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Background: Duck enteritis virus (DEV) belongs to Alphaherpesvirinae; little is

known about the DEV UL7 gene and its encoded protein. This study examined

themolecular characteristics of DEV pUL7 in vitro and determinedwhether DEV

pUL7 co-localizes with pUL51.

Results: The results showed that UL7 can be regarded as a late gene.

Moreover, immunofluorescence assay revealed that pUL7 was located

around the perinuclear cytoplasmic region and co-localized with pUL51 in

the cytoplasm and nucleus after transfection into duck embryo fibroblast

cells (DEFs).

Conclusion: In conclusion, we identified the molecular characteristics of the

DEV UL7 gene, which is a late gene, and the co-localization of its encoded

protein with pUL51 in transfected DEFs, enriching our understanding of

pUL7 and future research directions.
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herpesvirus 1; RT-qPCR, Real-time quantitative PCR; ACV, Acyclovir; CHX, Cycloheximide; VZV,
Varicella zoster virus; HCMV, Human cytomegalovirus; EBV, Epstein–Barr virus; GCV, Ganciclovir;
PAA, Phosphonoacetic acid; DEFs, Duck embryo fibroblasts; MEM, Minimum essential medium; NBS,
Newborn calf serum; SDS–PAGE, Sodium dodecyl sulfate–polyacrylamide gel electrophoresis; PVDF,
Polyvinylidene difluoride; ECL, Chemiluminescence; WB, Western blotting; DAPI, 4′6′-diamidino-2-
phenylindole; IFA, Immunofluorescence assay.
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Introduction

Duck viral enteritis (DVE), also known as duck plague

(DP), is an acute contagious infection of the order

Anseriformes (ducks, geese, and swans) caused by Anatid

herpesvirus 1 (DEV), a member of the subfamily

Alphaherpesvirinae and Mardivirus genus (Wu et al., 2012;

Dhama et al., 2017). The DEV genome is a linear double-

stranded DNA that contains unique long and short (UL and

US, respectively) regions, with each unique sequence

bracketed by internal and terminal inverted repeat

sequences (IRS and TRS, respectively): UL–IRS–US–TRS

(Wu et al., 2012; Liu et al., 2015). The DEV strain CHv

genome encodes 78 open reading frames (ORFs) (Wu et al.,

2012) and many DEV genes and their potential proteins

have been characterized (Deng et al., 2020; Liu et al., 2020;

Shen et al., 2021; Yang et al., 2021; Zhou et al., 2021; He

et al., 2022; Ning et al., 2022; Wan et al., 2022). However,

the DEV UL7 protein (pUL7) molecule has not been

characterized yet.

The UL7 gene encodes a 33 kDa tegument protein

expressed late during infection and is conserved in all

herpesviruses (Nozawa et al., 2002; Tanaka et al., 2008;

Xingli Xu et al., 2016; Albecka et al., 2017). pUL7 is

involved in the maturation and egress of the pseudorabies

virus (PRV). Previous studies have demonstrated that

herpes simplex virus 1 (HSV-1) pUL7 interacts with the

mitochondrial adenine nucleotide transporter 2 (ANT2)

using pull-down and co-immunoprecipitation assays (Fuchs

et al., 2005; Tanaka et al., 2008). Herpes simplex virus 2 (HSV-

2) pUL7 plays a supplementary role in viral DNA cleavage and

packing (Nozawa et al., 2002). Bovine herpesvirus 1 (BHV-1)

is a non-structural protein (Schmitt and Keil, 1996). The

deduced amino acids sequence of DEV UL7 gene showed

significant homology to that of HSV-1 UL7 gene with 34%

identity (Plummer et al., 1998). Moreover, UL6 and UL7 share

the same poly-A signal sequence located downstream of the

UL7 gene (Li et al., 2009). HSV-1 pUL7 forms a complex with

another tegument protein, the UL51 protein (pUL51) (Roller

and Fetters, 2015; Albecka et al., 2017; Feutz et al., 2019;

Butt et al., 2020), which can promote virus assembly by

simulating the cytoplasmic wrapping of newly virions (Butt

et al., 2020). In addition, the amino acids 30–90 of

pUL51 mediate its interaction with pUL7 (Feutz et al.,

2019). pUL7–pUL51 complex loss can be inhibited in

secondary envelopment, which also identifies that the

complex regulates focal adhesion stability during HSV-1

infection (Albecka et al., 2017). Thus, this complex plays

an important role in the lifespan of HSV-1 cells.

The goal of this study was to describe the molecular

characterization of DEV pUL7 in vitro and determine whether

DEV pUL7 co-localized with pUL51, which will provide insight

into further research of DEV pUL7.

Materials and methods

Cells and viruses

Duck embryo fibroblasts (DEFs) were cultured in minimum

essential medium (MEM; Thermo Fisher Scientific, United States)

supplemented with 10% newborn calf serum (NBS) at 37°C in a 5%

CO2 incubator. Maintenance medium supplemented with 2% NBS

was used for the viral infection. DEV strain CHv (GenBank:

JQ647509.1) was isolated, preserved, and supplied by our laboratory.

Vectors and antibodies

The E. coli strain DH5α; E.coli BL21pLysS, pMD20-T, pET-

32a (+), and pCAGGS vectors; and pCAGGS–UL51–Flag plasmid

were provided by our laboratory. A rabbit anti-UL7 polyclonal

antibody was generated for this study; rabbit anti-DEV and anti-

UL51 polyclonal antibodies were prepared as described earlier

(Shen et al., 2009). HRP-conjugated goat anti-rabbit IgG (Life

Technologies, United States), mouse anti-β-actin (Beyotime,

CHN), FITC-conjugated anti-rabbit IgG (Abcam, UK), anti-

HA-tagged rabbit (Beyotime, CHN), anti-Flag-tagged mouse

(Transgen Biotech, CHN), Alexa Fluor 488-conjugated goat

anti-mouse IgG (Thermo Fisher Scientific, United States), and

Alexa Fluor 594-conjugated goat anti-rabbit IgG (Life

Technologies, United States) were used in this study.

Plasmids and transfection

The primers were designed with Oligo 7.0 and primer 5.0

(Table 1). The UL7 gene (GenBank: FJ222445) of the DEV strain

TABLE 1 Oligonucleotide primers in this study.

Gene Primer sequence (59-39) Product
size (bp)

Duck β-
actin

CCGGGCATCGCTGACA 177

GGATTCATCATACTCCTG
CTTGCT

DEV UL54 GAACAACCGCCGAACAC 127

TCAAACATCCGCCTCAA

DEV UL13 GCCACCAACCCTACCAAG 131

GTCGTCAGCCCATCACCA

DEV US2 AGACGGTTCCGAAAGTACAG 111

TCGGCAGCACCAATAATCC

DEV UL7 GGGACAAACCATCCTCTG 114

TATCGCCTGCCAACTTAT
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CHv was inserted into the pMD20-T clone vector, digested with

BamHI and XhoI, and ligated into E. coli expression vector pET-

32a (+) (Invitrogen) to create the plasmid pET32a–UL7. The

plasmids expressing UL7–HA and UL51–Flag from DEV were

constructed by PCR amplification of the coding region and

subcloned into the pCAGGS vector to create

pCAGGS–HA–UL7 and pCAGGS–UL51–Flag, respectively,

and transfected into DEFs using the HieffTrans™ liposomal

transfection reagent (Yeasen, CHN) according to the

manufacturer’s protocol.

Prokaryotic expression of pUL7

The recombinant pUL7 of DEV was purified under

denaturing conditions because it was expressed in E. coli

BL21pLysS with inclusion bodies. To obtain the highest

pUL7 expression, the conditions were optimized by inducing

different IPTG concentrations, temperatures, and time periods.

All expression levels were detected by sodium dodecyl sulfate

(SDS)–polyacrylamide gel electrophoresis (SDS–PAGE).

Polyclonal anti-UL7 sera preparation and
identification

The DEV pUL7 was purified by gel and electric elution

and used to prepare the polyclonal antiserum of pUL7.

Briefly, four male New Zealand white rabbits (Chengdu

dossy experimental animals CO., Ltd.) were immunized

intradermally with 0.5 mg pUL7 emulsified in Freund’s

complete adjuvant. Subsequently, Freund’s incomplete

adjuvant and 1.0 mg pUL7 were injected. Two boosted

subcutaneous injections were administered at 2 weeks

interval after the primary injection. One week later, the

rabbits were intravenously injected with 0.1 mg purified

pUL7. Two weeks after the last immunization, the rabbits

were bled and antiserum was prepared. Control preimmune

serum samples were obtained from non-vaccinated healthy

rabbits. The rabbit polyclonal antiserum was purified using

ammonium sulfate precipitation (McGuire et al., 1996). In

addition, the antibody titer of the pUL7 antiserum was

confirmed using a double-diffusion assay in 1% agarose.

Western blotting

Protein samples were lysed in SDS sample buffer, separated

by SDS–PAGE, and immediately transferred onto

polyvinylidene difluoride (PVDF) membranes (Millipore,

MA, United States). Nonspecific protein binding was blocked

by treating the membranes with PBS containing 5% skim milk

at room temperature for 1 h. The membranes were washed with

PBST (PBS containing 0.05% Tween 20) and incubated

overnight at 4°C with appropriately diluted primary

antibodies. After washing three times with PBST, the

membrane was incubated with the HRP-conjugated goat

anti-rabbit or goat anti-mouse IgG secondary antibodies at

37°C for 1 h. The membranes were then washed three times with

PBST, treated with an enhanced chemiluminescence (ECL) kit,

and exposed on a BioRad CheminDOC XRS+ system.

Real-time quantitative PCR (RT-qPCR)

Total RNA was isolated from DEV-infected cells at 0, 1, 2, 4,

8, 12, 16, 24, 32, 40, 48, 56, and 64 h post-infection using a Total

RNA Isolation System (Takara, JPN). The purified RNA was

immediately inverse transcribed to cDNA by PrimeScript® RT
reagent kit with gDNA Eraser (Takara) according to the

manufacturer’s instructions. The primers were designed by

Oligo 7 (Table 1), and RT-qPCR was performed in 20 μL

reaction volumes containing 1 μL each primer, 1 μL cDNA,

10 μL SYBR Green Mix, and 7 μL RNase-free water in triplicate.

β-actin was used as an internal control. Average relative content

of DEV UL7 gene transcription was calculated by the 2−ΔΔCT

method (Liu et al., 2015).

Drug treatment

To examine the DEV UL7 gene expression patterns,

DEFs were infected with the DEV strain CHv in three

T25 flasks; one flask was treated with 300 μg/mL acyclovir

(ACV), the second was treated with 100 μg/mL cycloheximide

(CHX), while the third was prepared without any drugs as

control. Total RNA was extracted from DEV-infected DEFs

and the control group at 24 h post-infection (hpi) and

subsequently reverse-transcribed into cDNA. PCR was

performed using the primers for UL54, UL13, US2, UL7,

and β-actin genes (Table 1).

Immunofluorescence microscopy

The cells were fixed overnight in 4% paraformaldehyde at 4°C

after washing three times with PBS. The cells were then

permeabilized with 0.2% Triton X-100 for 10 min and

blocked with 3% bovine serum albumin (BSA) in PBS for 1 h

at 37°C. The cells were labeled with primary antibodies at 4°C

overnight and Alexa Fluor-conjugated secondary antibodies in

blocking buffer for 1 h at 37°C. After that, the cells were stained

with 4′6′-diamidino-2-phenylindole (DAPI) for 5 min after

washing three times again at room temperature. Finally, the

fluorescent images were examined using a Nikon H550L

imaging system.
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Immunoprecipitation

Proteins were immunoprecipitated from DEFs transfected

with the pCAGGS–HA–UL7 and pCAGGS–UL51–Flag plasmids

for 24 h. Transfected DEF monolayers of 50 mm cultures were

washed twice with 3 mL cold PBST, and the cells were suspended

in 1 mL cold PBST and pelleted at 110 × g for 10 min. The cell

pellets were resuspended in 0.4 mL IP buffer (Yeasen, CHN)

supplemented with PMSF (final concentration: 1 mM),

transferred to new microcentrifuge tubes, and placed on ice

for 5 min. Then, the cells were centrifuged at 10,000 × g for

10 min at 4°C, and the supernatant was transferred to a new tube.

After removal of a fraction of the sample as a control, 2 µL mouse

anti-Flag and rabbit anti-HA IgG were added and the mixture

was incubated at 4°C overnight under gentle rotation. On the

next day, 20 µL protein A agarose (Bio-Rad, United States) was

added and the samples were incubated and gently rotated at 4°C

for 3 h. The samples were then washed thrice with PBST, rapidly

centrifuged for 30 s, and the supernatant was collected. Finally,

the samples were heated for 10 min at 90°C with 5× SDS

loading buffer.

Results

Rabbit anti-pUL7 antibody preparation

The recombinant plasmid pET32a–UL7 was transformed

into E. coli BL21pLysS and expressed mainly in the insoluble

fraction (50 kDa). pUL7 was purified and analyzed using

SDS–PAGE (Figure 1A). The immunogenicity of the purified

UL7 fusion protein was detected using rabbit anti-DEV

antibodies, which specifically recognize a 50 kDa molecule

(Figure 1B). Rabbit anti-pUL7 polyclonal antibodies (titer: 1:

32) were generated in this study, which can specifically recognize

pUL7 in DEV-infected DEFs (molecular weight: approximately

35 kDa), which is consistent with the expected size of DEV

pUL7 (Figure 2D).

Quantitative analysis of DEV UL7 gene
transcripts

The amplification efficiency of the target and reference gene

must be approximately equal for applying the 2−ΔΔCT method.

Both standard curves showed the same PCR efficiency

(Figure 2A) and their melting curves presented a single peak

(Figure 2B). The UL7 transcripts in DEV-infected cells were

analyzed by real-time quantitative PCR (RT-qPCR) with SYBR

Green I. The average relative DEV UL7 gene transcript content

was calculated by the 2−ΔΔCT method. The results indicated that

DEV UL7 gene transcripts were not detected in negative controls

(at 0 hpi), first detected at 4 hpi, increased steadily until reaching

a peak at 56 hpi, and maintained a high level at 64 hpi with a

descending trend (Figure 2C).

Kinetic class of DEV pUL7 expression levels

The cell lysates collected at different time points after DEV

post-infection were analyzed by western blotting, and the PVDF

membranes were probed with a rabbit anti-pUL7 polyclonal

antibody (Figure 2D). Band density was analyzed using

ImageJ software, which showed that pUL7 expression began at

FIGURE 1
Identification of the recombinant pUL7. (A): Purification of the recombinant pUL7. M. Protein Marker; Lane 1, purified recombinant pUL7
(approximately 50 kDa); Lanes 2 and 3, the pellet and supernatant of expressed pUL7 after induction in E. coli BL21pLysS, respectively. (B):
recombinant pUL7 identification by western blotting (rabbit anti-DEV antibody 1:800 and goat anti-rabbit IgG HRP-conjugated antibody 1:3000) M.
Prestained protein Marker; Lane 1. Expression of recombinant pUL7 (approximately 50 kDa); Lane 2.pET32a (+) vector.
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12 hpi and peaked 36 hpi. As a control, the same cell lysates were

probed with a monoclonal antibody against β-actin, and the β-
actin levels remained relatively constant.

DEV UL7 is a late gene

Previous studies have shown that many DEV genes are late

genes after acyclovir (ACV) or cycloheximide (CHX)

treatment (He et al., 2018; Yang et al., 2020). Therefore, we

examined the effects of ACV and CHX on DEV UL7. Figure 3

illustrates the correct bands of the immediate-early (IE) gene

UL54, early (E) gene UL13, and late (L) gene US2; β-actin was

detected as a control and the negative group was DEFs

untreated with ACV or CHX. UL7 showed the same band

as US2 and was observed only in the DEV-infected group

without ACV or CHX treatment. These results indicated that

UL7 is an L gene in DEV.

pUL7 mainly localizes in the cytoplasm of DEV-
infected cells

The intracellular localization of pUL7 in DEV-infected DEFs

was examined by indirect immunofluorescence assays using

pUL7 antiserum. The pUL7-specific fluorescent was detected

in the cytoplasm at 8 hpi (Figure 4). At 48 hpi, the pUL7-specific

fluorescent granules had increased and clustered strongly in the

perinuclear region. However, no specific staining was observed in

mock-infected DEFs and infected DEFs at 4 hpi. Taken together,

these observations indicate that DEV pUL7 is predominantly

localized in the cytoplasm of DEV-infected DEFs.

FIGURE 2
The transcription and expression kinetics of DEV UL7 gene. (A): Standard curves of DEV UL7 (Y = −3.303X + 9.697) and β-actin (Y = −3.303X +
8.647), and UL7 gene (100.8%) and β-actin (100.8%) amplification efficiencies were identical, with correlation coefficients of 0.998 and 0.999,
respectively. (B): Melting curves of DEV UL7 gene and β-actin. (C): UL7 mRNA levels at 0, 1, 2, 4, 8, 12, 16, 24, 32, 40, 48, 56, and 64 phi were detected
by RT-qPCR and normalized to β-actin, and average relative content of DEV UL7 gene transcription was calculated by the 2−ΔΔCt method. (D):
The pUL7 express levels at 0, 8, 12, 24, 36, 48, and 60 phi were detected by western blotting (up, approximately 35 kDa) and quantification in the
seven groups (down) were analyzed using Image J software. All cell lysate samples were detected with rabbit anti-UL7 serum (1:500) and goat anti-
rabbit IgG HRP-conjugated antibody (1:3000). β-actin antibody (1:5000) was used to detect β-actin as a control.
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FIGURE 3
Identification virion gene type by drug treatment. M, DL2000 DNA Marker; ACV, DEV-infected cells treated with 300 μg/mL acyclovir (ACV);
CHX, DEV- infected cells treated with 100 μg/mL cycloheximide (CHX). +, DEV-infected cells without drugs; −, untreated DEF cells. IE, immediate
early; E, early; L, late.

FIGURE 4
Intracellular localization of the pUL7 in DEV-infected DEFs at different times. Immunofluorescence microscopic images of the pUL7 (FITC
green) at 4, 8, 12, 24, 36, 48, and 60 hpi. Nuclei (DAPI) are indicated in blue. The mock comprised untreated DEFs. The merged fluorescence
microscopy images of DEFs were shown in panels with magnification (400×). All samples were detected with rabbit anti-UL7 antibody serum (1:100)
and goat anti-rabbit IgG-conjugated FITC(1:1000). Fluorescent images were obtained with the Nikon H550L imaging system.

Acta Virologica

Published by Frontiers
Institute of Virology

Biomedical Research Center, Slovak Academy of Sciences06

Huang et al. 10.3389/av.2024.12023

https://doi.org/10.3389/av.2024.12023


pUL7 co-localization with pUL51 in DEFs

To determine whether DEV pUL7 co-localization with

pUL51, we first created pCAGGS–HA–UL7 and

pCAGGS–UL51–Flag vectors and expressed them via

transfection into DEFs individually or together. When cells

were infected alone, pUL7 was mainly observed in the

cytoplasm (Figure 4). In addition, pUL51 was detected mainly

in the cytoplasm (Figure 5A). When pUL7 was co-expressed with

pUL51, a juxtanuclear Golgi apparatus-like distribution was

observed, and merged fluorescence analysis showed that the

two proteins were co-localized in the cytoplasm and nucleus

(Figure 5B). However, this did not necessarily imply an

interaction during co-expression. To confirm that the

pUL7–pUL51 complex could form in co-transfected DEFs, we

detected the complex using co-immunoprecipitation (Co-IP).

The results showed that pUL7 co-immunoprecipitated with

pUL51 in the co-transfected DEFs (Figure 6).

Discussion

The UL7 gene is conserved in all herpesvirus, and the pUL7 or

its homologous proteins in HSV-1, HSV-2, BHV-1, pseudorabies

virus (PRV); ORF53 in varicella zoster virus (VZV); pUL103 in

human cytomegalovirus (HCMV); and BBRF2 in Epstein–Barr

virus (EBV) have been identified previously (Schmitt and Keil,

1996; Nozawa et al., 2002; Fuchs et al., 2005; Tanaka et al., 2008;

Ahlqvist and Mocarski, 2011; Wang et al., 2017; Masud et al.,

2019). A previous study demonstrated that the UL7 gene-null

FIGURE 5
Colocalization of pUL7 with pUL51 in DEFs. (A): DEFs were transfected with pCAGGS-HA-UL7 and pCAGGS-UL51-Flag, respectively. (B): DEFs
were co-transfected with pCAGGS-HA-UL7 and pCAGGS-UL51-Flag. All samples were collected after 24 h post transfection. Nuclei (DAPI) are
indicated in blue. The merged fluorescence microscopy images of DEFs were shown in panels with magnification (400×). The pUL7 were detected
with rabbit anti-HA antibody serum (1:500); pUL51 were detected with mouse anti-Flag antibody serum (1:500) and Alexa Fluor-conjugated
secondary antibodies (1:1000). Fluorescent images were obtained with the Nikon H550L imaging system.
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mutation is dispensable in HSV-1 replication in cells. However,

both the plaque-forming ability and viral growth of the UL7-

knockout HSV-1 were significantly impaired compared to those of

the wild-type virus, which is consistent with the results of BHV-1

and PRV (Tanaka et al., 2008). The UL7 gene products of HSV-2,

PRV, and HCMV are structural proteins. However, pUL7 was not

found in the purified BHV-1 virions, although it accumulated

predominantly in the cytoplasm, as detected by IFA (Schmitt and

Keil, 1996). This differencemay indicate the different roles of these

proteins in different viruses. In this study, DEV pUL7 accumulated

predominantly in the cytoplasm and may share a function with

that of BHV-1.

Herpes virus genes are divided into three kinetic classes: IE,

E, and L. The IE and E genes are involved in viral replication and

expressed first. The L genes encoded structural proteins, which

are subdivided into two categories: leaky-late (γ1) or strict-late
(γ2). The γ1 genes can be expressed in the presence of viral DNA

inhibitors. However, the γ2 genes cannot be expressed in the

presence of viral DNA inhibitors (Lian et al., 2010; Gruffat et al.,

2016). In general, viral DNA replication and protein synthesis

inhibitors are used to distinguish between the gene classes. Viral

DNA replication inhibitors include ACV, ganciclovir (GCV),

and phosphonoacetic acid (PAA), but CHX is the only protein

synthesis blocker. To distinguish between the viral E and L

transcript stages, only the E transcripts were detected in cells

infected in the presence of viral DNA replication inhibitors. Viral

IE transcripts can be detected using CHX (Zhang et al., 2017).

Several DEV genes, including US2 (Gao et al., 2015), UL16 (He

et al., 2012), UL21 (Yang et al., 2020), UL41 (He et al., 2018), and

UL55 (Wu et al., 2011), have been identified as L genes. In this

study, we identified UL7 gene in DEV-infected cells also treated

with GCV and CHX, and examined DEV UL54, US2, UL13 and

β-actin as controls (Gao et al., 2015; Liu et al., 2015; Hu et al.,

2017). These results indicate that UL7 expression is consistent

withUS2 expression, which are inhibited by both GCV and CHX.

Therefore, DEV UL7 gene is regulated as a γ2 gene.

Tegument proteins conserved in the herpes virus family may

be involved in mediating the core process of virus assembly.

HSV-1 pUL7 and pUL51 have been identified as a complex

during HSV-1 replication (Roller and Fetters, 2015; Albecka

et al., 2017; Feutz et al., 2019; Butt et al., 2020). pUL7 and

pUL51 expression is necessary for gE localization to the

junctional cell surfaces, and the complex functions in the

same cell-to-cell spread pathway as gE/gI (Feutz et al., 2019).

However, whether DEV pUL7 interacts with pUL51 remained

unclear. Here, we showed that DEV pUL7 and pUL51 partially

co-localize in the cytoplasm and nucleus of transfected cells.

Moreover, Co-IP results showed that pUL7 interacted with

pUL51 in co-transfected DEFs. Therefore, these results may

also provide data on the pUL7/pUL51 complex to assist

further research on DEV.

In conclusion, we have shown that DEVUL7 is an L gene, and

its product, pUL7, is mainly localized in the cytoplasm. DEFs co-

transfected with pCAGGS–HA–UL7 and pCAGGS–UL51–Flag

also showed that pUL7 and pUL51 co-localized in the cytoplasm.

In addition, co-IP results indicated that pUL7 interacted with

FIGURE 6
(A): DEFs were transfected or co-transfected with pCAGGS-UL51-Flag and pCAGGS-HA-UL7 expression plasmids. Anti-Flag, anti-HA and anti-
β-actin monoclonal antibodies were used for WB. (B): DEFs were co-transfected with pCAGGS-UL51-Flag and pCAGGS-HA-UL7 expression
plasmids. Anti-Flag and anti-HA monoclonal antibodies were used for IP, and anti-HA and anti-Flag monoclonal antibodies were used for WB,
respectively.
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pUL51 in transfected DEFs. Therefore, the interaction mechanism

between pUL7 and pUL51 of DEV deserves further study.
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