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In the last few years, an increasing interest in the neuroprotective effect of cannabinoids
has taken place. The aim of the present work was to study the effects of modulating
cannabinoid receptor 1 (CB1) in the context of light induced retinal degeneration (LIRD),
using an animal model that resembles many characteristics of human age-related macular
degeneration (AMD) and other degenerative diseases of the outer retina. Sprague Dawley
rats (n = 28) were intravitreally injected in the right eye with either a CB1 agonist (ACEA), or
an antagonist (AM251). Contralateral eyes were injected with respective vehicles as
controls. Then, rats were subjected to continuous illumination (12,000 lux) for 24 h.
Retinas from 28 animals were processed by GFAP-immunohistochemistry (IHC),
TUNEL technique, Western blotting (WB), or qRT-PCR. ACEA-treated retinas showed
a significantly lower number of apoptotic nuclei in the outer nuclear layer (ONL), lower levels
of activated Caspase-3 by WB, and lower levels of glial reactivity by both GFAP-IHC and
WB. qRT-PCR revealed that ACEA significantly decreased the expression of Bcl-2 and
CYP1A1. Conversely, AM251-treated retinas showed a higher number of apoptotic nuclei
in the ONL, higher levels of activated Caspase-3 by WB, and higher levels of glial reactivity
as determined by GFAP-IHC and WB. AM251 increased the expression of Bcl-2, Bad,
Bax, Aryl hydrocarbon Receptor (AhR), GFAP, and TNFα. In summary, the stimulation of
the CB1 receptor, previous to the start of the pathogenic process, improved the survival of
photoreceptors exposed to LIRD. The modulation of CB1 activity may be used as a
neuroprotective strategy in retinal degeneration and deserves further studies.
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INTRODUCTION

Endocannabinoids (eCBs) are responsible for a wide range of physiological reactions that include
modulation of synaptic function, control of tumor growth, analgesia, appetite stimulation, reduction
of nausea, psychotropic effects, and synaptic plasticity, among others (1–4). The two most studied
eCBs are N-arachidonoylethanolamide or anandamide (AEA) and 2-arachidonoylglycerol (2-AG).
AEA is synthesized by phospholipase D (NAPE-PLD) from N-arachidonoyl
phosphatidylethanolamine (NAPE) while 2-AG is synthesized by two diacylglycerol-lipase
isoenzymes, DAGLα and DAGLβ. After binding to their receptors, eCBs are inactivated mainly
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by the fatty acid amide hydrolase enzyme (FAAH) and, to a lesser
extent, by monoacylglycerol lipase (MGL), cyclooxygenase-2
(COX-2), and lipoxygenase (LOX) (5).

The effects of eCBs are mediated by metabotropic receptors
(CB1 and CB2) and ionotropic receptor TRPV1. CB1 is the most
abundant G-protein coupled receptor (GPCR) in the CNS. CB2 is
also a GPCR that has been described in peripheral tissues, mainly
in the immune system, but it has also been reported in the CNS
including the retina (6–8). The activation of these receptors
decreases the release of GABA and glutamate. TRPV1 is
widely distributed in the CNS and, to a lesser extent, in the
periphery. In addition, eCBs are ligands of peroxisome
proliferator-activated receptor (PPAR-γ), which is involved in
lipid metabolism, insulin sensitivity, regulation of inflammation
and proliferation (9).

CB1 receptor and FAAH have been reported in the retina of
rodents and primates (10, 11). High levels of CB1 receptor have
been shown in the retina, iris and ciliary body of the human eye
(12). The CB1 receptor and the degradative enzymes are mainly
concentrated in the projection glutamatergic pathway. The
CB2 receptor was reported in the retinal pigment epithelium
(RPE), in photoreceptors, in the inner nuclear layer and in
ganglion cells of the retina (13, 8). In the retina, cannabinoids
regulate neurotransmitter release and modulate the retinal
response to light. These results were supported by alterations
of electroretinogram recordings in mice lacking CB1 and
CB2 cannabinoid receptors (14).

Cannabinoid receptors protect CNS neurons from oxidative
damage (15). In this regard, changes have been reported in eCB
levels in diabetic retinopathy and age-related macular
degeneration (AMD) (16). Cannabidiol significantly reduced
both oxidative stress and neurotoxicity, and prevented retinal
cell death in a rat model of diabetic retinopathy (17). Mixed
agonists, which activate both CB1 and CB2, have a
neuroprotective role in NMDA-induced excitotoxicity (18).
Other studies have verified the protective role of the CB1 and
TRPV receptors in glaucoma and retinal ischemia (19, 20). eCB
agonists have being shown to exert a protective role in another
model of glaucoma (21). The neuroprotective role of
cannabinoids was also shown in an animal model of
autosomal dominant retinitis pigmentosa (22).

Light induced retinal degeneration (LIRD) has been widely used
as an animal model to study degenerative diseases of the retina
(23–28). Continuous illumination (CI) produces photoreceptor
degeneration, apoptosis in the outer nuclear layer (ONL), and
synaptic degeneration in the outer plexiform layer (24, 29, 30, 31,
32, 33). The degenerative process starts in the outer retina, as
happens in human AMD, juvenile macular degeneration, and
retinitis pigmentosa (34). AMD is the first cause of acquired
blindness in developed countries (35) and the majority of
patients require indefinite treatment with antiangiogenic drugs or
demonstrate disease progression despite therapies (36). This animal
model is useful to study the potential neuroprotective effect of new
drugs (37, 38). The aim of the present workwas to study the effects of
modulating the CB1 receptor in the LIRDmodel, in order to explore
new therapies for AMD and other degenerative diseases of the outer
retina.

MATERIALS AND METHODS

Animals
Male Sprague Dawley albino rats (n = 28, body weight 200 g, age
60 days) were used. Animal care was performed in accordance
with the Association for Research in Vision and Ophthalmology
Statement for the Use of Animals in Ophthalmic and Vision
Research. The animal model of continuous illumination and the
experimental procedure was approved by the Institutional
Committee for the Use and Care of Laboratory Animals of the
Facultad de Medicina, UBA [CICUAL, Res. (CD) 3130/2017].

Intravitreal Injections Protocol
Intravitreal injections were performed as previously described (37,
38). Animals were anestethized with Ketamine (40mg/kg; Ketamina
50®, Holliday-Scott SA, Argentina) and Xylazine (5mg/kg; Kensol®,
König SA, Argentina). A drop of 2% lidocaine (Lidocaine®,
Richmond SA, Argentina) was administered to each eye.
Intravitreal injections (5 µl) were performed using a Hamilton
syringe (Reno, NV, United States) and a 30-gauge needle. The
right eyes received either ACEA (Sigma-Aldrich, Cat #A9719), a
CB1 agonist, or AM251 (Sigma, Cat #A6226), a CB1 antagonist. The
left eyes were used as controls (CTL) and received the same volume of
vehicle (0.001% DMSO in 0.9 g/l NaCl). The final vitreal
concentrations were 10 μM for ACEA and 2 μM for AM251.
Doses were selected based on a previous scientific study (39).

Continuous Illumination Procedure
After intravitreal injections and once animals recovered
completely from anesthesia, rats were continuously illuminated
for 24 h at 12,000 lux as previously described (37, 38).
Illumination procedure was initiated during daylight period at
2 p.m. approximately. Groups of 3–5 rats were simultaneously
placed in an open white acrylic box of 60 cm × 60 cm x 60 cmwith
12 halogen lamps (12 V, 50W each) located on top. Lighting level
(12,000 lux) was determined using a digital illuminance meter.
Temperature was maintained at 21°C and animals were offered
food and water ad libitum. Immediately after completing the
illumination protocol, 28 rats were sacrificed and their retinas
were processed for qRT-PCR (n = 10), GFAP
immunohistochemistry (IHC) and TUNEL technique (n = 8),
or Western blotting (WB) (n = 10).

Tissue Processing for
Immunohistochemistry and TUNEL Assay
Rats were deeply anaesthetized by intraperitoneal injection of
Ketamine and Xylazine as mentioned before and their eyes
were removed. The cornea and lenses were cut off, and the
remaining tissues were fixed by immersion in a solution
containing 4% paraformaldehyde for 24 h. Eyes were
embedded in paraffin and sectioned along a meridional
plane in a Leica RM2125 RTA microtome (thickness:
5 µm). Prior to IHC or TUNEL, sections were subjected to
an antigen retrieval protocol:Tris-EDTA Buffer (pH 9.0) at
90°C for 30 min.
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Immunoperoxidase Technique
Sections were incubated in methanol containing 3% hydrogen
peroxide for 30 min in order to inhibit endogenous peroxidase
activity. After washing in phosphate buffered saline (PBS),
pH 7.4, sections were incubated in 10% normal goat serum for
1 h. Then, sections were incubated overnight with GFAP
polyclonal primary antibody (Dako, Cat #Z0334,
United States, dilution 1:500) at 4°C. The following day,
sections were incubated sequentially in biotinylated goat
anti-rabbit antibody (Sigma Chemical Co., MO; Cat
#B8895, dilution 1:500) and in ExtrAvidin-Peroxidase®
complex (Sigma Chemical Co., MO., Cat #E2886,
United States; dilution 1:500) at room temperature (RT) for
1 h. Development was performed using the DAB/nickel
intensification procedure (40). Controls were performed by
omitting primary antibodies (Supplementary Figure S1).
Also retinas from non-illuminated and illuminated rats for
24 hs were stained by GFAP IHC as additional controls
(Supplementary Figure S1).

Terminal Deoxynucleotidyl Transferase
dUTP Nick End Labeling Assay
Sections were processed using the ApopTag® Peroxidase In Situ
kit (Millipore, United States). Briefly, sections were washed in
PBS and post-fixed in ethanol:acetic acid (2:1) at −20°C. After
washing in PBS the endogenous peroxidase was inhibited as
mentioned above. Then, sections were incubated sequentially
with terminal deoxynucleotidyl transferase (1 h at 37°C) and
with anti-digoxigenin conjugate (30 min at RT). Development
was performed using the DAB/nickel intensification procedure
followed by eosine counterstaining.

Image Analysis of TUNEL and GFAP
Immunoperoxidase Sections
Six retinal sections of both eyes from each experimental group
were analyzed (ACEA, n = 4; AM251, n = 4). Anatomically
matched areas of retina among animals were selected and. images
were taken using a Zeiss Axiophot microscope attached to a video
camera (Olympus Q5) under the same light conditions.

The following parameters were measured, blind to treatment,
on 8 bits images, using the Fiji software (NIH, Research Services
Branch, NIMH, Bethesda, MD):

GFAP positive area: Images of drug treated and control
retinas were randomly selected. Immunoreactive area of the
whole sections was thresholded. The region of interest (ROI)
was the retinal surface between the two limiting membranes
where Müller cells extend their processes. The GFAP positive
area was calculated as the percentage of the ROI
immunostained by GFAP.

TUNEL positive nuclei/1000 µm2: Images of drug treated and
control retinas were randomly selected and thresholded. As ROI,
frames of 1000 μm2 were randomly determined on the ONL of
treated and control retinas. The “analyse particles” function of Fiji
was used and the TUNEL positive nuclei/1000 µm2 ratio was then
obtained for each ROI.

Western-Blotting
Retinas were homogenized (1:3, w/v) in lysis buffer (100 mM
NaCl, 10 mMTrisHCL, 0.5% Triton X-100) plus 50 µl of Protease
inhibitor cocktail (Merck KGaA, Darmstadt, Germany) at 4°C.
Protein concentration was determined by the Bradford method.
Then, 50–100 µl of each sample were mixed 4:1 with 5X sample
buffer (10% SDS, 0315 M Tris-HCl, 25% beta-mercaptoethanol,
50% glycerol, 0.2 ml bromophenol blue 0.1%, pH 6.8), separated
by 15% SDS–PAGE and transferred to polyvinylidenedifluoride
membranes (GE healthcare life sciences, IL). Kaleidoscope
Prestained Standards (Bio-Rad Laboratories, CA) were used as
molecular weight markers. Membranes were blocked with PBS/
5% non-fat dry milk and incubated overnight at 4°C with either a
rabbit polyclonal antibody to GFAP (DAKO Inc., CA,
United States; Cat #Z0334, dilution 1:500) or a rabbit
polyclonal antibody to activated Caspase-3 (Sigma Chemical
Co., MO, United States; Cat #H277, dilution 1:100) or a
monoclonal anti-β-actin antibody (Sigma Chemical Co., MO,
United States, Cat #C8487, dilution: 1: 1000). Membranes were
incubated with ECL donkey anti-rabbit IgG, HRP-linked F (ab)
2 fragment (Amersham), and were developed using a
chemoluminiscence kit (SuperSignal West Pico
Chemiluminescent Substrate, Thermo Scientific, MA).
Membranes were exposed to X-ray blue films (Agfa
Healthcare, Argentina), which were developed and then
scanned with a HP Photosmart scanner (Hewlett Packard).
Optical density was quantified by the Image Studio Light
software of Li-Cor.

RNA Isolation and Quantitative Reverse
Transcription Polymerase Chain Reaction
The retinas of CTL and drug-treated retinas (ACEA and AM251,
n = 5 per group) which were subjected to 24 h of continuous
illumination were dissected out. Procedure was performed as

TABLE 1 | List of primers used in this study.

Gene Primer orientation Primer sequence

Bcl-2 Forward CCGGGAGAACAGGGTATGATAA
Reverse CCCACTCGTAGCCCCTCTG

Bax Forward AAACTGGTGCTCAAGGCCCT
Reverse AGCAGCCGCTCACGGAG

Bad Forward GCCCTAGGCTTGAGGAAGTC
Reverse CAAACTCTGGGATCTGGAACA

TNF-α Forward GAGAGATTGGCTGCTGGAAC
Reverse TGGAGACCATGATGACCGTA

IL-1β Forward CCTCTGCCAAGTCAGGTCTC
Reverse GAATGTGCCACGGTTTTCTT

GFAP Forward GAAGAAAACCGCATCACCAT
Reverse GGCACACCTCACATCACATC

iNOS Forward AGGCCACCTCGGATATCTCT
Reverse GCTTGTCTCTGGGTCCTCTG

Ahr Forward TGATGCCAAAGGGCAGCTTA
Reverse CATTGGACTGGACCCACCTC

CYP1A1 Forward GGTTAACCATGACCGGGAACT
Reverse TGCCCAAACCAAAGAGAGTGA

18S Forward ATGCTCTTAGCTGAGTGTCCCG
Reverse ATTCCTAGCTGCGGTATCCAGG
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detailed in Soliño et al. (37). Briefly, retinas were homogenized
with TRIzol (Invitrogen, Madrid, Spain) and RNA was isolated
with RNeasy Mini kit (Qiagen, Germantown, MD). Three µg of
total RNA were treated with 0.5 µl DNAseI (Invitrogen) and
reverse-transcribed into first-strand cDNA using random
primers and the SuperScript III kit (Invitrogen).

Reverse transcriptase was omitted in control reactions.
Resulting cDNA was mixed with SYBR Green PCR master
mix (Invitrogen) for qRT-PCR using 0.3 µM forward and
reverse oligonucleotide primers (Table 1). Quantitative
measures were performed using a 7,300 Real Time PCR
System (Applied Biosystems, Carlsbad, CA). Cycling
conditions were an initial denaturation at 95°C for 10 min,
followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. At
the end, a dissociation curve was implemented from 60 to 95°C to
validate amplicon specificity. Gene expression was calculated
using relative quantification by interpolation into a standard
curve. All values were divided by the expression of the house
keeping gene 18S.

Statistical Analysis
The image data analysis of GFAP IHC and TUNEL studies of
AEA-treated rats (n = 4) and AM251-treated rats (n = 4) were
evaluated using D´Agostino, KS, Shapiro-Wilk, and F tests. In
every case, Gaussian distribution was confirmed. Then, data were
analysed using unpaired Student´s t-test (GraphPad Software,
San Diego, CA). The results of WB (n = 5, per drug treatment),
and qRT-PCR (n = 5, per drug treatment) were analysed using
unpaired Student´s t-test. In every case, values are expressed as
mean ± standard deviation. Differences were considered
significant when p < 0.05.

The sample size was calculated based on data published by
Soliño et al. (37). Free software (http://biomath.info/power/ttest.
htm) was used to calculate the sample size. Power was set as 80%
for an alpha of 5%, resulting in less than six animals per group to
reach a significant improvement of the variable with an unpaired
t-test.

FIGURE 1 | Treatment with ACEA decreased the number of apoptotic
nuclei and GFAP-immunoreactive areas. (A): Representative TUNEL stained
sections of the outer nuclear layer (ONL) of the retina of a CTL eye (Left) and an
ACEA-treated eye (Right). Observe the higher amount of apoptotic nuclei
in the CTL eye compared to the ACEA-treated eye. Scale bar: 20 μm. (B):
Representative GFAP immunostained retinal sections of a CTL eye (Left) and
an ACEA-treated eye (Right). A greater immunoreactivity of Müller cells is
observed in the retina of the CTL eye compared to ACEA eye. (C):
Quantification of ONL TUNEL positive cells. (D) Quantification of positive
GFAP immunostained area. **p < 0.01.

FIGURE 2 | The treatment with ACEA decreased the levels of GFAP and
activated Caspase-3 (aC3), (A): WB of retinas from CTL and ACEA-treated
eyes. (B) quantifications of GFAP and aC3 bands, Means and standard
deviations are shown. *p < 0.05.
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RESULTS

Effects of the Administration of ACEA on
Light Induced Retinal Degeneration
Effects on Photoreceptor Apoptosis and Gliosis by
Morphological Techniques
The quantification of apoptotic cells by TUNEL technique showed
that treatment with ACEA decreased cell death. The eyes treated with
ACEA had lower numbers of TUNEL positive nuclei in the ONL

than the CTL eyes (11.01 ± 1.62 vs. 16.31 ± 1.98, p = 0.0041, n = 4)
(Figure 1).

Quantification of the GFAP immunoreactive area in the
ACEA-treated retinas showed a significant decrease of the glial
reactivity compared to CTL (3.53% ± 1.19 vs 11.37% ± 4.06, p =
0.0181, n = 4) (Figure 1 and Supplementary Figure S1).

Effects on Apoptosis and Glial Reactivity by Western
Blot
WB showed significant differences between the ACEA-treated
eyes and their controls in the levels of activated Caspase-3 (aC3)
and GFAP. ACEA decreased significantly the expression of aC3
(0.87 ± 0.06 vs 1.00 ± 0.09, p = 0.0329) and GFAP (0.85 ± 0.11 vs.
1.00 ± 0.09, p = 0.0484) (Figure 2).

Effects on Gene Expression (Quantitative Reverse
Transcription-Polymerase Chain Reaction)
In order to investigate the mechanisms involved in retinal
protection, the expression of genes involved in apoptosis,
inflammation, and cell response to xenobiotics were studied.
We studied the effects of the modulation of CB1 on the
transcription of the pro-apoptotic proteins Bad and Bax and
the antiapoptotic Bcl-2. ACEA treatment decreased Bcl-2
expression (p = 0.0283) (Figure 3), but did not significantly

FIGURE 3 | qRT-PCR of Bcl-2, Bax, Bad, AhR, and CYP1A1 of retinas
from ACEA-treated eyes and their respective CTL. Means and standard
deviations are shown. *p < 0.05.

FIGURE 4 | qRT-PCR of TNFα, IL1β, GFAP and iNOS from retinas of
ACEA-treated eyes and their respective CTL. Means and standard deviations
are shown.
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change the expression of inflammatorymarkers IL-1β, TNFα, and
iNOS. GFAP expression was not modified either (Figure 4).

The analysis of Aryl hydrocarbon Receptor (AhR), a
transcription factor involved in the response to xenobiotics,
and one of its target genes, CYP1A1, revealed that only
CYP1A1was significantly decreased by ACEA treatment (p =
0.0307) (Figure 3).

Effects of the Administration of AM251 on
Light-Induced Retinal Degeneration
Effects on Photoreceptor Apoptosis and Gliosis by
Morphological Techniques
The quantification of apoptotic cells by TUNEL in AM251-
treated eyes showed a significant increase in cell death
compared with CTL eyes. The eyes treated with
AM251 presented higher densities of TUNEL positive nuclei
in the ONL (15.61 ± 3.13 vs 12.36 ± 2.30, p = 0.0096)

(Figure 5). Also an increase of the percentage of GFAP
immunoreactive area was found in the eyes that received
AM251 compared to CTL eyes (15.16% ± 9.67 vs 8.08% ±
4.10, p = 0.0207) (Figure 5 and Supplementary Figure S1).

Effects on Apoptosis and Glial Reactivity by Western
Blot
Intravitreal administration of AM 251 produced significant
increases in the levels of GFAP (1.30 ± 0.18 vs. 1.00 ± 0.1, p =
0.0374) and aC3 (1.45 ± 0.47 vs 1.00 ± 0.10, p = 0.0441) when
compared to the CTL eyes (Figure 6).

FIGURE 5 | Treatment with AM251 increased the number of apoptotic
nuclei and GFAP-immunoreactive areas. (A): Representative TUNEL stained
sections of the outer nuclear layer (ONL) of the retina of a CTL eye (Left) and an
AM251-treated eye (Right). Observe the higher amount of apoptotic
nuclei in the AM251-treated eye compared to the CTL eye. Scale bar: 20 μm.
(B): GFAP immunostained retinal sections of a CTL eye (Left) and an AM251-
treated eye. A greater immunoreactivity of Müller cells is observed in the retina
of the AM251-treated eye compared to the CTL eye. (C): Quantification of
ONL TUNEL positive cells. (D)Quantification of positive GFAP immunostained
area. *p < 0.05; **p < 0.01.

FIGURE 6 | The treatment with AM251 increased the levels of GFAP and
activated Caspase-3 (aC3). (A): WB of retinas from CTL and AM251-treated
eyes. (B): Quantifications of GFAP and aC3 bands, Means and standard
deviations are shown, *p < 0.05.
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Effects on Gene Expression (Quantitative Reverse
Transcription-Polymerase Chain Reaction)
AM 251 increased the mRNA of the apoptotic proteins Bad and
Bax (Bax, p = 0.002 and Bad, p = 0.0095), but it also increased the
mRNA for Bcl-2 (p = 0.0096) (Figure 7).

When we studied the expression of inflammatory markers,
AM251 increased significantly TNFα (p = 0.0002) but it did not

change IL-1β and iNOS levels. AM 251 also increased
significantly the mRNA levels of GFAP (p = 0.0014) (Figure 8).

In addition, AM251 increased significantly mRNA levels of
AhR (p = 0.0074) (Figure 7).

DISCUSSION

In our model, the intravitreal injection of ACEA, a CB1 receptor
agonist, prior to LIRD proved to be neuroprotective. Although
intravitreal injections may not be practical for the treatment of
human AMD sufferers, it is a valued experimental approach that
enabled us to achieve a known concentration of the drug in the
tissue avoiding problems of absorption and pharmacokinetics.
However, this is a route of administration of VEGF antibodies for
the treatment of wet AMD.

We observed a lower number of photoreceptor apoptotic
nuclei in the ONL and we detected lower levels of activated
Caspase 3 by WB. In addition, lower levels of glial reactivity were
determined by GFAP IHC and WB. Conversely, the intravitreal
injection of AM251, a CB1 antagonist, prior to CI proved to be
deleterious. In this case, we found a higher number of apoptotic
nuclei in the ONL and higher levels of activated Caspase 3 byWB.

FIGURE 7 | qRT-PCR of Bcl-2, Bax, Bad, AhR, and CYP1A1 of retinas
from AM251-treated eyes and their respective CTL. Means and standard
deviations are shown. **p < 0.01.

FIGURE 8 | qRT-PCR of TNFα, IL1β, GFAP and iNOS from retinas of
AM251-treated eyes and their respective CTL. Means and standard
deviations are shown. **p < 0.01; ***p < 0.001.
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This was accompanied by higher levels of glial reactivity
determined by GFAP IHC and WB.

The qRT-PCR results indicated that CB1 blockade by
AM251 caused an increase in the mRNA of IL1β, GFAP
and of the proapoptotic proteins Bax and Bad. Surprisingly,
the mRNA of the antiapoptotic factor Bcl-2 increased with
AM251 and decreased with ACEA. An alternative explanation
to these results could be that protein levels do not follow
mRNA levels of Bcl-2. In the proapoptotic condition, under
AM251 treatment, free Bcl-2 levels decrease as it
heterodimerizes with Bad and Bax and so the synthesis of
more Bcl-2 mRNA is stimulated and the opposite could
happen in the anti-apoptotic condition under ACEA
treatment. It is known that continuous illumination
induces free radical production (27) and probably the
treatment with AM251 produced a more harmful
environment as shown by an increased expression of AhR.
This receptor is activated by xenobiotics but it also
participates in development, differentiation, proliferation,
immune response and apoptosis (41). Its activation triggers
the expression of cytochrome P450 enzyme CYP1A1 and also
the expression of suppressor cytokine signaling-2 (SOCS-2)
which modulates inflammatory response (42, 43). Supporting
this idea, we found that ACEA-treated retinas showed a lower
transcription of CYP1A1, a gene regulated by AhR. Probably
the neuroprotective effect of CB1 stimulation arises from the
final balance of a set of signals (combinatory regulation).

Our results are in agreement with other reports that show the
neuroprotective effect of the eCB system in CNS using different
models of Alzheimer disease, excitotoxicity, ischemia, and
oxidative stress. The neuroprotective effect of CB1 signaling
was demonstrated by different approaches. For instance, the
protective effect of WIN55212–2, a CB1/CB2 receptor agonist,
was blocked by a CB1 receptor antagonist (44) and CB1 receptor-
deficient mice showed larger infarct areas and lower blood flow in
the ischemic penumbra (45). The protective mechanism of
CB1 receptor may involve survival pathways such as inositol
triphosphate (IP3) (46), PI3K (45), ERK (47), the reduction of the
activation on the nuclear factor-κB (48), and the inhibition of
Q-type Ca2+ currents or the activation of inward K+ currents (49).

The cumulative effect of light produces free radicals (50).
Then, reactive oxygen species (ROS) peroxide membrane
phospholipids, and polyunsaturated fatty acids (PUFA) that
belong to outer PR segments, modify relevant proteins
involved in signal transduction and induce DNA damage
triggering apoptosis (51–53). Oxidative stress may also
induce mitochondrial dysfunction that leads to
neurotoxicity. This inability to adapt to the environmental
stressor (light) could result in metabolic inflexibility that leads
to neurodegeneration (54). In fact, severe ultrastructural
alterations were detected in mitochondria in our model
(24). Also, mitochondria are probably involved in
triggering apoptosis by releasing cytochrome c induced by
the increase of Bad and Bax whose expression was enhanced
after the treatment with AM251.

In the retina, using an NMDA-induced excitotoxicity model, it
was shown that the treatment with phytocannabinoids decreased

the stress produced by reactive nitrogen species and lipid
peroxidation, acting partially through CB1 (18). In a model of
axotomy of the optic nerve, it was found that inhibition of FAAH
improved the survival of ganglion cells by a CB1-dependent
mechanism that decreased microglial reactivity (55). Another
possible site of action of CB1 in the retina could be the
microvasculature. In this regard, it was found that the
diameter of the capillaries and the size of the pericytes of the
blood-retinal barrier are regulated by CB1 in concert with nitric
oxide (NO) and the activation of guanylate cyclase (56).

Opposite to our results, using a model of retinal
degeneration induced by intraperitoneal administration of
N-methyl-N-nitrosourea (NMU), the treatment with
SR141716A (Rimonabant), a CB1 antagonist, induced the
survival of photoreceptors, lowered the levels of glial
reactivity and decreased vascular anomalies (57). Similar
results were also obtained in a diabetic mouse model of
retinal degeneration where the deletion of CB1 receptor or
the use of SR141716 (Rimonabant) prevented retinal cell
death (58). Finally, using a model of continuous
illumination, saffron and selective CB1 and
CB2 antagonists also reduced photoreceptor death in ONL
and preserved visual function of the retina (59). These
differences with our results may arise from alternative
neuroprotective properties of SR141716A, not necessarily
related with CB1 antagonism. It has been suggested that
this compound could have inverse agonist properties and
may function as agonist on other receptors (60). An
alternative explanation is that at the dose of 10 μΜ
employed in our study, ACEA could activate the
CB2 receptor. If fact, CB2 receptor agonists have been
shown to be neuroprotective in animal models of EAE and
stroke (61). In our laboratory, the use of JWH133, a
CB2 agonist, protected photoreceptors from cell death in
the same LIRD model (unpublished data).

In conclusion, in our hands, the stimulation of CB1 improved
the survival of photoreceptors and decreased glial reactivity in the
LIRD model. The modulation of CB1 activity may be used as a
therapeutic strategy in retinal degeneration either alone or in
combination with accepted treatments and deserves further
studies in other retinal degeneration models as well as in
human retinal diseases.
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