×Drug interaction

(F6,72 = 4.674, p < 0.001). As has been reported previously [18, 19],

adolescent rats did not show somatic withdrawal signs after a

moderate dose or schedule of chronic nicotine treatment at any

time point. Adolescent animals treated with CSE showed

significantly higher somatic withdrawal signs than those treated

with saline at 1, 18, and 48 h (p = 0.047, p < 0.001, p = 0.006,

respectively) or nicotine at 4 and 18 h (p = 0.025, p = 0.001).

Adults treated with saline showed higher somatic signs than

adolescents at 18 h (F1,16 = 4.923, p = 0.041). Adults treated with

nicotine showed higher somatic signs than adolescents at 1 h

(F1,17 = 4.554, p = 0.048), 18 h (F1,17 = 5.074, p = 0.038), and 48 h

(F1,17 = 6.412, p = 0.021). Adults treated with CSE showed higher

somatic signs than adolescents at 48 h (F1,17 = 4.715, p = 0.044)

but not at earlier time points.

Precipitated somatic withdrawal

Precipitated somatic withdrawal was higher in both

adolescents and adults chronically treated with CSE than

those treated with nicotine (Figure 2). Overall ANOVA

showed significant Drug (F1,74 = 16.819, p < 0.001) and

Pretreatment effects (F1,74 = 123.144, p < 0.001), with a

significant Drug × Pretreatment interaction (F1,74 = 14.871,

p < 0.001). No significant Age effect or interaction was

observed, in contrast to spontaneous withdrawal. Whereas

injection with mecamylamine (1 mg/kg, s.c.) increased somatic

withdrawal signs in animals treated with CSE or nicotine (p <
0.001). precipitated withdrawal signs were significantly higher in

those treated with CSE (p < 0.001).

FIGURE 1
Spontaneous somatic withdrawal in adult and adolescent
rats. (A) Withdrawal from CSE in adult rats emerges sooner and is
more severe than from nicotine alone. (B) Adolescent rats
withdraw after cessation from chronic CSE treatment but not
chronic nicotine treatment. Animals were scored for somatic
abstinence signs at various time points after last drug treatment.
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001; +p ≤ 0.05 vs. adults. n adults =
9–10, n adolescents = 9 per group.

FIGURE 2
Precipitated somatic withdrawal in rats treated with CSE is
greater than rats treated with nicotine alone. Animals were given
vehicle or mecamylamine (1 mg/kg, s.c.) following drug treatment
and scored for somatic signs for 60 min ***p ≤ 0.001. n =
6–11 per group.
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Spontaneous anxiety-like behavior

Eighteen hours after the last drug infusion, CSE-treated rats

showed greater affective withdrawal signs than those treated with

nicotine (Figure 3A). Although there was a significant effect of

Drug (F1,51 = 18.281, p < 0.001), there was no Age or Age × Drug

interaction. Chronic CSE treatment significantly increased the

time animals spent in the dark compartment as compared to

chronic treatment with saline (p < 0.001) or nicotine (p = 0.001).

There were no significant differences in total ambulatory counts,

showing that the anxiety-related behavior did not result from

locomotor effects (Figure 3B).

Thirty days after cessation of drug treatments, animals still

showed anxiety-like behaviors, as measured by time spent in

the center of an open field (Figure 4A). At this time, there was

an overall effect of Drug (F2,48 = 5.724, p < 0.001) with a strong

trend for an Age effect (F1,48 = 3.876, p = 0.055) and Age × Drug

interaction (F2,48 = 3.171, p = 0.051). Adults showed an

overall effect of Drug (F2,22 = 23.021, p = 0.01), with CSE-

treated rats spending less time in the center of the field than

those treated with nicotine (p = 0.009) but not saline.

Adolescents showed an overall Drug effect (F2,26 = 20.694,

p < 0.001), with CSE-treated rats spending less time in

the center of the field than saline- or nicotine-treated

animals (p < 0.001). Adolescents treated with CSE also

spent significantly less time in the center field than adults

treated with CSE (p = 0.032), showing that adolescents are

more susceptible to long-term anxiogenic effects of chronic

CSE treatment than adults. The anxiety-like behaviors

following long-term drug withdrawal did not result from

locomotor effects, as there were no overall Drug or Age

effects for total ambulatory counts (Figure 4B).

FIGURE 3
Drug, but not age, differences in anxiety-like behavior in a
light-dark box test at 18 h post drug treatment. (A) The percent of
time spent in the dark side of the light-dark box was recorded for
5 min. (B) Total ambulatory counts were recorded as a
measure of locomotion. ***p ≤ 0.001. n = 8–11 per group.

FIGURE 4
Age and drug differences in anxiety-like behavior in an open
field at 30 days post treatment. (A) The time spent in the center of
the open field box was recorded for 5 min. (B) Total ambulatory
counts were recorded as ameasure of locomotion. *p ≤ 0.05;
***p ≤ 0.001. n = 8–11 per group.
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Precipitated anxiety-like behavior

Mecamylamine did not precipitate anxiety-like behavior in

rats treated with CSE or nicotine (Figure 5A). Total ambulatory

counts showed a significant effect of Age (F1,55 = 9.139, p =

0.004), with adolescents treated with CSEmoving less than adults

(p < 0.05) (Figure 5B).

Discussion

The current study shows that CSE enhances spontaneous

somatic and affective withdrawal in adult and adolescent rats

as compared to chronic treatment with nicotine alone [28].

Since there was equivalent nicotine content across drug

groups, this indicates that the non-nicotinic constituents in

CSE contribute to neuroadaptations that occur during the

formation of dependence, resulting in a greater withdrawal

syndrome upon cessation. Animals treated with CSE showed

higher mecamylamine-precipitated somatic withdrawal than

animals treated with nicotine alone, suggesting that cigarette

smoke constituents may enhance somatic withdrawal via a

nAChR-based mechanism. Whereas termination of CSE

treatment increased anxiety as compared to treatment with

nicotine alone, the role of nAChRs is less clear, since

mecamylamine did not precipitate affective withdrawal

following either CSE or nicotine treatment.

Methodological issues

The study of tobacco use with preclinical models has been

challenging as it is difficult to find an appropriate method to treat

animals in a way that best mimics human smoking [28].

Although studies with smoke inhalation have demonstrated

withdrawal after chronic treatment in adult and adolescent

rats, these studies best model passive tobacco smoke

inhalation [21, 32]. Another common way to chronically treat

animals with nicotine is with an osmotic pump which maintains

constant infusions over a chronic period [15–19]. This method

does not model the daily perturbations of tobacco use in smokers,

however. Nor does it permit alterations in the level of drug

delivery as a developing animal grows. The treatment paradigm

in the present study was via passive intravenous infusion, an

approach that allowed daily preparation of CSE, which has non-

nicotinic constituents of unknown stability. A further advantage

of this intravenous administration protocol is that it allows

easy control of the dose of nicotine that animals receive daily,

which is particularly important in adolescent animals that are

experiencing a rapid growth spurt. Thus, in contrast to earlier

studies [18, 19, 33], the current infusion methodology allows

direct comparison of the effects of equivalent chronic drug doses

in adolescent and adult rats. A prior study in adolescent mice has

shown that similar behavioral results can be obtained following

chronic nicotine administration via osmotic minipumps or daily

injections [34].

Nicotine withdrawal

Adolescent rodents have been shown previously to be

less sensitive than adults to the effects of nicotine

withdrawal [18, 19, 34]. This contrasts clinical studies that

show adolescents have greater withdrawal than adults when

quitting smoking [7, 8, 35]. We have replicated the finding

that somatic symptoms following withdrawal of chronic

nicotine treatment are lower in adolescent rats than adults.

In contrast, we found no age differences in somatic symptoms

when withdrawal was precipitated with mecamylamine.

This contrasts with other reports in which mecamylamine-

precipitated somatic withdrawal signs were less intense in

adolescent rodents than adults [19, 34].

FIGURE 5
Rats treated with CSE or nicotine show no differences in
precipitated affective withdrawal. (A) The time spent in the dark
side of the light-dark box test was recorded for 5 min following a
saline or mecamylamine injection (1 mg/kg, s.c.). (B) Total
ambulatory counts were recorded as a measure of locomotion.
*p ≤ 0.05 adult vs. adolescent. n = 6–9 per group.
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Neither adolescent nor adult rats showed significant

withdrawal-induced anxiety either 18 h or 30 days following

cessation of nicotine treatment, nor did mecamylamine

precipitate anxiety-like behavior. These findings contrast with

earlier reports; however, those studies used higher doses of

nicotine [34, 36, 37].

CSE withdrawal

Withdrawal symptoms in both adolescent and adult rats were

significantly more pronounced following chronic treatment with

CSE than with nicotine. In contrast to nicotine-exposed

adolescents who exhibited no somatic signs, spontaneous

withdrawal from CSE produced adolescent somatic symptoms

of similar intensity to those seen in adults. In contrast, no age

difference was seen in mecamylamine-precipitated somatic signs

in chronically CSE treated rats.

Eighteen hours following spontaneous withdrawal from

CSE, both age groups showed enhanced anxiety-like

behavior in a light-dark box test as compared to nicotine-

treated rats or saline controls. Anxiety-like behavior in an

open field test was still evident 30 days after spontaneous

CSE withdrawal and was greater in adolescents than adults.

Thus, the withdrawal syndrome that adolescents experience

following chronic CSE exposure may be different from

that in adults, with greater affective than somatic symptoms

and a different time course. Similar long-term elevation in

anxiety-like behavior has been seen in adult male mice

following chronic inhalation exposure to cigarette smoke

[32], and in adolescent rats given chronic daily nicotine

injections [38, 39].

Although chronic treatment with CSE increased

spontaneous anxiety-like behavior in adult and adolescent

rats, mecamylamine did not precipitate affective withdrawal

in either age group. This contrasts with what was observed

for somatic withdrawal symptoms. There are several other

reports that spontaneous and mecamylamine-induced

withdrawal may not yield identical effects on the same

behavioral test [15, 19, 40, 41]. The reason for this is not

clear but may reflect the differential affinity of

mecamylamine for multiple nAChRs [42].

Nicotinic receptors (nAChRs)

Prior studies have shown that different nAChRs have

prominent roles in somatic and affective withdrawal

symptoms. Mice with null mutation of β4 or α5 nAChRs

subunits have fewer somatic signs of withdrawal [43, 44]. In

contrast, elimination of β2 or α6 nAChR subunits attenuates

affective withdrawal symptoms [43, 45]. We have previously

shown that rats undergoing a chronic CSE treatment procedure

identical to that used in the current study exhibit changes in

nAChR binding in various brain regions 1 h after the last drug

infusion [46]. Daily nicotine treatment did not significantly

increase nAChR binding in any brain region at either age, a

finding that contrasts with prior studies using higher drug doses

and/or more chronic treatments [47–49]. Daily CSE exposure

selectively increased adolescent α4β2 nAChR binding in

medial amygdala and α7 nAChR binding in central

amygdala and lateral hypothalamus. CSE also increased

α3β4 nAChR binding in the medial habenula and

interpeduncular nucleus, and α7 binding in the medial

amygdala, independent of age. Almost all the brain regions

in which CSE induced significant changes in nAChR binding

have been associated with nicotine withdrawal behavior [50,

51]. The medial habenula—interpeduncular nucleus pathway is

particularly implicated in both somatic and affective signs

of nicotine withdrawal [52–54]. Interpeduncular nucleus

GABAergic neurons are dynamically regulated during

nicotine withdrawal, with resulting anxiety-like and somatic

symptoms [55]. Furthermore, infusion of a β4-selective nAChR
antagonist into the interpeduncular nucleus elicits somatic

signs of nicotine withdrawal [56]. Thus, the CSE-induced

increases in α3β4 nAChR binding seen in the medial

habenula—interpeduncular nucleus pathway at both ages

may underlie the observed increases in somatic withdrawal

signs. Although the animals were currently exposed to CSE by

passive exposure, it should be noted that we have previously

noted that adult rats who self-administered CSE exhibit

functional changes in α3β4 nAChRs mediating reinstatement

of drug-seeking behavior [57].

Non-nicotine constituents

Although substantial work has been done on the identity

of non-nicotine constituents that impact nicotine

reinforcement and reward [24, 26, 58–62], there are few

studies that have looked at the impact of individual

constituents on nicotine withdrawal. One exception is

monoamine oxidase inhibitors (MAOIs) in tobacco which

reduce enzyme activity in the brains of smokers [63] and are

present in CSE extracts [24, 64]. In rats, chronic MAOI

treatment induces a prolonged conditioned placed aversion

associated with nicotine withdrawal [25]. Furthermore, acute

inhibition of MAO-A induces significantly greater nicotine

somatic withdrawal signs than in control rats [26]. Thus, it

may be MAOIs within CSE that induce greater somatic

and affective withdrawal symptoms observed in the current

study. Further experiments are required to examine the

impact of MAOI inhibition on nicotine withdrawal in

adolescents, and to determine whether there are similar

alterations in α3β4 nAChRs observed in chronic CSE studies

[40, 57].
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Limitations

The current study has a few limitations. One of the major

challenges in studying smoking in animals is using a model that

best models smoking in humans, with use of CSE being no

exception. In this study we used three times daily intravenous

injections of drugs rather than the more commonly used osmotic

minipump. There were advantages to this approach, including

mimicking human consumption patterns, regular refreshing of

CSE solution and matching drug intake to body weight in

growing adolescents. However, given this different route of

administration, we cannot fully compare our findings with

those of earlier studies. Furthermore, although adolescent and

adult animals were given matching doses, blood levels of nicotine

and cotinine have been found to be lower than adults, impacting

the validity of age comparisons [65]. Another limitation is that

CSE contains only the aqueous constituents of cigarette smoke,

and not the remaining ~60% of non-aqueous components [28,

66]. The extracts commonly used in tobacco research are

prepared in an organic solvent in order to dissolve the tar

phase of the smoke [67, 68]. Since the current experimental

paradigm requires intravenous infusion of CSE, an organic

solvent was not practical.

One final limitation is the absence of female animals in our

experimental design. As with the current study, most prior

studies of nicotine withdrawal have focused on male rodents.

However, substantial sex differences have been observed in both

clinical and preclinical studies. Adult women are more likely than

men to relapse after quitting cigarette use because of withdrawal

symptoms, including tension, anxiety and craving [69, 70].

Adolescent females also report higher levels of stress and

depression during withdrawal than their male counterparts

[71]. Preclinical studies have similarly shown that adult, but

not adolescent, females exhibit greater somatic and affective

withdrawal symptoms than males [36, 72]. Enhanced

withdrawal-induced anxiety in females is associated with

greater corticosterone and ACTH release than males,

indicating a more activated stress response [36, 73]. A recent

study has shown that sex differences in glutamate and GABA

response in the interpeduncular nucleus may mediate behavioral

differences in withdrawal [74]. Given our current findings that

CSE induces greater somatic and affective withdrawal signs in

both adult and adolescent males as compared to nicotine alone, it

will be very important to repeat this study in females.

Conclusion

Clinical studies in adults have indicated that smoking

cigarettes produces higher levels of dependence than vaping

e-cigarettes [12]. Similarly, adult mice chronically exposed to

cigarette smoke show greater somatic and affective symptoms

of withdrawal than those exposed to e-cigarette vapor [75]. In the

present study, we have confirmed that non-nicotine tobacco

constituents in CSE administered intravenously enhance both

physical and affective symptoms of nicotine withdrawal in adult

rats. We have previously shown that these constituents do not

impact nicotine self-administration, but do enhance reinstatement

induced by the pharmacological stressor, yohimbine [24, 27] and

elevate and increase intracranial self-stimulation thresholds to a

greater degree than high doses of nicotine alone [64]. Thus,

tobacco constituents appear to increase the negative impact of

withdrawal from chronic nicotine.

Given the recent substantial increase in e-cigarette use by

teenagers [4–6], it is important to evaluate whether this mode of

nicotine delivery produces similar levels of dependence to that of

tobacco cigarettes. To date there have been no direct comparisons

of the effect of tobacco smoke constituents. We have confirmed

that chronic nicotine treatment results in higher somatic

withdrawal signs in adolescents than adults. We have also

shown that chronic nicotine, at this low dose, does not result in

different anxiety-like behaviors in adolescents and adults following

acute and long-term withdrawal. We now show that chronic CSE

induces greater levels of both physical and affective dependence in

adolescent rats than equivalent doses of nicotine alone. Our

findings agree with prior studies that nicotine alone produces

very little physical dependence in adolescent rodents [18, 19].

However, tobacco constituents increase somatic withdrawal

symptoms in adolescents to levels observed in adults.

Adolescents also show similar anxiety to adults immediately

following spontaneous withdrawal of CSE and continue to

exhibit this 1 month later at a level greater than that of adults.

These findings complement our earlier observations that cigarette

smoke constituents enhance yohimbine-induced reinstatement of

nicotine seeking behavior in adolescents [27]. Future studies will be

required to determine the mechanism of CSE action in enhancing

withdrawal signs. However, it seems likely that elevated levels of

α3β4 nAChR binding in the habenulo-peduncular pathway

underlies the increased somatic symptoms of withdrawal in

both adolescents and adults. Overall, our findings indicate the

importance of using CSE, instead of nicotine alone, in preclinical

models of tobacco dependence.
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