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Alcohol use disorder (AUD) is one of the foremost public health problems. Alcohol is
also frequently co-abused with cocaine. There is a huge unmet need for the treatment
of AUD and/or cocaine co-abuse. We have developed and used a skin stem cell-
based gene delivery platform and found that production of the glucagon-like peptide-
1 (GLP1) from the grafted genetically modified skin reduced development and
reinstatement of alcohol-induced drug-taking and seeking, voluntary oral alcohol
consumption and alcohol-induced increase in dopamine (DA) levels in the nucleus
accumbens (NAc). Moreover, we have developed a novel co-grafting procedure for
both modified human butyrylcholinesterase (hBChE)- and GLP1-expressing cells.
Skin grafts-derived hBChE and GLP1 reduced acquisition of drug-taking and toxicity
induced by concurrent alcohol and cocaine injections. These results imply that
gene delivery through skin transplants may add a new option to treat drug abuse
and co-abuse.
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INTRODUCTION

Alcohol use disorder (AUD) involves problems controlling drinking, continuing to use alcohol even
when it causes problems, having to drink more to get the same effect, or having withdrawal
symptoms when one decreases or stops drinking [1,2]. AUD is one of the most prevalent psychiatric
disorders worldwide. About 18 million adult Americans have AUD [3]. AUD can change how brain
functions and damage other organs. It can also increase the risk of death from driving under the
influence, injuries, suicide and homicide. Excessive alcohol use is among the leading causes of
preventable death [4]. There are three FDA-approved medications, disulfiram, naltrexone, and
acamprosate, and behavioral counseling for stopping or reducing drinking and preventing relapse in
humans [5]. However, only 1.3 million receive treatment [6]. Moreover, not all people respond to
these medications and types of treatment, and compliance varies among those who receive treatment
regimens. Significantly, AUD is also characterized by high comorbidity such as with cocaine. Cocaine
is a widely abused drug that causes significant morbidity and mortality. From 2012 through 2018, the
rate of cocaine-related overdose deaths more than tripled [7]. Although a variety of pharmacological
targets and behavioral interventions have been explored, there are no FDA-approvedmedications for
reducing cocaine use or treating relapse in cocaine addicts. Whereas there is a huge unmet need to
develop treatment for cocaine abuse, the lifetime prevalence of occurrence of comorbid alcoholism in
cocaine abusers is 50–80% [8,9]. Concurrent use of alcohol and cocaine produces cocaethylene which
can inhibit DA transporters and elicits euphoria [10], and it has significant cardiotoxic effects by
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blocking sodium channels with a potency that is equal to or greater
than cocaine [11,12]. Cocaethylene also has a longer half-life in the
plasma than that of cocaine and the LD50 of cocaethylene is
substantially lower than cocaine. As a result, there is a 20-fold
higher risk of death than using cocaine alone [13,14]. Now, in
Molecular Psychiatry [15], we reported that one skin stem cell-based
gene delivery platform for treating AUD and/or polysubstance abuse
with cocaine. This work expands the application of the cutaneous
gene delivery platform for treating cocaine abuse and overdose
related deaths [16–18] to additional drug abuse and co-abuse.

GLP1 is a gut neuropeptide hormone mainly secreted by
intestinal enteroendocrine L cells and neurons in the nucleus of
the solitary tract. These cells secret many additional hormones and
peptides, including peptide YY, cholecystokinin, ghrelin, and
pancreatic polypeptide [19]. These peptides play vital roles in
glucose homeostasis, appetite, satiety and onset of obesity and
type 2 diabetes via acting on gut-brain-axis. GLP1 receptors
(GLP1R) are also distributed in brain reward circuits comprised
of the ventral tegmental area and the NAc. Natural rewards can
trigger DA surges in the NAc [20,21], and GLP1 or GLP1 analogs
can suppress mesolimbic DA transmission or DA signaling in
response to food-predictive cues and restrain palatable food
intake [22,23]. Emerging evidence suggest that excessive eating,
obesity and substance abuse share some of the neurobiological
mechanisms involving the DA system [24]. For example, GLP1,
GLP1R agonists and antagonists can modulate drug reward
behaviors including those induced by alcohol and cocaine
[25–30]. Moreover, via acting on the GLP1Rs in reward circuits,
GLP1 can attenuate drug-induced neurobiological effects in mice
including reward-seeking behavior and DA release in the NAc
[28,29]. Since the safety profile of GLP1 analog drugs has been

proven in the treatment of type 2 diabetes and obesity in human
patients, its effectiveness in treating other diseases or conditions such
as AUDwill be highly favorable in new drug development. However,
GLP1 has a very short half-life in vivo [31], and clinical
administration of GLP1R agonists may be inconvenient and
costly because it requires long-term and parenteral
administration, which limits its application in treating AUD.

We previously developed a skin stem cell-based long-term gene
delivery approach in mouse models that enables us to genetically
engineer the skin stem cells with the CRISPR/CAS9 technology and
transplant these engineered cells to normal animals via skin grafting
(Figure 1). Doxycycline inducible expression of GLP1 in grafted
animals can reverse diet-induced obesity and diabetes [32].
Moreover, we also engineered a platform capable of delivering the
BChEgene in reducing cocaine abuse. BChE is an endogenous enzyme
that hydrolyzes its normal substrate acetylcholine [33]. BChE is
secreted by hepatocytes and circulates in the blood. A
computational designed version of BChE, the human BChE
(hBChE), has significantly enhanced catalytic activity for
metabolizing cocaine [34–36]. This designed enzyme can also
decompose cocaethylene. We found that hBChE-expressing skin
grafts could effectively metabolize cocaine in circulation at a fast
rate and decrease DA levels in the NAc in the brain as quantified
by using microdialysis followed by liquid chromatography–mass
spectrometry (LC–MS), and protect mice from development of
cocaine-taking and cocaine-induced drug-seeking, as measured by
the conditioned place preference behavioral method, as well as cocaine
overdose-related deaths [16,17], thus potentially providing a long-term
solution for safeguarding against key features of cocaine abuse [18].

We recently utilized this gene delivery platform to examine its
effectiveness in reducing alcohol reward and active ongoing

FIGURE 1 | Using a skin cell-based gene delivery platform to reduce alcohol and/or cocaine abuse.
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consumption. We found that turning on GLP1 production from the
grafted skin can effectively prevent development of alcohol-taking
and reinstatement of alcohol-induced drug-seeking, as measure by
CPP (Figure 1), as well as voluntary oral alcohol consumption in
mouse models quantified by using a two-bottle choice behavioral
paradigm (Figure 1, [15]. Moreover, skin-derived GLP1 can restrain
alcohol-induced DA elevation in the brain mesolimbic DA system
while having no effects on alcohol metabolism in the periphery [15].
This work expands the application of cutaneous gene delivery of
GLP1 for treating diseased states beyond obesity and diabetes and
adds valuable supportive evidence of targeting GLP1 system as a
novel treatment for AUD. To explore the potential of this platform in
managing polysubstance use, we developed an innovative co-culture
and co-grafting procedure to co-express bothGLP1 and hBChE. The
simultaneous application of GLP1 and hBChE may bring higher
efficiency in treating alcohol and cocaine co-abuse because hBChE
can efficiently degrade both cocaine and cocaethylene thereby
reducing their rewarding effects and toxicity, while GLP1 can
reduce the reinforcing effect-induced by both alcohol and
cocaine. We found that skin-derived GLP1 and hBChE could
reduce alcohol and cocaine co-administration-induced acquisition
of drug-induced CPP (Figure 1) and toxicity, suggesting the
feasibility of using one skin stem cell-based gene delivery
platform with a therapeutic gene cocktail delivered via skin grafts
to address polysubstance abuse. Therapeutic gene cocktails have
distinct advantages in the treatment of polysubstance abuse, because
a single therapeutic agent may not effectively address all aversive
effects produced by polysubstance abuse. They offer versatility and
many opportunities involving different gene combinations in
treating various polysubstance abuse.

The promising preclinical results for the use of the skin cell-
based gene delivery platform to treat AUD and/or cocaine abuse
in mice imply that this approach is long-lasting, highly efficient
and minimally invasive with low maintenance. They offer hope
that the approach may work in humans in the future because:
1) One platform can simultaneously address acquisition,
reinstatement, ongoing use and overdose-related deaths. 2)
The skin grafts will be autologous and the therapeutic GLP1
and hBChE genes are of human origin so the immune responses
to the platform are expected to be low. 3) We have used
keratinocytes isolated from human newborn foreskin in the
AAVS1 locus for targeting human GLP1 and hBChE genes in
nude mice respectively and found strong GLP1 and hBChE
production [17,32]. Grafted skins exhibited normal epidermal
stratification, proliferation, and apoptosis in vivo with no
tumorigenesis [17,32]. 4) hBChE has been tried in
intramuscular injections in humans once weekly at a large
amount of 300 mg and was shown to be well-tolerated and
safe [37]. At least six GLP1 receptor agonists have been
approved by the FDA to treat type II diabetes [38]. More
recently, RYBELSUS® (semaglutide, Novo Nordisk), became
the first oral protein treatment approved for use in the US.
Semaglutide is a protein that is chemically 96% identical to
human GLP1. In human studies, after 26 weeks of use, 77% of
those taking 14 mg once daily, patients do not experience
significant side effects with about 1% weight loss while
exhibiting significant improvement in type II diabetes. 5)

Compared to all existing gene therapies, the skin cell-based
gene therapy is much more affordable. Protocols for the
isolation of skin stem cells, CRISPR targeting and preparation
of genetically modified cultured epidermal autograft are well-
established and routine technically. There are several commercial
cultured epidermal autografts available (∼$1,000 per 100 cm2)
[39] and the grafting procedures are relatively inexpensive
[40]. The cutaneous gene therapy involves grafting of
immunocompetent host, does not require lengthy
hospitalizations, and the grafting procedure has been clinically
used for treating burn wounds for decades.

Despite the optimism, there are challenges ahead when
testing this approach in humans. 1) Will the platform have
similar efficacy in humans as compared to that in mice? How
can one provide sufficient quantities of therapeutic proteins to
address different aspects of drug abuse and co-abuse? What are
potential side-effects from the skin-derived therapeutic
molecules? Despite of putting both hBChE and GLP1 genes
under the control of a reversible regulator in doxycycline, how
long can these genes be on without significantly interfering with
endogenous acetylcholine and glucose homeostasis? What is the
optimal ratio of proteins for treating drug abuse and co-abuse if
a combination of therapeutic genes is used? What is the
consequence of talking doxycycline long–term? 2) It is
unclear how long the skin graft will last. Both GLP1 and
hBChE skin grafts can last for at least 7 months in preclinical
mouse studies and how much longer they remain effective in
mice is still under investigation. Evidence from human studies
indicates that skin grafts used in treating burn patients can last
for a lifetime, and genetically modified skin patches for the
treatment of junctional epidermolysis bullosa patients can
remain stable for years [41], which implies the long-lasting
potential of therapeutic skin grafts. 3) How do skin-derived
GLP1 and hBChE impact the endogenous GLP1 and hBChE
expression? Fully addressing these challenges will help adding a
new option to treat drug abuse and co-abuse in the future.
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