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Drug abuse and related disorders are a global public health crisis affecting

millions, but to date, limited treatment options are available. Abused drugs

include but are not limited to opioids, cocaine, nicotine, methamphetamine,

and alcohol. Drug abuse and human immunodeficiency virus-1/acquired

immune deficiency syndrome (HIV-1/AIDS) are inextricably linked. Extensive

research has been done to understand the effect of prolonged drug use on

neuronal signaling networks and gut microbiota. Recently, there has been rising

interest in exploring the interactions between the central nervous system and

the gut microbiome. This review summarizes the existing research that points

toward the potential role of the gut microbiome in the pathogenesis of HIV-1-

linked drug abuse and subsequent neuroinflammation and neurodegenerative

disorders. Preclinical data about gut dysbiosis as a consequence of drug abuse

in the context of HIV-1 has been discussed in detail, alongwith its implications in

various neurodegenerative disorders. Understanding this interplay will help

elucidate the etiology and progression of drug abuse-induced

neurodegenerative disorders. This will consequently be beneficial in

developing possible interventions and therapeutic options for these drug

abuse-related disorders.
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Introduction

Drug abuse is a significant global problem prevalent in those infected with Human

Immunodeficiency Virus-1 (HIV-1). The most commonly abused drugs in HIV-1 infected

individuals are opioids, alcohol, cocaine, cannabis, methamphetamine (Meth), and

nicotine. Among all the drugs used, opioid abuse is a growing problem since opioids

are often the mainstay of pain management in infected individuals. While these drugs

effectively control the pain associated with HIV-1, their long-term use is associated with

addiction, tolerance, and neurocognitive impairment, adding to the burden of behavioral

deficits in HIV-1-infected individuals. When HIV-1-affected individuals use morphine, it

may cause a loss of functional connectivity between the amygdala and the frontal cortex of

the brain, insula, and striatum leading to neurodegenerative effects (1). Alcohol

OPEN ACCESS

EDITED BY

Emmanuel Onaivi,
William Paterson University,
United States

REVIEWED BY

Yuri Persidsky,
Temple University, United States
Laura Orio,
Complutense University of Madrid,
Spain

*CORRESPONDENCE

Palsamy Periyasamy,
palsamy.periyasamy@unmc.edu
Shilpa Buch,
sbuch@unmc.edu

†These authors have contributed equally
to this work

RECEIVED 01 December 2022
ACCEPTED 23 February 2023
PUBLISHED 03 March 2023

CITATION

Ray S, Sil S, Kannan M, Periyasamy P and
Buch S (2023), Role of the gut-brain axis
in HIV and drug abuse-
mediated neuroinflammation.
Adv. Drug. Alco. Res. 3:11092.
doi: 10.3389/adar.2023.11092

COPYRIGHT

© 2023 Ray, Sil, Kannan, Periyasamy and
Buch. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Advances in Drug and Alcohol Research Published by Frontiers01

TYPE Review
PUBLISHED 03 March 2023
DOI 10.3389/adar.2023.11092

https://crossmark.crossref.org/dialog/?doi=10.3389/adar.2023.11092&domain=pdf&date_stamp=2023-03-03
mailto:palsamy.periyasamy@unmc.edu
mailto:sbuch@unmc.edu
https://doi.org/10.3389/adar.2023.11092
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/adar.2023.11092


consumption in the form of ethanol is both toxic and has

metabolic and addictive effects on the brain, accumulating over

time with age, dose, and duration of exposure. Severe debilitating

diseases of the central nervous system (CNS) and the peripheral

nervous system are known to manifest due to alcohol

consumption. For example, it is well established that prenatal

alcohol exposure paves the way for lifelong behavioral, cognitive,

and psychological problems, which account for a range of

cognitive dysfunctions referred to as fetal alcohol spectrum

disorders (2). Prolonged heavy alcohol abuse has been shown

to lead to neurodegeneration and proportionate loss of cerebral

white matter. The affected regions in chronic alcohol-related

metabolic injury and degeneration include the cerebellum

(especially the vermis), cortical-limbic circuits, skeletal muscle,

and peripheral nerves (3). Specifically, alcohol impairs neuronal

and glial cell functionality (3). Also, alcohol exerts prolonged

effects at the cellular and systemic levels of the neurological

networks, leading to neurodegeneration. Excess alcohol

exposure is associated with specific diseases such as dementias,

ataxias, and Niemann-Pick disease (4). Both excess and heavy

alcohol consumption contribute to the development of

neurodegenerative diseases, such as amyotrophic lateral

sclerosis (ALS) and Alzheimer’s disease (AD). The brain is a

major organ of alcohol accumulation, and this is linked to brain

damage. Long-term alcohol abuse increases glutamate

excitotoxicity and oxidative stress, resulting in neuronal

damage (5). Besides alcohol, psychostimulants like cocaine,

amphetamines, and nicotine have also been implicated in

disruption of blood-brain-barrier (BBB), neural plasticity, and

neuroinflammation (6, 7). There are case reports suggesting the

association of cocaine overuse with accelerated neurodegeneration

exhibiting symptoms similar to that found in Parkinson’s disease

(8). It has also been shown that iron metabolism regulation and

storage lead to dopamine accumulation in cocaine-abusing

individuals, resulting in neuroadaptive changes in the basal

ganglia (9). Other than genetic events, epigenetic events also

play a major role in neurodegeneration mediated by abuse of

substances such as cocaine and Meth, as well as opioids.

Epigenetic changes are established by classical pathways,

including the class III histone deacetylase-sirtuin family

modifications by the stimulatory effects of drugs in the form of

psychostimulants (10). Drugs of abuse have also been extensively

reported to cause dysbiosis of the gut microbiome and, there is

significant amount of evidence that links the dysbiotic gut

microbiome to mental health and neurodegeneration (11-14).

In this review, we summarize existing research, including

preclinical and clinical studies about correlation between HIV-

1-linked drug abuse and the intestinal microbiota, and the

potential role of the resultant dysbiotic gut microbiome in the

pathogenesis of neurodegenerative disorders (Figure 1).

FIGURE 1
Schematic depicting the gut microbiome dysbiosis and its effects on the gut-brain axis in the context of HIV-1 and drug abuse.
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Gut microbiome and the gut-brain
axis

The gut microbiome comprises a highly diverse repertoire of

trillions of microbes that dwell in the gut linings and has been

identified as a marker associated with various disease conditions.

There is a standard composition of microbes in the gut for the

metabolism and energy assimilation of the body. Several

environmental, nutritional and genetic factors influence the

multiplication of gut microorganisms and their compositional

modifications (15). The human gut microbiome consists of

various microbes that are beneficial to the body for

metabolism and involved in a communication pathway to the

CNS via the bidirectional “microbiota-gut-brain axis,”which was

initially termed the “gut-brain axis.” In the 1960s, the brain was

thought to control gut function which served as the basis for

coining the term “gut-brain axis.” Later, bidirectional

interactions between the gut microbiota and the CNS was

discovered and was defined as the “microbiota-gut-brain axis

(16-19). Recent findings implicate the role of the gut-brain axis in

regulating behavior and responses to drugs and, thus,

underpinning its role in reward and satiety (20-22). The vagus

nerve physically connects the gut and the brain through an

interplay of neurotransmitters and metabolites (23-26). The

existence of specific microbes in the gut is known to regulate

both the immune system (27-30) and inflammation (31-34).

Both preclinical and clinical studies have demonstrated a pivotal

role of the gut microbiota in brain functioning (35), mood (36),

and behavior (37, 38). Gut microbiota regulates the

differentiation and function of immune cells of the intestine,

periphery, and brain (39-41). Growing evidence also points to the

critical role of the gut microbiota and the immune system in

regulating the pathogenesis of neurodevelopmental and

neurodegenerative diseases (12).

There is an altered influx and efflux of microbial metabolites

and immune mediators between the gut and brain, leading to

impaired neurotransmission and the advent of many

neuropsychiatric and neurological disorders (42). Microbiome

changes, termed dysbiosis, result in acute and chronic stages of

several diseases, such as depression (43). Further, dysfunctional

glutamate neurotransmission is involved in the D-glutamate

signaling pathway observed in AD models in which the gut

microbiome metabolized D-glutamate influences the glutamate

N-methyl-D-aspartate receptors and cognitive function in

dementia patients (44). The gut microbiota has also been

linked to the development of schizophrenia (42). The “gut-

brain axis” encompasses several key signaling pathways. The

immune system, the vagus nerve, or microbiota-modulating

neuroactive compounds may drive these pathways. Existing

literature also points toward the fact that bacteria present in

the gut microbiome are responsible for the production and

consumption of several mammalian neurotransmitters, such as

dopamine, serotonin, norepinephrine, or gamma-aminobutyric

acid (GABA). Reports suggest that, on the one hand, any change

in the levels of these neurotransmitters by bacteria could impact

host physiology, while on the other hand, any form of

microbiota-based interventions could also alter

neurotransmitter levels (45). A prime example of this

regulation is the impact of the gut microbiome on tryptophan

metabolism and the serotonergic system (46). In such a scenario,

the interaction between gut microbes with drugs of abuse is

complex since gut microbes can directly impact the response of

an individual to a specific drug by enzymatically modifying the

structure of the drug and, in turn, affecting its availability,

activity, or toxicity in the system. The drugs of abuse can also

influence the microbiome composition (47-51).

Drug abuse and gut microbiome

Recent evidence implicates the gut-brain axis in the

regulation of not only behavior but also a response to drugs

in terms of reward and satiety. The vagus nerve connects the gut

and brain, but several metabolites, hormones, and

neurotransmitters regulate this connection. Such an influence

of gut microbes on brain functions has been supported by studies

in both preclinical and clinical models (52). During drug abuse,

the gut-brain axis is disrupted, leading to modifications in the

normal microbiota composition and dysregulated expression of

neurotransmitters, bile acids, and metabolites, such as short-

chain fatty acids (SCFA). Alterations in SCFA levels mediate tight

junction dysfunction resulting in aberrant permeability of the gut

epithelium, which can activate a wide range of proinflammatory

signaling pathways (53). The hypothalamic-pituitary axis is

linked to this inflammation in the gut, which subsequently

sends feedback to the CNS, resulting in pain, stress, and

anxiety (52). Herein, we discuss the role of the microbiota-

gut-brain communication in the context of drug abuse in

people living with HIV-1 (PLWH).

Opioids and HIV

Opioids comprise a large class of compounds with different

mechanisms of action and include heroin, morphine, oxycodone,

fentanyl, methadone, buprenorphine, and nalorphine, among

several others (54). Opioid receptors are widely distributed in the

central and peripheral nervous systems and the digestive tract

(55, 56). Prescription opioid drugs are used to treat moderate to

severe chronic pain. Recently, the use of various opioid drugs and

their abuse, which can lead to tolerance and dependence, has

become a severe public health issue (57). According to the

Centers for Disease Control and Prevention, out of the

92000 people who died from a drug overdose in 2020, 75%

were due to prescription or illicit opioid use (58).Most studies on

the gut-brain axis and opioid abuse are based on the exogenous
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opioid compound morphine. Severe constipation is a primary

physiological manifestation of chronic morphine use and has

been linked to disruption of the gut epithelium and microbial

dysbiosis (59). Animal models commonly used to study the

pathways involved in the interaction between the host-gut

microbiome and opioid drugs involve rodents, particularly

mice and rats, primarily for economic reasons. However,

recent studies have also focused on non-human primates

(NHPs) as they are both physiologically and genetically closer

to humans (60). The major outcome of these studies is a gut

microbial imbalance or dysbiosis due to opioid use. Preclinical

animal studies show that morphine exposure increases the

abundance of pathogenic bacteria (Flavobacterium,

Enterococcus, Fusobacterium, Sutterella, Clostridium,

Rikenellaceae, and Ruminococcus). Once tolerance is

developed, it causes a significant decrease in the quantities of

beneficial bacteria (Lactobacillus and Bifidobacterium) (59, 61). It

is difficult to extrapolate the data from the rodent preclinical

models to the effect of morphine on human microbiota due to

several factors such as genetic background, geographical setting,

and lifestyle (60, 62). Human clinical studies also display

variations in the presence of Bacteroidetes, Firmicutes, and

Actinobacteria phylum of microbiota, consistent with rodent

studies. However, there are only a limited number of studies

utilizing NHPs to comment on any close association between the

effect of opioids on gut microbiota in humans and that of NHPs.

It has been reported that opioid-induced gut dysbiosis, which

causes structural changes in the gut epithelium, is responsible for

tolerance and withdrawal behaviors. Disruption of the gut

epithelium, in turn, allows bacteria and their toxic products to

enter the host circulatory system, subsequently activating several

inflammatory pathways and neuroinflammation. Withdrawal

and tolerance linked to chronic opioid use have been related

to this neuroinflammation (61, 63). The integrity of the gut

epithelium depends on several factors, like the disruption of tigh-

junction (TJ) organization and the restoration of the depleted

epithelial layer by intestinal stem cells. The toll-like receptor

(TLR) signaling is responsible for regulating intestinal TJ protein

(TJP) organization. It has also been reported that morphine can

disrupt the arrangement of the TJPs via modulation of myosin

light chain kinase signaling (MLCK) in a TLR-dependent

manner (64).

Opioid-induced microbial dysbiosis is responsible for

continuous immune activation leading to HIV-1 disease

progression. Several studies report that opioid addicts are at a

greater risk of HIV-1 infection (65). Several factors, including the

usage of contaminated needles and the nutritional status of the

infected individual, could likely play a role in the heightened

susceptibility of opioid abusers to HIV-1 infection. However,

reports indicate that opioid use alone can also increase the risk of

HIV-1 infection (66). There is ample evidence suggesting that

HIV-1 infection disrupts the structure and function of the gut

epithelium, leading to AIDS progression. Reports suggest that

HIV-1 modulates tight junctions by disrupting CD4+ T cells,

which are responsible for maintaining tight junctions (67). HIV-

1 proteins such as Tat (transactivator of transcription) and

gp120 have also been reported to disrupt tight junctions on

epithelial cells in culture (68). Studies also report that simian

immunodeficiency virus (SIV) infection results in early

upregulation of proinflammatory cytokine IL-1β in the colon

of the rhesus macaques (69) as well as in the intestine of HIV-1-

infected patients (70), which, in turn, could activate the MLCK,

resulting in mucosal damage. SIV-infected African green

monkeys exhibit an accelerated depletion of CD4+ T cells in

the intestine (71). An identical phenomenon is found in HIV-1-

infected humans and SIV-infected rhesus macaques, suggesting

that microbial translocation through the disrupted gut

epithelium affects SIV disease progression.

Opioid users have been reported to display rapid HIV-1

disease progression while demonstrating severe long-term effects

such as neurocognitive disorders (72). Certain opioid abusers

infected with HIV-1 show elevated levels of lipopolysaccharide

(LPS) in their serum compared to non-users, thus underscoring

that disruption of the gut epithelium is more acute in HIV-1

patients who use opioid drugs (73). Preclinical and clinical

studies done in HIV-1-infected patients indicate that

morphine-mediated disruption of intestinal tight junctions

involves activation of MLCK. This has also been validated in

rodent models where combination of opioids and HIV-1

infection either synergistically and/or additively activate

MLCK, leading to increased gut epithelium permeability,

which is observed in HIV-1-infected patients misusing opioids

(74). Opioids have also been reported to promote HIV-1 disease

progression by disrupting the intestinal epithelial self-repair

mechanism and reducing epithelial proliferation in bone

marrow-liver-thymus humanized mice and in opioid-using

HIV-1+ patients (75). Cumulatively these studies underscore

the pivotal role of gut microbiota in the disease progression of

HIV-1 infection while also demonstrating that opioid abuse by

HIV-1 patients can lead to severe disruption of gut homeostasis,

resulting in an accelerated progression of the disease in

comparison to drug naïve, infected individuals.

Cannabis and HIV

Despite controlling the HIV-1 viral load with combined

antiretroviral therapy (cART), gut epithelium defects and

intestinal CD4+ cell depletion continue to persist. In HIV-1

infected patients compromised gut barrier function is aided by

the increase in apoptosis, and chronic inflammatory signals on

the one hand and the decrease in proliferation and repair of

epithelial cells, on the other hand. Alterations in tryptophan

metabolism leading to defects in microbes that produce butyrate

in PLWH and likely contribute to increased gut permeability

have been reported (76-78). A dysfunctional gut epithelium
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allows inflammatory microbial products such as LPS in the

periphery to be translocated (79-82). In particular, defects in

the gut epithelium make HIV-1+ individuals vulnerable to

increased exposure to proinflammatory ligands produced by

gut microbiota (78, 83, 84). These alterations lead to poor

HIV-1 disease outcomes, including associated neurocognitive

disorders (77).

Cannabis effectively alleviates symptoms associated with

HIV-1 disease and other conditions such as cancer and

neuropathic pain (85). Cannabinoids act on inflammatory

pathways through mechanisms distinct from agents such as

non-steroidal anti-inflammatory drugs (NSAIDs) (86).

Naturally occurring endocannabinoids, including cannabis,

have antioxidative and anti-inflammatory characteristics that

help in healing and restoration and thus can be used as

adjunctive therapy. As a class, cannabinoids are generally free

from the adverse effects of NSAIDs. A concise survey of the anti-

inflammatory actions of the phytocannabinoids Δ9-

tetrahydrocannabinol (THC), cannabidiol, cannabichromene,

and cannabinol has been reported (85-90). Meta-analyses of

several clinical trials have established the efficacy of cannabis

in HIV-1-related neuropathic pain and nausea (85-92), although

dosing and administration routes varied widely. Some studies

suggest that titrating dosing to effectiveness and side effects is a

valuable strategy for dose selection. While acute cannabis

exposure disturbs cognition, how its long-term use affects

brain function in the context of HIV-1 is yet to be elucidated

clearly (93, 94). Medicinal use of cannabis is becoming rapidly

accepted, and a state-level authorized disease management

strategy (95, 96). Healthcare providers identify the potential

benefits of cannabis by understanding the potential benefits of

symptom management. However, a few clinical studies on

patients using cannabis as therapy showed potential

dependence or possible adverse effects (93, 97). A better

understanding of the strategic use of cannabis could aid

clinicians in better treatment and therapeutic options with

their patients. Since not much research has been done to

assess the effects of cannabis in PLWH, there is a dearth of

reliable data for cannabis use recommendations in the clinical

field.

The endocannabinoid system is a complex network of

receptors and enzymes involved in synthesizing and detecting

endogenous lipid ligands (98-100). Most human tissues express

cannabinoid (type-1 and -2) receptors (98, 99). Cannabinoid

receptors type-2 are densely expressed in diverse immune cell

types, including macrophages, microglia, splenocytes,

monocytes, and T-cells resident in the thymus, spleen, and

bone marrow tonsils (98-100). Endocannabinoid system

signaling pathways are essential in HIV-1 infection for several

reasons and has been pursued as a target for future

pharmacotherapy to reduce inflammation (98-100). In HIV-1

infection, cannabis use has been shown to reduce systemic

inflammation and activate the immune system (101).

Furthermore, HIV-1 DNA is reported to decline more rapidly

in individuals taking antiretroviral therapy and using cannabis

than those not using cannabis (102). Cannabis use in PLWH

leads to aggravated dysbiosis and epithelial barrier dysfunction of

the gut, along with chronic inflammation and consequential ill

effect on overall health (79, 81, 82, 103). Chronic cannabis use is

reported to lower the abundance of Prevotella and increase the

abundance of Bacteriodes bacteria in the gut microbiome. Lower

abundance of Prevotella leads to systemic mitochondrial

dysfunction and reduction of gut SCFA production in

cannabis users which is linked to impairment in cognitive

function (104). It is also reported that administration of

cannabidiol-rich cannabis extract resulted in increased

abundance of A. muciniphila and significant decrease in

Alistipes finegoldii, Lachnoclostridium sp. YL32, and

Ruminiclostridium sp. KB18 alongwith remarkable

downregulation of mucin-2 which is associated with

maintenance of gut integrity. The study also found

upregulation of inflammatory markers IL-1β, CXCL1, and

CXCL2 which points towards the disruptive effect of long-

term cannabis use (105).

Cocaine and HIV

Cocaine is one of the most commonly abused drugs among

PLWH, and it has been suggested that it accelerates AIDS

progression. Based on the evidence that the limbic system of

the brain, comprising a set of interconnected regions regulating

pleasure and motivation, is the primary site of action for cocaine

helps explain its high potential for addiction and relapse.

Cocaine, a commonly used psychostimulant among PLWH, is

a cofactor for HIV-1 infection and progression to AIDS. Globally

almost 22.5 million people worldwide are affected by cocaine use

disorder, thus making it a significant public health crisis with a

high socioeconomic burden (106). Although cocaine is known to

have immunomodulatory functions (107-109), the underlying

mechanism(s) by which cocaine accentuates HIV-1 replication

remains unclear. There are reports that cocaine increases HIV-1

infection/replication by inhibiting HIV-1 protective chemokines

and/or upregulating the HIV-1 entry co-receptor (110, 111).

Cocaine is a potent vasoconstrictor and brain stimulant. Its abuse

leads to severe neurological (fainting attacks, hemorrhagic brain

strokes, CNS vasculitis, and encephalopathies), cardiovascular

(cardiac arrhythmia and heart attacks), and gastrointestinal

complications (112-117).

Cocaine abuse has been reported to alter the gut microbiota

composition which in turn affects the uptake and clearence of

neurotransmitters. One particular study reports higher

accumulation of norepinephrine in intestines of cocaine-

administred mice helped the resident Citrobacter rodentium to

flourish which resulted in depletion of the intestinal

neurotransmitter glycine. This also resulted in glycine
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depletion in circulation and cerebrospinal fluid of cocaine-

administered mice, which was in correlation with increased

hyperlocomotion and escalation of drug-seeking behavior

(118). The authors also reported alteration of synaptic

plasticity pathways at the transcriptome-level in the nucleus

accumbens of the cocaine-administered mice, and also that

the behavioral changes were reversed with dietary

supplementation of glycine or sarcosine (118). Another study

reports that cocaine administration in mice reduces the

abundance of Mucispirillum, Butrycicoccus, Ruminococcaceae,

Pseudoflavonifractor, and Lachnospiracea species of bacteria in

the gut microbiota which are the involved in the synthesis of

SCFAs involved in maintaining mucosal epithelium integrity.

Cocaine administration resulted in alteration of TJPs of the gut

membrane, upregulated expression of proinflammatory markers

NF-ĸB and IL-1β, and also disruption of the mucosal

permeability via MAPK/ERK1/2 signaling pathway (106).

Also, in case of mice with reduced gut-bacteria, cocaine

admistration resulted in increased sensitivity towards drug

reward as well as increased locomotor-sensitivity (119). These

studies reveal the critical role of gut microbiome in the behavioral

effects of cocaine addiction. The research on the gut microbiome

and its relationship with drug abuse is currently in its infancy

with a bright future, and still a long way to go.

Methamphetamine and HIV

Similar to other drugs of abuse, several preclinical and

clinical studies have demonstrated that Meth induces

alterations in the gut microbiome (49,120-123). However,

there is a lack of evidence directly linking the gut microbiota

with Meth-induced brain dysfunction (124). Meth has been

reported to promote the release of norepinephrine and

dopamine, leading to a markedly decreased intestinal

contractility and motor capacity (125). This decrease in

intestinal muscle tone is associated with oxidative and

nitrosative stress, which, in turn, can cause neuronal injury

and death in the intestine and disrupt intestinal barrier

functioning (126). Disruption of the intestinal mucosal barrier

increases the permeability of the gut epithelium and plays an

essential role in contributing to anxiogenic behavior (127), stress

(128), depression (129), cognitive decline (130), and eating and

sleep disorders (131). Disruption of the intestinal barrier also

leads to the leakage of several inflammatory factors (like TNF-α,
interferon-γ, IL-6), microbes, and metabolites from the gut

epithelium to the circulatory and lymphatic systems (132). It

has been reported that Meth use can increase the permeability of

the blood-brain barrier (133), thereby facilitating the entry of

microbial communities and metabolites to enter the brain (134).

In mouse models, Meth-exposure has been reported to increase

the abundance of pathogenic bacteria in the fecal microbiota

(120), with increased inflammation, reduced TJP expression in

the intestine, and decreased relative quantity of probiotics and

fecal metabolites. Further, Meth exposure was also shown to

enhance the intestinal autophagy-associated flora, concomitantly

leading to the induction of autophagy in the CNS (123). Intestinal

inflammatory biomarkers, including the proinflammatory

cytokines, are upregulated in Meth abusers and have been

reported to infiltrate the brain regions related to depression

(135), causing alterations in neurotransmitter metabolism,

neuroendocrine function, and neuroplasticity. A recent study

has also shown that gene sequencing of the 16S rRNA of the

rectal swab samples collected from individuals using Meth,

showed increased presence of bacterial species such as

Finegoldia, Peptoniphilus, Parvimonas, and Porphyromonas

and depletion of species like Faecalibacterium and

Butyricicoccus (122). In line with this study, other studies have

also shown that there were alterations in the composition of

microbes present in the gut of Meth users with decrease in

quantity of Bacteroidaceae and Deltaproteobacteria, and

increased abundance of Sphingomonadales, Xanthomonadales,

Romboutsia and Lachnospiraceae (49). Interestingly, these

alterations have been reported in those bacterial species which

had previously been demonstrated to be altered in individuals

with psychotic syndromes, thus pointing towards a potential link

betweenMeth abuse and psychotic disorders (49). Forouzan et al.

showed thatMeth exposure and withdrawal in rats resulted in gut

dysbiosis, which was linked to depression-like behavior as

evidenced by the forced swim test. However, the authors

reported no alterations in anxiety-like behaviors which was

assessed by either the elevated plus maze or the open field

test (136).

HIV-1 has been reported to alter the human intestinal

microbiome. An exciting study showed significant changes in

the microbiome in the context of drug abuse and sexual behavior

during HIV-1 infection. Rectal swab samples, urine drug test

results, along with responses to substance use and sex behavior

questionnaires were collected from 37 HIV-1-positive

individuals at two-time points, in a 6-month gap period, in a

group that was being evaluated for the effects of drug abuse in

men who have sex with men. The samples were subjected to 16S

ribosomal RNA gene sequencing, and the association of the data

with behavioral factors was examined using 0-inflated negative

binomial regression. Further analyses demonstrated that abuse of

Meth and marijuana exhibit unique associations. Meth use was

linked with increased Granulicatella and Porphyromonas

organisms in HIV-1 patients and a decrease in abundance of

Collinsella, Ruminococcus, and Parabacteroides organisms. In

contrast, marijuana use was associated with an increased

abundance of Clostridium cluster IV, Ruminococcus,

Fusobacterium, and Solobacterium organisms and decreased

Acidaminococcus, Dialister, Prevotella, Anaerostipes, and Dorea

organisms. From this study, it can be concluded that drug use and

sexual behavior are important factors associated with intestinal

dysbiosis during chronic HIV-1 infection among young men
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who have sex with men (137). Further, studies are warranted in

the field, specifically in association with HIV-1 infection and

drug abuse-related disorders.

Nicotine and HIV

Several reports have, on the other hand, demonstrated an

association between nicotine and microbiome dysregulation

(138-142). In one study aimed at assessing the link between

the smoking status of an individual and their intensity of

smoking with the relative abundance of gut microbial species

in 249 Bangladesh participants, it was reported that there was an

increase in the relative abundance of Erysipelotrichi and

Catenibacterium in current smokers in comparison to those

who had never smoked (139). Another interesting study

showed that long-term nicotine administration in rats resulted

in alterations of gut microbiota, which was more prominent in

rodents fed a high-fat diet than a regular chow diet, thus

indicating diet-dependent changes (142). In line with this

study, another study showed that cigarette smoke altered gut

microbiota composition, which was linked to modifications in

the distribution of primary bile acids and cholesterol homeostasis

(138). Another study also showed that oral administration of

nicotine in mice differentially reorganized the gut microbiome in

a gender-specific manner and, furthermore, modified the levels of

metabolites such as GABA and glutamate, which are involved in

gut-brain communication (142). A recent study has also

demonstrated that nicotine altered the gut microbiome and

metabolites involved in the gut-brain axis in a sex-specific

manner. This study employed high-throughput sequencing

and gas chromatography-mass spectrometry to evaluate the

effect of nicotine exposure on the gut microbiome and its

metabolism in C57BL/6J mice in a sex-dependent manner,

with special emphasis on the signaling pathways involved in

the gut-brain axis. The 16S sequencing results from this study

indicated that the composition of the gut microbiome was

differentially altered by nicotine in both females and males.

Also, the differential changes in the bacterial carbohydrate

metabolic pathways were consistent with lower body weight

gain in nicotine-administered males. Genes related to

oxidative stress response and DNA repair were also explicitly

upregulated in the gut microbiome of the nicotine-treated male

mice. Analysis of the fecal metabolome demonstrated that several

neurotransmitters, such as glutamate, GABA, and glycine, and

neuroactive metabolites-leucine and uric acid, were also

differentially altered in female versus male mice. This study

showed a sex-dependent effect of nicotine on gut microbiome

composition, functional bacterial genes, and the fecal

metabolome (141). However, studies are lacking on gut-brain

axis in the context of nicotine and HIV.

Conclusion and future perspectives

Understanding the impact of the gut microbiome on gut-

brain axis communication has been the topic of momentous

research over the past few years. There is a mounting effort to

delineate the mechanism(s) of this communication at all axis

nodes. It has been now well-established that gut microbiota is

crucial for the proper development and maintenance of brain

functions. Additionally, as discussed above, there is accumulating

evidence from preclinical and clinical studies that implicate the

role of microbial dysbiosis in various psychiatric, neurological,

and neurodegenerative diseases in the context of HIV-1 and drug

abuse. However, it is still a very nascent field of research, and

caution must be exerted in over-interpreting these studies. Many

unanswered questions remain regarding the beneficial effects of

probiotics, with extensive work required to test optimal dosing,

strain, and timing in therapeutic applications. The emphasis in

the field must shift from correlative analyses to prospective

longitudinal study design, causative and mechanistic

investigations, and larger-scale trials of potential therapeutic

approaches, especially in the case of HIV-1 and drug abuse

comorbidity. One big conundrum in microbiota-based

research is the ideal definition of healthy microbiota. Inter-

individual differences in the gut microbiota composition can

be very critical, making it challenging to apply a “one size fits all”

approach to target the microbiota. However, this also provides

future opportunities for practical personalized medicine

approaches. We have also moved from focusing on single

bacterial strains as pathogens to an emphasis on nurturing an

entire community of microbes, lest they become pathological

entities. There are many challenges to conventional wisdom at

play, with the possibility that the alterations in the gut microbiota

noted in many CNS disorders may have a causal role in

symptomatology and that many of the drugs used to treat

those disorders could be toxic to or support the diversity of

our gut microbes.
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