
High-resolution imaging in
studies of alcohol effect on
prenatal development

Augustine Meombe Mbolle1, Shiwani Thapa2, Anna N. Bukiya2

and Huabei Jiang1*
1Department Medical Engineering, College of Engineering andMorsani College of Medicine, University
of South Florida, Tampa, FL, United States, 2Department Pharmacology, Addiction Science and
Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN,
United States

Fetal alcohol syndrome represents the leading known preventable cause of mental

retardation. FAS is on the most severe side of fetal alcohol spectrum disorders that

stem from the deleterious effects of prenatal alcohol exposure. Affecting asmany as

1 to 5 out of 100 children, FASDmost often results in brain abnormalities that extend

to structure, function, and cerebral hemodynamics. The present review provides an

analysis of high-resolution imaging techniques that are used in animals and human

subjects to characterize PAE-driven changes in the developing brain. Variants of

magnetic resonance imaging such as magnetic resonance microscopy, magnetic

resonance spectroscopy, diffusion tensor imaging, along with positron emission

tomography, single-photon emission computed tomography, and photoacoustic

imaging, aremodalities that are used to study the influenceof PAEonbrain structure

and function. This review briefly describes the aforementioned imaging modalities,

the main findings that were obtained using each modality, and touches upon the

advantages/disadvantages of each imaging approach.
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Introduction

Globally, alcohol (ethanol) is the most widely used psychotropic drug (1). Depending

on gender and different countries, the drinking levels of alcohol can be considered light,

moderate, heavy, or binge drinking. Moderate drinking involves one drink for women and

two drinks for men in a day (2). Binge drinking can be typically classified as 4 or more
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drinks for women or 5 or more drinks for men consumed within

a couple of hours of each other (3) leading to a blood alcohol

concentration (BAC) level of 0.08 g/dL and higher (4). Moreover,

heavy drinking can be reported as 8 or more drinks for women

per week and 15 or more drinks for men per week (5).

According to the World Health Organization (WHO) Global

Status Report on Alcohol and Health, in 2018, it was estimated

that the total consumption of pure alcohol was 6.4 L per

individual 15 years or older worldwide (6). In the

United States, an estimated 38.5 million adults indulge in

binge drinking per month, among which adults aged

18–34 years hold the highest prevalence (26%) (7). Excessive

alcohol intake can lead to a plethora of detrimental effects

targeting multiple organs such as the brain, liver, pancreas,

and heart (8–12). Moreover, it increases the chance of

developing various pathological conditions that include

chronic diseases, cancers, and mental disorders (13–17). In

particular, women of reproductive age are reported to be

frequent users of alcohol (18, 19). Even more alarming,

estimated global alcohol consumption rate during pregnancy

is ~9.8% (20). The WHO European Region points at an average

of 25.2% alcohol consumption rate during pregnancy. This

statistic involves countries like Russia, United Kingdom,

Denmark, Belarus, Ireland, Italy, France, and Finland (20).

Whereas the WHO Eastern Mediterranean region (Oman,

United Arab Emirates, Saudi Arabia, Qatar, Kuwait) reports

the lowest average alcohol use at 0.2% among pregnant

women (20). While socio-demographic (e.g., age, ethnicity,

education level, reporting conditions, religious affiliation) and

socio-economic (e.g., employment, nutritional diet, and prenatal

care) factors play an essential role in the variability of alcohol

consumption estimates (21–24), alcohol use among pregnant

women does not decline. Between 2018 and 2020, the prevalence

of alcohol consumption among pregnant women in the

United States increased to 13.5%, and 5.2% were involved in

binge drinking (25). Considering the deleterious effect of alcohol

on health, alcohol use during pregnancy does not only affect

pregnant women themselves but also their fetuses.

Althoughmany women tend to stop or reduce drinking levels

of alcohol once diagnosed with pregnancy, a high rate of

unplanned pregnancies (45%) (26) may cause prenatal alcohol

exposure (PAE) unknowingly during the first trimester.

Collectively with the reported statistics on alcohol

consumption prevalence during pregnancy, it can be inferred

that a significant number of fetuses are exposed to the toxic

effects of alcohol with or without the knowledge of women that

they are pregnant. Such astonishing statistics inevitably leads to a

plethora of health complications associated with PAE. In this

review, we will briefly describe health concerns arising from

alcohol exposure in utero, obstacles in their therapeutic

treatment, and challenges faced by contemporary drug

discovery efforts. We will then highlight the need for high-

resolution imaging tools that would aid in the research

process for assessment of pathophysiology and identification

of promising drug targets for successful treatment of

consequences arising from PAE. Finally, we will describe

current advancements made in the field of high-resolution

imaging that can be used as stepping stones for visualization

of alcohol-related damage in small laboratory animals. We will

conclude with the prospects of using high-resolution imaging at

the cross-over of physics and biology for successful diagnostics

and treatment of PAE-related health disorders.

Health consequences of PAE

Alcohol is capable of easily and rapidly passing from the

mother’s bloodstream via the placenta into the developing fetal

circulation where it penetrates through blood-brain barrier, and

targets multiple critical fetal organs (4, 27, 28). Alcohol can

directly target several mechanisms at different stages of gestation

and enable the teratogenic effects (29). These effects include

disruption of neuronal cell survival, proliferation, and growth

pathways leading to apoptosis (30) in the early gestation period,

neonatal microglial abnormalities causing neuroinflammation

(31), interference with the cortical vascular network

development (32), alteration of cardiac progenitor cells gene

expression (33), and dysfunction of the hypothalamus-pituitary-

adrenal axis (34). Maternal alcohol consumption can result, first

of all, in apparent gestational complications such as spontaneous

miscarriage (35), premature delivery (36), low birth weight (37),

placental abruption (38), first or second trimester bleeding, intra-

amniotic infection (39), and intrauterine growth restriction (40).

Generally, higher BAC peaks of alcohol are associated with

higher risks for adverse effects targeting physical,

psychological, and behavioral development of the fetus (41,

42). Yet, based on a pregnancy cohort study from

8 metropolitan areas in the United States, it was found that

every successive week of alcohol use led to an 8% increase in the

risk of spontaneous abortion and did not correlate to the number

of drinks consumed per week or to binge drinking (35). This

underscores the significant fact that no known amount of alcohol

is safe during pregnancy.

Fetal alcohol spectrum disorders (FASD) is the umbrella

term that describes the detrimental effects of PAE and includes

four distinct categories: fetal alcohol syndrome (FAS), partial

fetal alcohol syndrome (pFAS), alcohol-related

neurodevelopmental disorders (ARND) and alcohol-related

birth defects (ARBD) (43). PAE causes lifelong consequences

and allows FASD diagnosis mainly within four domains: the level

of PAE, facial dysmorphology, growth deformities, and

neurodevelopment retardation (44–48). However, not every

neonate exposed to alcohol during gestation will develop

FASD as it is estimated that only one in every 13 pregnant

women exposed to alcohol would deliver a child with FASD (49).

This could occur due to several factors such as the quantity,
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frequency, and timing of alcohol exposure, maternal age, diet,

genetic and epigenetic factors along with the influence of other

substance abuse (50–52). Yet, FASD are highly preventable

neurodevelopmental disabilities with an estimated global

prevalence of 0.77% which would result in 630,000 children

born annually with FASDs worldwide (49). Unfortunately, the

mechanisms causing FASDs are poorly understood, and no

known cure has been developed (53).

FAS is the most severe form of FASD including craniofacial

dysmorphic features, prenatal and postnatal fetal growth

restriction, neurodevelopmental abnormalities, and cognitive

or behavioral impairment (54). The three fundamental facial

features of FAS include short palpebral fissures, smooth

philtrum, and thin vermilion border of the upper lip; the

cranial features include smaller head circumference, structural

brain anomalies, and abnormal neurophysiology and in some

cases recurrent non-febrile seizures (55). Various studies have

demonstrated that PAE decreases the bioavailability of glutamine

and glutamine-related amino acids and hence hinders fetal

development (56, 57). It is reported that 0.15% of live births

result in FAS globally and this percentage rises in countries that

are characterized by a higher consumption of alcohol during

pregnancy (e.g., Belarus, Italy, Ireland, Croatia, and South Africa)

(20). However, in the case of pFAS, only a few characteristic

features of FAS are present such as facial dysmorphology,

neurocognitive impairment, and either growth restriction or

microcephaly (44).

ARND is the most prevalent yet difficult form of FASD to be

diagnosed (58). ARND includes neurocognitive and behavioral

impairments but lacks the presence of distinct FAS cranial and

facial phenotypes, consequently remaining undiagnosed or

misdiagnosed (44, 54, 58). PAE induces neurotoxic effects

resulting in morphological or functional alterations of specific

neuronal structures and brain circuits (59, 60). In an

observational cohort study, it was found that moderate or

binge drinking during pregnancy disrupts the cortical

connectivity and impairs cognitive functions in children (61).

Compelling evidence from various brain imaging and animal

studies shows that PAE hampers cognitive function in various

areas such as learning, memory, attention, speech development,

vision, adaptive skills, and motor skills (62–67). Behavioral

deficits observed include hyperactivity, impulsivity, poor social

skills, aggressive behavior, and mood disorders (62, 67, 68). A

dose-dependent prenatal alcohol exposure study done by Lees

et al. (2020) found evidence of differences in cerebral and

regional brain volume associated with psychological and

behavioral problems among adolescents aged 9–10 years (69).

Neuroimaging studies also show youths exposed to heavy

maternal alcohol exposure with smaller cerebral surface area

and irregular cortical thickness in comparison to unexposed

youths (70–72). Attention deficit hyperactivity disorder has

high comorbidity with FASD and has been found to have a

48% prevalence among children diagnosed with FASD (73).

ARNDs are often missed due to features that can overlap with

several different neurodevelopmental disorders or can often be

credited to environmental or socioeconomic factors for

behavioral deficits.

ARBD fall under the rarer spectrum of FASD which requires

a history of PAE coupled with a major systemic malformation

(44). This malformation includes cardiac (atrial septal defects,

aberrant great vessels), auditory (neurosensory hearing loss),

skeletal (radioulnar synostosis, vertebral segmentation defects,

scoliosis), and ophthalmic (optic nerve hypoplasia, retinal

vascular anomalies) or renal defect (horseshoe kidneys) (54).

Among all the global congestive birth defects, it is estimated that

5% of the total cases are contributed by PAE (74–76). Indirect

toxicity from alcohol metabolites (e.g., acetaldehyde) and

impaired placental nutrition supply also lead to PAE-induced

organ damage (77, 78). Congestive heart defects occur from

acute, early alcohol exposure during the first gestation trimester

in humans (54, 73). In an avian model study, the early co-

administration of glutathione along with ethyl alcohol (ethanol)

increased the percentage of embryos with normal hearts from

40% to 79% via inhibiting the action of PAE on reducing global

DNA methylation (79). Studies have also shown PAE-induced

alterations in neonatal lung development such as decreased lung

mass and delayed lung maturation (80), inhibition of

alveolarization and vascular development (81), and formation

of hypoplastic lungs (82). There are experimental studies that

show PAE deteriorates renal functions involving renal

acidification, potassium excretion, and renal tubular cell use

(83–85).

Despite the economic and public health burden, there are

several obstacles to the diagnosis and treatment of health defects

arising from PAE. Although early detection and intervention of

PAE play an essential role in the prophylaxis of FASD, the lack of

valid reliable methods for noting maternal alcohol exposure is an

ongoing challenge. Although there have been several non-invasive

methods such as passive surveillance systems, clinical studies, and

meta-analyses, these observations largely depend on maternal self-

report. Such self-reports can lack accurate assessment due to recall

bias, societal stigma, and inconsistent screening. However, ethanol

biomarkers can also be used as an early PAE detection tool. The

direct metabolites of alcohol such as fatty acid ethyl esters (FAEE)

in neonatal hair and meconium (86–88) and ethyl sulfate in

maternal urine (86, 89) are present as distinct biological

biomarkers. There are also several indirect metabolites of

ethanol such as ethyl glucuronide in neonatal meconium or

maternal hair (90–92) and phosphatidyl ethanol in maternal

blood (93), although these indirect markers are less specific and

indicative of alcohol exposure (86, 94). Still, no biomarker has been

validated as a specific and sensitive diagnostic marker for PAE-

induced toxic effects (86, 95). Clearly, there is an urgent need for

bench studies that are aimed at better understanding of PAE

pathophysiology and at finding markers and cures of deleterious

consequences posed by PAE.
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Laboratory animal models to
study PAE

While studies in humans offer immediate translation into the

wide-scale clinical practice, standardization of drinking patterns,

doses, and timing within a large maternal population represent

an impractical and ethically challenging task (96, 97). Human

studies are also inconsistent due to variable factors like maternal

age, diet, genetics, social status, and multi-substance use (51, 52).

Animal models present an invaluable research tool to study the

molecular mechanisms by which alcohol exposure hampers

prenatal development. The use of various animal species such

as non-human primates, pig, sheep, and rodents allow for

manipulating the drinking pattern, dose, timing, and control

for other confounding factors. However, each species has

advantages and disadvantages for studies focusing on PAE.

For example, non-human primates closely match the

gestational period of humans in terms of neurodevelopment

and allow fetal magnetic resonance imaging (MRI) to assess

PAE effects (98). Nevertheless, non-human primates are

expensive models that are scarcely available and involve

longer gestation periods and singleton pregnancies. Ovine

species are also used for preclinical studies of FASD due to

equivalent fetal brain size and body weight to a human fetus and

comparable gestational period (147 days) (99). However, ovine

models are characterized by ruminal fermentation and differ

from the humanmetabolic pattern following alcohol ingestion (1,

100). Large animals like pigs produce large litters, express

voluntary alcohol consumption and similar rates of alcohol

intoxication and excretion as humans (101). Yet they lack the

advantage of introducing genetic manipulations which are widely

available in small rodents. The latter are the most widely used

versatile research models that allow invasive molecular

mechanism studies of fetal alcohol exposure. Rats are

commonly used for FASD studies and demonstrate the

structural, developmental, and behavioral deficits as in

humans (102–104). Rats are also preferred over mice for

behavioral studies as they are calmer, more social, and easier

to examine learning and executive function (105, 106). Mouse

models are smaller in size, easier to maintain, have a shorter

gestation period, and larger offspring production. With the use of

modern technology, mice offer genetic modeling and are

available as transgenic, knock-in, and knock-out strains.

Another advantage of mouse models is the development of

similar dysmorphic features of FASD as observed in humans.

Various studies show these observations including craniofacial

dysmorphology (107), brain abnormalities (108), growth

restriction (109), and cognitive deficits (110, 111). The

disadvantage of using rodent models is the difference in

gestation length where the third-trimester fetal development

in humans is analogous to the early postnatal period of

rodents (112). As a significant amount of brain development

occurs postnatally among rodents (113), many studies

administer ethanol to neonate pups, but the mechanisms of

absorption, metabolism and excretion are significantly varied

in prenatal and postnatal periods (114, 115). However, the major

disadvantage of mouse model is the small fetal size that makes

non-invasive imaging studies of brain development and its

alterations by PAE barely feasible. Overcoming this limitation

is paramount for further advancement of the field as current

understanding of the neurobiology and pathophysiology of PAE

and its teratogenic effects has been rooted in neuroimaging

technologies, which have allowed researchers to study

structural, metabolic, and physiological abnormalities resulting

from PAE.

High-resolution imaging techniques:
Principles and major findings relevant
to the field of PAE

High resolution imaging technologies could broadly be

classified into structural neuroimaging technologies which

identify neuroanatomical changes associated with PAE;

functional neuroimaging technologies, which measure various

neurophysiological signal changes associated with functional

activities within various organs; and metabolic imaging

modalities which detect various neurochemical changes by

measuring the concentration of neurometabolites such as

choline-containing compounds - which are markers of cell

membrane stability and myelination, N-acetyl-aspartate

(NAA)- which are markers of neuronal/axonal density and

viability, and creatine/phosphocreatine, a marker of metabolic

activities (116, 117) (Table 1). PAE mostly impacts the brain due

to alcohol-related neurobiological damage in early development

(118, 119). Thus, the brain is the most widely studied organ for

the effects of PAE.

For the purpose of this review, we conducted a search in

Google Scholar, PubMed, ScienceDirect and Web of Science for

relevant literature using a combination of the following words:

“prenatal alcohol exposure,” “neuroimaging,” “fetal alcohol

spectrum disorder,” “FASD,” “fetal alcohol syndrome,”

“magnetic resonance imaging,” “MRI,” “magnetic resonance

spectroscopy,” “MRS,” “magnetic resonance microscopy,”

“MRM,” “animal models,” “diffusion tensor imaging,” “DTI,”

“functional MRI,” “fMRI,” “positron emission tomography,”

“PET,” “single photon computed emission tomography,”

“SPECT,” “photoacoustic tomography,” “functional.” Apart

from the language, which was restricted to “English,” there

were no restrictions in the date or subject of the study, and

we examined each abstract to determine relevance of the

literature. We further identified other studies by referring to

the references of the studies obtained from the various databases.

We ended up with a total of 71 articles for this review. Below, we

describe the various neuroimaging modalities, in terms of their

principles and major findings relevant to the field of PAE. We
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divide the modalities into three groups based on their use in

studies of structural, functional, or metabolic effects of PAE.

Table 2 summarizes the main finding of the various high-

resolution imaging modalities in humans and animals.

Structural neuroimaging technologies

Magnetic resonance imaging technologies (MRI)
MRI is a safe, non-invasive imaging modality capable of

producing detailed three dimensional structural and functional

information of tissues properties (120). MRI uses a strong

magnet and radio frequency waves to measure tissue property-

dependent signals from protons (water) within the living

organisms. Tissue properties like density, local environment,

blood oxygenation, water movement as well as relaxation

properties (T1, T2) may influence the signal detectable by

MRI in various ways. When irradiated with radiofrequency

energy, protons within the tissue are forced to swing out of

equilibrium with the MRI field becoming misaligned with it

due to their spin. When the radiofrequency energy is turned

off, the protons quickly realign with the field, releasing

electromagnetic energy in the process. The electromagnetic

energy (signal) detected and the time it takes the protons to

realign with the magnetic field (T1, T2) are used to generate

images of the tissue. Advancements in technology has led to the

development of custom coils and more powerful magnets,

capable of generating magnetic fields of up to 7.0 T and

higher (107, 121). Various dyes and nanoparticles have also

been developed for use in imaging contrast enhancement,

resulting in high resolution MRI referred to as Magnetic

Resonance Microscopy (MRM) (122–124). Unlike routine

structural MRI, the resolution in MRM is in the micron

scale, typically less than 100 microns. Modern systems now

support about 21–43 microns isotropic resolution, with

scanning time in the order of 30–120 min per specimen

(107, 121). The diameter of the bore of the magnet is only

about 5 cm, thus limiting the size of the imaged specimen. As a

result, MRM is typically used in studies involving small

animals like rodent models of PAE (107, 121, 125). It allows

for imaging of embryos, as young as 10.5 days postfertilization

(123), with the ability to view images in all planes

simultaneously for morphological assessment.

Sulik et al. (107, 121, 126, 127) have characterized the

developmental stage-dependent effects of PAE in mice using

MRM-based analyses of fetal and postnatal mice. Timed C57B1/

5J pregnant dams received a vehicle (control group) or two daily

doses of intraperitoneal injection of 2.8–2.9 g/kg ethanol (ethanol

group), administered at 4 h intervals on gestational days (GD)

7 and 8. Previous studies have shown that ethanol exposure on

GD7 when early gastrulation occurs in mouse embryos, leads to a

spectrum of craniofacial dysmorphology consistent with FAS

(176, 177, 107). Similarly, GD8 lies within the early

neurulation stage, and ethanol exposure at this stage has

been shown to cause structural brain abnormalities (127).

Control and ethanol-administered mice were stage-matched

and on GD17, MRM was conducted on the fetal mice at

either 7.0 T or 9.4 T. The resulting 29 μm isotropic

resolution images were reconstructed and later processed

using ITK-SNAP, a 3D segmentation/visualization software

(128). Linear and volumetric morphological analyses was

conducted with 3D reconstructions of selected brain, head/

face and body regions obtained, and compared between the control

and ethanol-administered groups. According to the results, acute

ethanol exposure onGD7 results in a spectrumof facial and central

nervous system defects, the most severe of which includes

holoprosencephaly. As shown in Figure 1, the facial

abnormalities may range from a slightly narrowed nose (a

closely approximated nostril) and a slightly diminished central

notch to an extremely narrowed snout and complete absence of a

nostril. Furthermore, compared to the control, the lower jaw is

deformed and appears short and narrow (126).

Compared to the control group, fetuses affected by ethanol in

a mild fashion have brains looking fairly normal, but with smaller

olfactory bulbs and a narrower space between cerebral

hemispheres. As the severity of the teratogenic effect

increases, olfactory bulbs may disappear completely and the

hemispheres become indistinguishable across the midline (107,

121, 126, 127). Other GD7 ethanol exposure-induced

abnormalities include cleft palate, pituitary dysgenesis,

aglossia, aqueductal stenosis and eye abnormalities ranging

from slight microphthalmia to bilateral anophthalmia (107,

TABLE 1 Classification of high-resolution imaging modalities based on functionality. Structural neuroimaging modalities are used to study
neuroanatomical changes associated with PAE. Functional imaging modalities are used to study neurophysiological changes, specifically
hemodynamic changes associated with PAE, while metabolic imaging modalities detect various neurochemical changes associated with PAE by
measuring the concentration of neurometabolites.

Structural neuroimaging technologies Functional neuroimaging technologies Metabolic imaging technologies

• Magnetic resonance microscopy (MRM) • Functional magnetic resonance imaging (fMRI) • Magnetic resonance spectroscopy

• Diffusion tensor imaging (DTI) • Single-photon emission computed tomography (SPECT) • Single photon emission computed tomography (SPECT)

• Structural magnetic resonance imaging • Positron emission tomography (PET) • Positron emission tomography (PET)

• Structural photoacoustic tomography (sPAT) • Multispectral photoacoustic tomography (fPAT)
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TABLE 2 High-resolution neuroimaging technologies used in the study of prenatal alcohol exposure.

Imaging modality
(anatomical)

References/
subject

Subject (age) Findings

MRM (126) Mouse Linear and volumetric analysis of MRM images of GD7 showed
craniofacial dysmorphology and brain abnormalities, the most
severe being holoprosencephaly (HEP), volumetric reduction in
telencephalic structures, increased lateral ventricular volume
in HEP

(107) Mouse GD8 exposure results in optic nerve coloboma, choanal atresia,
narrowing of cerebral aqueduct and 3rd ventricle enlargement

(127) Mouse GD8 results in disproportionate reduction in olfactory bulb,
hippocampus, cerebellum, along with a disproportionate increase
in the sepal region and pituitary glands

(172) Mouse GD-9 ethanol exposed mice presented with increase septal region
width and a decreased cerebellar volume, along with enlargement
of all ventricles. Noticeable misshapen cerebral cortex,
hippocampus, and right striatum

(171) Mouse GD7-11 ethanol exposed mice presented with significant
decrease in cerebellar volume, along with increase septal volume

GD12-16 ethanol treatment resulted in reduced hippocampal
volume, along with enlarged pituitaries, and high incidence of
edema/fetal hydrops

(175) Rat GD1-20 exposed rats presented with reduced brain and
isocortical volumes as well as isocortical surface area and
thickness

DTI (143) Humans (Adult males 18 and over) Alterations in the corpus callosum, ranging from thinning,
hypoplasia, and complete agenesis. Reduced FA and elevated MD

(146, 147) Humans (children) Disproportionate reduction in volume of genu and splenium

(8–18 years old, mean age 13)

(145) Humans (Children) Dislocation in posterior corpus callosum, correlated to the extent
of facial dysmorphology(7–11 years old, mean 13.8)

(173, 174) Humans Decreased FA in posterior portion of inferior longitudinal fasciculus
and in left middle cerebellar peduncles (White matter)Children, aged 9.7–13.7)

(175) Rat High FA in cerebral cortex

sPAT (150) Mouse Maternal ethanol consumption on GD-17 induces significant
reduction in fetal brain vessel diameter (up to 31.25%) and vessel
density (up to 25.1%)

(Metabolic)

MRS (46, 48, 169, 170) Monkey Reduction in levels of NAA/creatinine and NAA/Choline in
multiple brain regions, notably parietal and frontal cortices,
thalamus, cerebellar dentate nucleus, frontal white matter, and
corpus callosum

Rat

(Functional)

fPAT (150) Mouse Maternal ethanol consumption on GD-17results in up to 39.78%
reduction in hemoglobin oxygen saturation in fetal blood vessels,
indicative of significant ethanol induced hypoxia in fetal brain
circulation

fMRI (152) Humans
(14.5 years old) Go/No-Go tasks

Similar Go/no-go task performance between groups. PAEs
showed greater BOLD response across in prefrontal and cortical
regions, but less response in caudate nucleus activation

(Continued on following page)
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121, 127). GD8 deformities noted in MRM scans include optic

nerve coloboma, choanal atresia, narrowing of the cerebral

aqueduct and third ventricle enlargement (107, 121, 126, 127).

Using MRM scans, regional brain segmentation and

subsequent characterization of region-specific alterations and

volumetric changes have equally been reported. Key amongst

these findings in GD7 exposure models include volume

reduction in telencephalic structures accompanied by increased

lateral ventricular volume, mostly in fetuses with evident

holoprosencephaly (126). GD8 exposure causes a

disproportionate reduction in the volume of the olfactory bulb,

hippocampus, as well as cerebellum, with a disproportional

increase in the septal region and pituitary volumes (127).

Diffusion tensor imaging (DTI)
DTI is an emerging non-invasive MRI technology based on

the measurement of the water molecule diffusions. The measured

quantity is the diffusivity, a constant of proportionality that

relates diffusive flux to concentration gradients (129). Due to

the presence of numerous structures within tissue, the diffusion

of water molecules is usually not isotropic. Thus, the measured

diffusivity (diffusion tensor) is anisotropic, due to microscopic

tissue heterogeneity (130). The diffusion tensor describes the

diffusion of water molecules using a Gaussian model and results

in a 3 × 3 symmetric positive-definite covariant matrix (131). The

latter is capable of revealing the microstructural integrity of the

white matter fiber tracts, enabling the quantification of subtle

tissue changes affecting the integrity of the brain’s neural

networks and interregional information transfer (132). White

matter integrity is essential for effective functioning of a host of

complex cognitive processes such as normal executive functions,

attention, and processing speed (133–135). DTI measures the

overall direction of diffusion of water molecules along white

matter fiber tracts to access the structure and organization of

different brain areas (136, 137). Two key scalar metrics are

typically obtained from DTI. Firstly, fractional anisotropy, a

scalar value between 0 and 1 which quantifies the overall

directionality of diffusion and variation in axonal integrity.

Secondly mean diffusivity, which describes the rotationally

invariant magnitude of the average diffusivity and may

primarily reflect myelin breakdown, changes in cellular

density and volume. High fractional anisotropy and low mean

diffusivity values are associate with healthier white matter

microstructure whereas low fractional anisotropy and high

mean diffusivity values are indicative of pathological white

matter (70, 138). In the absence of discernable facial

dysmorphology, such as in mild cases of PAE, high resolution

DTI has proven to be effective in detecting ethanol-induced

abnormalities in the white matter fiber tracts and has been

applied in humans and animal studies alike. Specialized data

TABLE 2 (Continued) High-resolution neuroimaging technologies used in the study of prenatal alcohol exposure.

Imaging modality
(anatomical)

References/
subject

Subject (age) Findings

(151, 155, 156, 157) Humans (Spatial working memory) PAE children and adults showed overall less brain activity, but
greater interior-middle frontal activity compared to controls
during simpler activities

Age matched Children (7–10) years old,
Adults (18–33) years old

PAE showed greater BOLD response in frontal, insular, superior,
middle, temporal, occipital, and subcortical regions

(154) Human adults (23.0 years old) PAE exhibit lower accuracy but comparable reaction times,
compared to controls(Arithmetic and number processing)

(159) Humans (10 years old) PAE showed increased activation in the left dorsal frontal, left
interior parietal and bilateral posterior temporal regions(Verbal working memory)

SPECT/PET (164) Human
(20.6 vs. 22.8 years old)

Decreases in relative regional cerebral metabolic rates were found
in 5 brain regions comprising thalamus and basal ganglia

(Resting state)

(161, 162) Human (10.5 vs. 9.8-year old) Significant brain volume reduction in PAEs

Also (8.6 vs. 16 years old) Reduced serotonin transporter binding in the medial frontal
cortex and increased striatal dopamine transporter binding in
PAEs

(Resting state) SPECT showed mild hypoperfusion of the left hemisphere
(especially in parietooccipital and frontal regions) in PAEs

(160) Human
(6–29 years old) and
(29, 35 years old)

SPECT revealed at least 25% CBF reduction in the temporal
region relative to the cerebellum

(Resting state)

MRM, magnetic resonance microscopy; DTI, diffusion tensor imaging; MRS, magnetic resonance spectroscopy; sPAT, structural photoacoustic tomography; fPAT, functional

photoacoustic tomography; fMRi, functional magnetic resonance imaging; FA, fractional anisotropy; MD, mean diffusivity.
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analysis software such as DTI studio (139) and slicer3 (140) are

used to create color-coded anisotropic maps from DTI data, to

show the differing fiber orientation represented by the color-

codes and the degree of diffusion anisotropy as represented by

the signal intensity. DTI findings in human and animals

(Figure 2) have revealed alterations in the corpus callosum, a

structurally and functionally prominent brain commissural that

actively connects the two cerebral hemispheres. These alterations

(characterized by reduced fractional anisotropy and elevated

mean diffusivity) range from complete agenesis of the corpus

collosum to less severe alterations such as thinning and

hypoplasia, with the thinning more localized in the posterior

corpus collosum (141–145). Other quantitative studies have

revealed disproportionate volume reduction in the genu and

splenium of the corpus collosum of PAE subjects (146, 147).

Sowell et al. (144, 145) identified dislocations in the posterior

corpus collosum and correlated the degree of dislocation to the

extent of facial dysmorphology.

Photoacoustic imaging for structural
neuroimaging

In photoacoustic imaging, laser light is used to generate

ultrasound waves from tissue, by irradiating the tissue with

typically nanoseconds pulsed laser light (148). The most used

wavelengths for tissue excitation are the visible and near intra-red

region, typically in the range 532–1,100 nm, with the near infrared

region from 600–900 nm offering penetration depths extending to

several centimeters. Once the tissue is irradiated with sufficient light

energy of the right wavelength to cause optical excitation, specific

tissue chromospheres namely hemoglobin, lipids, water, melanin, etc.,

absorb the light energy, which is then rapidly converted to heat energy

by vibrational and collisional relaxation, producing a small

temperature rise within the surrounding tissues (148, 149). The

rise in temperature produced by the energy deposition, typically

less than 0.1 K induces a thermoelastic expansion, accompanied by

an initial pressure rise, which launches a pressure wave within the

surrounding tissue. The pressure waves propagate to the tissue surface

where they are detected by an acoustic transducer as a sequence of

time-resolved electrical photoacoustic signals called A-lines. Jiang and

colleagues (150) used structural photoacoustic tomography (sPAT) to

study the effects ofmaternal ethanol consumption on fetal brain blood

vessel diameter and density in second-semester equivalent (GD17)

pregnant CD-1 mice models of PAE. (Figure 3).

Jiang et al. (150) used structural photoacoustic tomography

(sPAT) to study the effects of maternal ethanol consumption on

fetal brain blood vessel diameter and density in second-semester

equivalent (GD17) pregnant CD-1 mice models of PAE. PAT

images were acquired for 40 min (at 5 min intervals) following

FIGURE 1
Facial and brain abnormalities following PAE on GD7 of the mouse. Compared to the control (A), PAE-affected animals (B-E) show varying
degrees of facial dysmorphology characterized by an elongated upper lip, a diminished philtra region, closely spaced nostrils, with small mandibles.
The lower figures (F-J) show MRM-based 3D reconstructed brain anomalies from least to most severe. There is a correlation between facial
dysmorphology and brain anomalies as animals withmost subtle facial dysmorphology appear to have relatively normal brains. Animals with the
more pronounced facial dysmorphology have a more severely affected brain, with the malformation corresponding to holoprosencephaly. (E, J), is
themost severe casewith the brain completelymissingmost of its telencephalonwith a severe facial phenotype, one nostril, with no lower jaw. Brain
are color-coded as follows: olfactory bulbs (pink), cerebral cortex (red), diencephalon (lime green), midbrain (magenta), cerebellum (blue),
mesencephalic/4th ventricle (teal), hindbrain (green). [Adapted from Ref. (11)].
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maternal intoxication of 20% ethanol at a volume of 3 g/kg via

intraperitoneal injections. According to the results, maternal

ethanol consumption on GD17 induces significant reduction

in fetal brain vessel diameter (up to 31.25%) and vessel

density (up to 25.1%)

Functional neuroimaging technologies

Functional neuroimaging techniques measure the

neurophysiological signal changes in various brain regions

that result from PAE. Signal changes of interest are typically

collected from the subject when no specific task is occurring

(such as during sleep—“Resting state”), when subjects perform a

given task or when subjects switch between tasks. These results

provide information about the neuronal mechanisms underlying

brain functions associated with sensory and cognitive activities.

Functional magnetic resonance imaging (fMRI), single-photon

emission computed tomography (SPECT), and positron

emission tomography (PET) are amongst the functional

imaging modalities reportedly used to study the effects of

PAE. Emerging technologies such as functional multispectral

photoacoustic imaging have also been used in recent studies.

Magnet-based imaging modalities
Functional magnetic resonance imaging (fMRI) is a

specialized form of MRI commonly used to study brain

functions. Established in the early nineties, fMRI employs the

difference in magnetic susceptibility between oxygenated and

deoxygenated hemoglobin and the changes in concentration that

results from local neural activation; to measure blood oxygen

level dependent magnetic resonance signals. Local neural

activation results in a corresponding localized increase

consumption of energy, resulting in differential blood oxygen

FIGURE 2
Color-coded fractional anisotropy maps from control mice (A) and GD7 ethanol exposed mice (C, E), compared to a control individual (B) and
FASD humans (D, F). The ethanol exposed mice have varying degrees of brain dysmorphology compared to the control. The mouse in (C) has mild
thinning of the corpus collosum in the middle section (*), while that in (E) has a reduced sized posterior and anterior corpus collosum with a
completely absent middle part (see white arrows). The hippocampal commissure (yellow arrow) is also reduced in the more severely affected
mice in (E). The effect in mice is remarkably similar to that in humans with FASD. Compared to the control (B), ethanol exposed humans (D, F) also
have considerable dysmorphology of the corpus collosum (black arrows) [Adapted from (121)].
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levels and thus a different blood oxygen level dependent signal

for oxyhemoglobin and deoxyhemoglobin. fMRI is the most

widely used functional imaging modality for studying the

effects of prenatal ethanol exposure.

fMRI studies have examined functional changes in brain activity

relating to specific cognitive tasks in subjects of PAE, compared to

normal control subjects (Figure 4). Hemodynamic responses in

subjects exposed to ethanol prenatally have been studied during

various cognitive tasks including response inhibition (152, 153),

mathematics and number processing (46, 154) working memory

(151, 155–158) and verbal learning (159). Most of these studies

report a difference in activation in the frontal regions between FASD

subjects and controls. In go/no-go tasks, greater neural activation

has been observed in several frontal and parietal regions during

response inhibition in PAE subjects (152).

Radiation-based imaging modalities
Single photon computed emission tomography (SPECT) is a

non-invasive functional imaging modality that uses gamma

radiations to evaluate blood flow or concentration of various

neurotransmitters. A radioisotope is injected into the organ of

interest and a gamma camera is used to capture 2D projections of

the organ with the distribution of radiotracers from different

angles. A computer algorithm is then used to reconstruct the 2D

projections into a 3D image of the organ of interest. SPECT is

typically used to evaluate regional brain metabolic activities by

coupling blood flow to regional brain metabolic activities. SPECT

studies have identified differences in cerebral blood perfusion in

the temporal (161), parieto-occipital, and prefrontal lobes (161)

of prenatal ethanol exposed subjects, differences in medial-

frontal serotonin transporter binding and increased striatal

dopamine transporter binding in prenatal ethanol exposed

subjects (162).

Positron emission tomography (PET) is a non-invasive

functional imaging modality that uses radiopharmaceutical isotopes

called radiotracers to visualize and measure physiological activities.

Radiation emitted from radiopharmaceuticals injected intravenously

into a subject is registered by external detectors positioned at different

orientations. The radiopharmaceutical injected into the organ of

interest breaks down and emits positrons, which interact with free

electrons resulting in an annihilation reaction (163). The two photons

(gamma rays) emitted from the annihilation reaction travel in

opposite directions and arrive coincidentally at 180° to each other

at the external detector. This signal is transferred to a computer for

processing. PET is typically used to quantitatively evaluate glucose

metabolism and blood flow associated with brain activity.

SPECT/PET studies are somewhat limited in their use to

study the effects of prenatal ethanol exposure possibly because

they focus on the “resting brain” and thus do no provide a direct

insight into specific behavioral deficits. A PET study using PET/

fMRI (see below) has identified differences in regional cerebral

metabolic rates in the thalamus and basal ganglion between

prenatal ethanol exposed subjects and normal subjects (164).

Photoacoustic imaging for functional
neuroimaging

Multispectral photoacoustic imaging is a form of optical

absorption spectroscopy (165) which attempts to identify the

source of photoacoustic imaging contrast by exciting tissue at

multiple wavelengths and identifying various contrast sources by

means of their known optical absorption spectra. The selected

wavelengths are such that the different absorber can be

FIGURE 3
Structural photoacoustic tomography shows vascular tree of developing mouse embryoGD-17. (A) Photography of mouse embryo. (B)
Photoacoustic image of fetal vasculature. Brain region within green oval shape [Adapted from (150)].
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distinguished from each other. After multi wavelength imaging,

the resulting set of PAT images at each single wavelength are fed

into a spectral unmixing algorithm, where they are converted to

sets of images of specific absorbers.

Jiang and colleagues (150) extended their photoacoustic

imaging study of the effects of maternal ethanol consumption

on fetal brain blood vessel in second-semester equivalent (GD17)

pregnant CD-1 mice models of PAE by using multispectral

photoacoustic tomography (fPAT) to study ethanol induced

oxygen saturation on fetal brain blood vessels (Figure 5).

Multispectral PAT images were acquired for 45 min (at 5 min

intervals) following maternal intoxication of 20% ethanol at a

volume of 3 g/kg via intraperitoneal injections. The results show

that, maternal ethanol consumption on GD17 induces up to a

39.78% reduction in hemoglobin oxygen saturation in fetal brain

blood vessels, indicative of significant hypoxia in fetal brain

circulation.

Modalities for imaging neurochemical
(metabolic) effects of PAE

FASD studies in humans and animals typically use magnetic

resonance spectroscopy (MRS) to study the metabolic effects of

PAE. This involves studying changes in neurochemistry of

various brain regions in PAE subjects and comparing the

results to normal control subjects.

Magnetic resonance spectroscopy (MRS) is a non-invasive

neuroimaging modality capable of providing biochemical

information about specific brain regions (166, 167). When

magnetic nuclei like 1H, 31P, 13C or 19F are placed in a magnetic

field, they resonate at specific frequencies depending on the nuclei

and the strength of the magnetic field. Thus, different radio

frequency coils and hardware can be used to tune into these

different frequencies to identify their origin. Due to the abundance

in living tissue, and the strength of the magnetic resonant

frequency, protons (1H) are by far the most widely used nuclei

for MRS. Protons, contained in various biochemical molecules in

living tissue resonate at different frequencies depending on the

electronegativity of the chemical bond they are involved in. Based

on these frequency differences [typically measured in parts per

million (ppm) due to the small size] in biochemical molecules

(metabolites) can be distinguished (168). An MRS experiment

typically involves exciting the nuclei in a specific volume of tissue

with a radiofrequency pulse and receiving the resulting signal, in

the form of a spectrum of signal intensity versus frequency, over a

range of frequencies. These spectra can then be analyzed to identify

the chemicals present in the volume as well as their relative

concentrations if the peaks are suitably calibrated (168). Typical

brain neurochemicals quantified by MRS include N-acetyl

FIGURE 4
Functional brain activation differences (bottom frame) between the prenatal alcohol exposed (top-left frame) and control (top-right frame)
subjects in a spatial working memory task. The exposed group exhibited greater activation in extended brain regions [Adapted from (151)].
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aspartate (a neuronal integrity biomarker), choline (an essential

molecule for the synthesis of the neurotransmitter acetylcholine

and cell membrane constituent phosphatidylcholine), and creatine

(an essential component for maintaining energy-dependent

systems in cells, gamma-aminobutyric acid, glutamate and

myoinositol) (166).

O’Leary et al. (170) used an animal model of neonatal ethanol

exposure to study regional brain neurochemistry in developing rats.

They administered ethanol to offspring early during postnatal life to

mimic third trimester ethanol exposure in the human and used a

specializedMRS technique called high-resolutionmagic angle spinning

to ascertain andquantify neurochemical data from intact brain biopsies.

The results from spectral analysis showed that neonatal ethanol

exposure results in region specific alteration in a number of

neurochemicals including glutamate, N-acetyl-aspartate, gamma-

aminobutyric acids etc., with the most pronounced alterations

occurring in the cerebellum. The findings are consistent with earlier

results by Green et al. (178), who observed reduced levels of N-acetyl-

aspartate and taurine (an inhibitory neuromodulator) in the cerebellum

of bothmale and female neonatal rats following binge ethanol exposure;

with lower glutamate levels in females, compared to controls. Several

other studies employing proton (1H) MRS to study neurochemistry in

PAE in humans and animals (46, 48, 168–170), have observed similar

alterations in neurochemicals, with the most consistent results being a

reduction in levels of neurochemicals like N-acetyl aspartate/creatine

and N-acetyl aspartate/choline ratios in multiple brain regions, notably

the parietal and frontal cortices, thalamus, and cerebellar dentate

nucleus as well as the frontal white matter and corpus callosum (169).

Conclusion and prospects

While epidemiology data on prevalence of PAE and resulting

brain-targeted effects of FASD are staggering, high-resolution

visualization of morphological and functional parameters of the

brain lags behind. Variants of MRI technologies including MRM,

DTI, and MRS, as well as radiation-based PET and SPECT imaging,

are amongst themodalities consistently used to study the effects of PAE

in humans and animals. FASD studies in humans and animals using

various structural neuroimaging modalities have revealed several

distinct abnormalities in the developing fetus owing to PAE. While

some imaging modalities are specific to animals, others could be used

in both animals and human subjects. Development of easily accessible

high-resolution imaging approaches, such as photoacoustic imaging,

holds promise for early diagnosis and successful therapeutic

interventions in the field of PAE.
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FIGURE 5
Multispectral photoacoustic imaging of oxygen saturation in fetal brain blood vessels following maternal ethanol intoxication on GD17. The
multispectral data was acquired at the two wavelengths shown in (A, B): Photograph of the mouse fetus. (C) Photoacoustic Images of the fetus. (D)
Percentage change in oxygen saturation over time in selected blood vessels in (E, F), oxygen saturation images [Adapted from (150)].
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