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Research aimed to examine the effects of B-blockers on cytokine release in
Jurkat cells under basal conditions and during oxidative stress. Oxidative stress
was induced in Jurkat cells through the application of hydrogen peroxide
(H,O,). Subsequently, p-blockers were administered to the incubation
medium for 24 h, encompassing both intact and oxidatively stressed cell
conditions. For pB-blocker toxicity screening, the viability of Jurkat
cells was determined using the MTT (3-(4,5-dimethylthiazolyl-2)-2,5-
diphenyltetrazolium bromide) test. The IL-6, IL-17, and TNF-a content were
measured in the supernatant of Jurkat cells incubated under different
conditions. The study results show that propranolol, metoprolol, carvedilol,
but not nebivolol, revealed toxic effects on the intact Jurkat cells (p.p = 0.0001;
Pe-m > 0.0001; pc.c = 0.0003; p.., = 0.0525). Under oxidative stress conditions,
the viability of Jurkat cells decreased significantly (pc.h202 = 0.0001).
Propranolol and metoprolol did not affect ((pc-p = 0.0001; pc.m > 0.0001),
while nebivolol and carvedilol improved the viability of Jurkat cells incubated
under oxidative stress conditions (p.., = 0.002; p... = 0.0002). Oxidative stress
significantly increased the cytokines (IL-6, TNF-a, IL-17) expression levels
(Pe-pzo2 < 0.0001; pe-pzo2 < 0.0001; pe-pzo2 < 0.0001) in Jurkat cells.
Propranolol, carvedilol, nebivolol, and metoprolol did not significantly affect
the expression levels of IL-6, TNF-a, and IL-17 in intact Jurkat cells, but
decreased IL-6, TNF-a, and did not change IL-17 expression levels in Jurkat
cells incubated under oxidative stress conditions. This study demonstrates that
B-blockers can influence redox-sensitive cytokine pathways in Jurkat T
lymphocytes when they are under oxidative stress. All the agents tested
inhibited the production of IL-6 and TNF-a, but nebivolol and carvedilol
showed the strongest protective and anti-inflammatory effects. These
effects likely result from their combined properties, including antioxidant
effects, nitric oxide modulation, and the regulation of NF-kB/MAPK
pathways. In contrast, propranolol and metoprolol exhibited more limited
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activity. These findings suggest that third-generation B-blockers may offer both
cardiovascular and immunomodulatory benefits, although further validation in
primary immune cells and in vivo models is still required.
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Introduction

Hypertension is a significant contributor to the global burden
of cardiovascular disease, leading to considerable morbidity and
mortality worldwide. It affects over a billion people and is
recognized as a primary modifiable risk factor for serious
conditions such as stroke, myocardial infarction, heart failure,
and chronic kidney disease (Chobanian et al, 2003). The
pathogenesis of essential arterial hypertension is highly
complex and multifactorial. Despite nearly a century of
research, finding effective treatment strategies continues to be
a major challenge in clinical medicine.

The traditional understanding of hypertension focused
primarily on issues related to hemodynamic regulation and
fluid balance, which were thought to be driven mainly by
changes in vascular resistance, renal sodium handling, and
neurohormonal regulation. However, recent evidence from the
past two decades suggests that immune and inflammatory
mechanisms play significant roles in its pathophysiology.
the
inflammation and the activity of the adrenergic system has

Specifically, interaction between chronic low-grade
become a crucial factor in both the onset and progression of
hypertensive disease (Harrison et al., 2011; Madhur et al., 2010).

A growing body of experimental and clinical research has
identified inflammation as a key mechanism in initiating and
maintaining elevated blood pressure. Inflammation contributes
to endothelial dysfunction, vascular remodelling, and increased
arterial stiffness. These effects are mediated by pro-inflammatory
cytokines, including tumour necrosis factor-alpha (TNF-a),
interleukin-6 (IL-6), interleukin-17 (IL-17), and interleukin-1f
(IL-1B), as

chemoattractant protein-1 (MCP-1). These mediators facilitate

well as chemokines such as monocyte
immune-cell recruitment and activation within the vascular wall,
leading to endothelial impairment, tissue injury, and renal
dysfunction - all of which contribute to hypertensive
pathology (Sriramula et al., 2008; Zhang et al., 2012; Dinh
et al, 2014; Li et al, 2025). Inflammatory mediators also
activate the renin-angiotensin-aldosterone system (RAAS),
thereby contributing to blood pressure elevation and end-
organ damage (Wenzel et al,, 2011). Targeting these cytokines
may therefore provide novel therapeutic strategies, particularly in
treatment-resistant hypertension.

Chronic overactivation of the central nervous system (CNS),
a hallmark of many forms of hypertension, not only sustains

elevated blood pressure but also amplifies inflammatory
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signalling. Recent studies have demonstrated a link between
inflammation and sympathetic activation in hypertension
development, mediated through a- and p-adrenergic receptors
(al, a2, B1, B2) expressed on immune cells, including T cells.
These receptors influence T-cell activation and cytokine
production and promote leukocyte adhesion, migration,
infiltration, and apoptosis (Wenzel et al., 2011). Experimental
models have shown that T-cell depletion or cytokine blockade
can attenuate hypertension induced by angiotensin II or
norepinephrine infusion, highlighting the importance of
immune effectors in mediating hypertensive responses (Guzik
et al,, 2007). Likewise, pharmacological or surgical inhibition of
sympathetic nerve activity reduces cytokine expression and
immune-cell infiltration in hypertensive organs (Marvar et al.,
2010). This bidirectional crosstalk creates a self-amplifying loop
in which inflammation and sympathetic activation perpetuate
one another, sustaining hypertension and promoting organ
damage. Understanding these mechanisms is essential for
designing immune-modulatory approaches to hypertension.
B-adrenergic blockers (p-blockers) are a well-established
class of antihypertensive drugs that act by antagonising p-
adrenergic receptors. Beyond their hemodynamic actions, -
blockers
inflammatory cytokine production, including TNF-a and IL-6,

modulate immune activity - reducing pro-
while enhancing anti-inflammatory cytokines such as IL-10
(Gaskill and Khoshbouei, 2022). They

inflammatory responses implicated in endothelial dysfunction

also  mitigate
and vascular remodelling (Harrison et al., 2011). This dual action
- modulating CNS activity and inflammatory pathways -
B-blockers as  both
immunomodulatory agents in hypertension treatment.

positions neurohormonal  and
Based on pharmacological selectivity, [-blockers are
three

selective, e.g., propranolol, which blocks both B; and P,

classified into generations: first-generation (non-
receptors), second-generation ((;-selective, e.g., metoprolol),
and third-generation (agents with vasodilatory and pleiotropic
effects, e.g., nebivolol and carvedilol) (Frishman and Saunders,
2011). Nebivolol is characterised by high B;-selectivity at low
doses and additional [;-adrenergic agonist activity, which
promotes nitric oxide (NO) release, improves endothelial
function, and confers antioxidant protection (Maffei and
Lembo, 2009). Carvedilol, by contrast, combines non-selective
B-blockade with a;-receptor antagonism, producing vasodilation
and enhancing antioxidative and anti-inflammatory effects

(Chen-Scarabelli et al., 2012).
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Understanding the molecular mediators that connect

inflammation and  adrenergic receptor = signalling in
hypertension is essential for identifying novel therapeutic
targets. This study aimed to examine the effects of B-blockers
on cytokine release in Jurkat cells under basal conditions and
during oxidative stress.

Jurkat cells, an immortalised human CD4" T-cell line,
T-cell (TCR)-mediated

signalling and cytokine production. They are widely used in

preserve  functional receptor

immunological research for studying T-cell survival,
proliferation, differentiation, and activation (Szelényi and
Vizi, 2007; Sharma and Farrar, 2020). Jurkat cells express a
broad cytokine repertoire, including IL-2, IL-4, IL-6, IL-8, IL-
10,IL-12,IL-17, TNF-q, interferon-y (IFN-y), and granulocyte-
macrophage colony-stimulating factor (GM-CSF), triggered by
diverse stimuli such as TCR signalling, mitogens (e.g., phorbol
myristate acetate), superantigens (e.g., staphylococcal
enterotoxins), cytokines (IL-2, IL-6, IL-12, IL-23, TNF-a),
growth factors, pathogen-associated molecular patterns
(PAMPs) (e.g., lipopolysaccharide), oxidative stress, and
genetic manipulations, including transcription factor
overexpression (e.g., retinoic acid receptor-related orphan
receptor gamma, (RORyt) or CRISPR/Cas9-based gene
editing (Suzuki et al, 2006; Kumar et al, 2014; Pawelec
et al., 1982; Khalaf et al., 2010; Mori et al., 1996; Liu et al,,
2005; Penix et al, 1993; Li-Weber and Krammer, 2003;
Dinarello, 2000; Chen et al., 2024; Zhou and Littman, 2009;
Li et al., 2023).

Jurkat cells predominantly express B,-adrenergic receptors,
which makes them suitable for evaluating adrenergic modulation
of T-cell function. Given that -blockers exert pleiotropic effects
by targeting B-adrenergic receptors on immune cells, Jurkat cells
provide a mechanistically relevant platform for studying how -
blockers alter cytokine

(Sanders, 2012).

catecholamine-induced responses

Materials and methods
Cell culture and experimental design

Human leukemic mature T cells (Jurkat cells) (DSMZ-
Deutsche Sammlung von Mikroorganismen und Zellkulturen
(Germania)) were proliferated in bioactive medium RPMI
1640
L-glutamine

(GIBCO), inactivated fetal bovine serum (Sigma),
(4 mM), penicillin (100units/mL), and
(100units/mL) containing Cell
culture was maintained at 37 °C in a humidified incubator

streptomycin suspension.
with 5% CO, and was passaged every 2-3 days to maintain
exponential growth. Jurkat cells were seeded at a concentration of
0.3-0.6 x 10° cells per millilitre of culture medium (RPMI-
1640 supplemented with 10% fetal bovine serum and 1%
penicillin-streptomycin). This cell density was chosen to
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ensure optimal viability and responsiveness during
experimental treatments, while preventing overgrowth or
nutrient depletion throughout the incubation period.

In designated experiments, oxidative stress (model of
inflammatory conditions in vitro) was induced by the addition
of hydrogen peroxide (H,O,; Sigma-Aldrich, USA) directly to the
culture medium at concentrations of 50 uM (=1.7 ug/mL; MW =
34 g/mol) (typically used to study signalling pathways or
antioxidant responses without inducing high cytotoxicity) for
24 h (Chiaramonte et al., 2001).

B-blockers were applied at therapeutic concentrations,
prepared in physiological saline (0.9% NaCl), and added to
the incubation medium of intact and oxidatively stressed

Jurkat cells. Incubations were maintained for 24 h.

Drug preparation and treatment

B-blockers carvedilol, nebivolol, and

metoprolol) were selected for in vitro testing based on their

(propranolol,

clinical relevance. The daily therapeutic dose ranges in adults
(assuming an average body weight of 70 kg) were taken from
authoritative clinical sources (Mayo Clinic, Drugs.com) (Mayo
Clinic, 2025a; Mayo Clinic, 2025b; Drugs.com, 2025; Mayo
Clinic, 2025¢; Mayo Clinic, 2025d).

For in vitro exposures, we employed concentration ranges
(4-36 pg/mL) that are commonly used in cell culture
experiments with B-blockers to ensure measurable biological
responses (Hajatbeigi and Hajighasemi, 2018; Miinzel and
Gori, 2009; Fjaestad et al., 2022). These concentrations are not
direct reflections of in vivo pharmacokinetic plasma levels, which
are typically reported in the nanogram per millilitre (ng/mL)
range (Houshyar et al., 2024; Li et al,, 2022; Von et al., 1982).
Instead, the selected concentrations should be interpreted as
supra-physiological ~ exposures suitable for mechanistic
exploration in vitro.

Jurkat cells were seeded into 96-well plates at a density of 1 x
10°cells/well in 200 pL total volume. The B-blockers propranolol,
carvedilol, nebivolol, and metoprolol (Sigma-Aldrich, USA) were
prepared as aqueous stock solutions in complete culture medium.
Because several B-blockers (notably carvedilol, propranolol) are
poorly soluble in purely aqueous buffers near neutral pH, we
prepared concentrated working stocks in the cells’ incubation
medium (RPMI-1640), avoiding the use of DMSO or ethanol,
which can alter Jurkat cell viability and oxidative stress markers.
This ensured physiological osmolarity and pH, complete
dissolution, and  compatibility =~ with serum-containing
conditions. Using working stocks of 20-40 pL per 200 pL well
(@ - 20 pL, b - 40 pL) allowed for accurate pipetting of
physiologically equivalent doses without exceeding solubility
limits in serum-containing medium and minimised
precipitation artefacts.

General dilution formula (per well):
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Vfinal well
Cstock = Cﬁnal X ——

Vstock added

Where: Cga - target well concentration (36 pg/mL for
propranolol); Venar, weil = 200 pL; Vigock, added = 20 uL; 40 pL.

200 pl
Cstock = 36 }lg/ml Tpl =360 pg/ml

Cstock = 36 pig/ml Do~ 180 pg/ml

200ul
40
Prepared stock concentrations:

Stock
(20 pL/well)

Stock
(40 pL/well)

Drug Final conc.

(ng/mL)

Propranolol 36 360 pg/mL 180 pg/mL
Carvedilol ‘ 10 100 pg/mL 50 pg/mL
Nebivolol ‘ 4 40 pg/mL 20 pg/mL
Metoprolol ‘ 20 200 pg/mL 100 pg/mL

The additions of 20-40 pL constituted 10%-20% of the total
well volume; however, because the added volume consisted of the
same incubation medium, the final nutrient and ionic composition
remained consistent. Importantly, these additions did not alter the
number of cells per well, as cells were seeded at a predetermined
fixed density before treatment. Consequently, while the overall
volume of the culture medium increased, the cell density (cells per
ml) decreased proportionally. It is worth noting that this reduction
in cell density was minimal and uniform across all wells within the
same treatment group.

Two-volume approach allowed us to balance solubility
stability, accurate dosing, and methodological consistency across
compounds with different therapeutic-equivalent concentrations.

To screen for B-blocker toxicity, we evaluated the viability and
proliferative activity of Jurkat cells using the MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.
This method is a standard approach for initial cytotoxicity
assessment due to its simplicity, reproducibility, and sensitivity
(Berridge et al., 2005; Stockert et al., 2018). Since B-blockers
directly affect mitochondrial function, including calcium
homeostasis, membrane potential, and reactive oxygen species
(ROS) generation (Debbasch et al., 2001; Nakamura et al., 2011;
Shawgo et al,, 2008), MTT reduction was used as a relevant
endpoint reflecting both cell survival and mitochondrial activity.

Cell viability assay

Cell suspensions (2 x 10° cells/mL) were incubated with
H,0, and various p-blockers, as described above. After
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incubation, the cells were collected by centrifugation at
1500 x g for 5 min, washed once with phosphate-buffered
saline (PBS), and resuspended in fresh culture medium. The
8 mg/mL solution of MTT (Sigma) in buffer (140 mM NaCl,
5 mM HEPES, pH 7.4) was added to the cell suspension at a rate
of 30 uL per 100 puL suspension, and the mixture was incubated
for 4 h at 37 °C in a humidified 5% CO, atmosphere. After this
incubation, the supernatant was carefully removed, and the
formazan crystals produced from MTT were dissolved in
100 pL of dimethyl sulfoxide (DMSO). The absorbance
values of the solutions were measured at a wavelength
of 570 nm.

The absorbance (A) values obtained from experimental
groups (Agmple) were compared to those of the control
(Acontror)> and the viability coefficient (K) was expressed as a
percentage according to the formula:

K= Asample /Acontrol x 100

where Agmple is the absorbance of the treated cells, and A onror is
the absorbance of the untreated control group (representing
100% viability).

The primary aim of our study was to explore the
immune-related effects of P-blockers on T-lymphocytes.
To achieve this, we evaluated the expression of pro-
inflammatory cytokines, including IL-6, IL-17, and TNF-aq,
in Jurkat cells.

Interleukin analysis

Immunofluorescence assay

Immunofluorescence Assay (IF1088) for Getein1100
(Fluorescent chromatography “Getein1100” GETEIN Inc.
China)) was used to determine the interleukin IL-6 was
used to determine the interleukin IL-6 content in the
supernatant of Jurkat cells incubated under different
conditions.

In the test, an anti-human IL-6 monoclonal antibody I
conjugated with fluorescence latex coated on the junction of
the nitrocellulose membrane and the sample pad, and another
anti-human IL-6 monoclonal antibody Il coated on the test
line were used.

Upon application of the sample to the test strip, the
fluorescence latex-labelled anti-human IL-6 antibody I
specifically binds to the IL-6 present in the sample,
resulting in the formation of a distinct antigen-antibody
complex. This complex subsequently migrates to the
detection zone of the test card via capillary action. At this
point, the marked antigen-antibody complex is captured on
the test line by a second antibody, anti-human IL-6 antibody
II. The fluorescence intensity observed at the test line
correlates positively with the concentration of IL-6 in the

Published by Frontiers
Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)


https://doi.org/10.3389/abp.2025.14935

Kajaia et al.

sample, thereby facilitating quantification through an
immunofluorescence assay (refer to plate number 1 for
Getein1100 methodology).

The test then the

immunofluorescence quantitative analyser, the Getein1100.

card is inserted  into
This device accurately measures the concentration of IL-6 in
the sample, with the resulting value displayed on the screen.
Additionally, the data is stored within the Getein1100 system
and can be downloaded for further analysis or record-
keeping purposes.

The obtained results can be readily integrated with
the laboratory information system. The measurement
range for IL-6 is established between 1.0 and 4,000.0 pg/
mL, with a lower detection limit of <1.0 pg/mL. The
reference range for IL-6 is identified as 7.0 pg/mL,
determined through the normal distribution method at a
95% confidence interval.

Immunoenzymatic assay

An immunoenzymatic assay was used to quantify the levels of
IL-17 (Human ELISA Kit from Abcam, USA 216167) and TNF-a
(ELISA Kit from Immunodiagnostics K 9610, Germany) in the
supernatant of Jurkat cells under various experimental conditions.

The ethical protocol for the study was approved by the
Animal Ethical Committee of Tbilisi State Medical
University (26.07.22).

Statistical analysis

The Shapiro-Wilk test for normality was used to test the
normality of the experimental data.

Analysis of Variance (Factorial ANOVA) was used to
analyse the differences between the mean values of different
experimental groups. Sample size per group (n = 5) and power
(>80%) were estimated under the Fixed Effects model for
significance level alpha <0.05 and RMSSE = 1,45. The
RMSSE value was chosen based on typical values of the
standard of  the
characteristics  in studies

various
the
requirement to reliably detect a difference of approximately

within-group deviation

our preliminary and
10%-15% between group means. The Tukey’s HSD test was
used after analysis of variance (ANOVA) to determine which
specific pairs of group means were significantly different from
each other.

Statistical software SPSS-11 was used for data analysis and

visualisation of results.

Results

The study results show that propranolol, metoprolol, and
carvedilol significantly decreased the viability of intact Jurkat
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cells, but nebivolol did not (Figure 1; Table 1). Under incubation
in oxidative stress conditions, the viability of Jurkat cells
decreased significantly. Propranolol and metoprolol did not
affect the viability of Jurkat cells incubated under oxidative
stress conditions, whereas nebivolol and carvedilol improved
the viability of Jurkat cells under these conditions (Figure 1).

Figures 2-4 and Tables 2-4 illustrate the expression levels of
IL-6, IL-17, and TNF-a in intact Jurkat cells and those incubated
under oxidative stress conditions. It is evident that oxidative
stress significantly increased the expression levels of these
cytokines in Jurkat cells. Propranolol, metoprolol, nebivolol,
and carvedilol showed no significant effects on the expression
levels of IL-6, IL-17, and TNF-a in intact Jurkat cells (Figures 2-4
(blue line)). However, these -blockers led to a notable reduction
in the expression of IL-6 and TNF-a in Jurkat cells subjected to
oxidative stress conditions (Figures 2, 3 (red line), Table 2, 3).
Conversely, the levels of IL-17 remained largely unaffected by the
presence of B-blockers (Figure 4 (red line), Table 4).

Discussion

Jurkat cells, unlike primary human T cells, exhibit significant
genetic and phenotypic stability, as well as high reproducibility
across experiments. They effectively eliminate donor variability
and remove the need for human subject approval or invasive
procedures. These features make Jurkat cells an ideal choice for
controlled pharmacological studies, particularly during the
preclinical exploratory phase, where both practicality and
ethical considerations are critical (Swiss Association of
Research Ethics Committees, 2025).

Jurkat T cells are particularly responsive to oxidative stimuli,
which play a significant role in various pathological conditions,
including  inflammation, autoimmune  diseases, and
hypertension. Inflammatory immune cells, like neutrophils
and macrophages, release ROS, including hydrogen peroxide.
Researchers often use exogenous H,O, in laboratory studies to
mimic the oxidative stress associated with chronic inflammation
(Nathan and Ding, 2000; Mittal et al., 2014; Touyz and Briones,
2011). Extensive literature demonstrates that exposure to H,O,
exacerbates oxidative stress in Jurkat cells, as evidenced by
increased lipid peroxidation (Rhee et al., 2012; Enukidze et al.,
2009) and protein oxidation (Pace et al., 2025). This oxidative
stress triggers a transcriptional response (Taylor et al., 2022) and
is linked to apoptosis as well as cytokine production (Nindl et al.,
2004). The application of H,O, serves as a valuable tool for
exploring redox-sensitive pathways and evaluating the effects of
pharmacological agents, such as [-blockers, on cytokine
production and cell viability within an inflammatory context
(Los et al., 1995; Pelicano et al., 2004; Veal et al., 2007).

The activation of B-adrenergic receptors in T cells leads to an
of

monophosphate (cAMP). This rise in cAMP activates protein

increase in intracellular levels cyclic  adenosine
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FIGURE 1
Effects of -blockers on Mean values, Standard Errors and Standard Deviations of the Jurkat cell viability (intact (without H,O,) - blue line, and
incubated under oxidative stress conditions (with H,O, in concentration 50 pM) — red line). Analysis of Variance (Factorial ANOVA). Py, - statistical
significance of the difference between the mean viability of intact Jurkat cells and those treated with different f-blockers; Py/3 - statistical significance
of the difference in viability between intact Jurkat cells and those incubated under oxidative stress conditions (with H,O5). P14 - statistical
significance of the difference in viability between intact Jurkat cells and those incubated under oxidative stress when treated with various p-blockers
(Propranolol — 36 pg/mL, Carvedilol — 10 pg/mL, Nebivolol — 4 pg/mL, Metoprolol - 20 pg/mL) (Tukey HSD test; Jurkat cells viability. Approximate
Probabilities for Post Hoc Tests).

TABLE 1 Mean values and statistical significance of the difference between the means of Jurkat cell viability under different p-blocker and H,O,

exposure conditions (N-without H,O, and/or p-blockers; Y—with H,O, and/or B-blockers). (Tukey HSD test; Jurkat cells viability. Approximate
Probabilities for Post Hoc Tests).

B-blockers
Propranolol Metoprolol Nebivolol Carvedilol
B-blockers Mean P Mean Mean P Mean P
N N 0.466 0.466 0.466 0.466
N Y 0.274 0.0001 0.296 0.0001 0416 0.0525 0.362 0.0003
Y N 0.230 0.0001 0.230 0.0001 0.230 0.0002 0.230 0.0001
Y Y 0218 0.0001 0.241 0.0001 0.388 0.002 0.334 0.0002
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Impact of f-blockers on the Mean values, Standard Errors and Standard Deviations of IL-6 expression levels in Jurkat cells (intact (without H,O5)
- blue line, and incubated under oxidative stress conditions (with H,O, in concentration 50 uM) — red line). (Analysis of Variance (Factorial ANOVA)).
P1/2 - statistical significance of the difference in IL-6 expression levels between the intact Jurkat cells and those treated with different p-blocker; Pz -
statistical significance of the difference in IL-6 expression levels between intact Jurkat cells and those subjected to oxidative stress (with H,O,);
P14 - statistical significance of the difference in IL-6 expression levels between intact Jurkat cells and those under oxidative stress with different p-
blockers treatment (Propranolol — 36 pg/mL, Carvedilol — 10 ug/mL, Nebivolol — 4 ug/mL, Metoprolol - 20 pg/mL) (Tukey HSD test; IL-6 expression

levels. Approximate Probabilities for Post Hoc Tests).

kinase A (PKA), which subsequently modulates transcription
factors such as nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) and activator protein 1 (AP-1). This
mechanism, in conjunction with the T cell receptor (TCR)
signalling pathway, effectively regulates the expression of pro-
inflammatory cytokines, including TNF-a, IL-2, and IL-6
2015). Under
conditions, enhanced B-adrenergic signalling can alter T cell

(Lorton and Bellinger, specific ~ stress
activation profiles toward pro-inflammatory phenotypes,
potentially contributing to immune dysregulation (Flierl
et al.,, 2008; Mancia et al., 2022). Pharmacological inhibition
of B-adrenergic receptors is a well-established therapeutic
strategy for managing hypertension. However, it also has
significant immunomodulatory effects. Research indicates
that B-blockers can reduce cAMP/PKA signalling, decrease

the activation of NF-kB and AP-1, and ultimately alter the
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cytokine secretion profiles in immune cells (Nance and
Sanders, 2007).

Our experimental results demonstrated that propranolol,
carvedilol, and metoprolol decreased the viability of Jurkat
T cells, whereas nebivolol did not significantly impact cell
viability (see Figure 1; Table 1). The cytotoxic effects of these
B-blockers appear to be linked to the disruption of cAMP/PKA
signalling, impairment of mitochondrial function (Balaban et al.,
2005), and increased oxidative (Hajighasemi and
Mirshafiey, 2009). Notably, metoprolol, due to its ;-
selectivity, causes a relatively smaller reduction in PKA
activity compared to propranolol (Wang et al, 1999
Sharashenidze et al., 2022), which corresponds to its milder

stress

effect on Jurkat cell survival. In contrast, carvedilol’s dual
blockade of B-adrenergic and a; receptors significantly affects
cAMP signalling and calcium homeostasis, resulting in enhanced
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Impact of p-blockers on the Mean values, Standard Errors and Standard Deviations of TNF-a expression levels in Jurkat cells (intact (without
H,0,) - blue line, and incubated under oxidative stress conditions (with H,O, in concentration 50 uM) — red line). (Analysis of Variance (Factorial
ANOVA)). Py, - statistical significance of the difference in TNF-a expression levels between the intact Jurkat cells and those treated with different -
blocker; Py/3 - statistical significance of the difference in TNF-a expression levels between intact Jurkat cells and those subjected to oxidative
stress (with H,O,); Py/4 - statistical significance of the difference in TNF-a expression levels between intact Jurkat cells and those under oxidative
stress with different p-blockers treatment (Propranolol — 36 pg/mL, Carvedilol - 10 ug/mL, Nebivolol - 4 ug/mL, Metoprolol - 20 pg/mL) (Tukey HSD

test; TNF-a expression levels. Approximate Probabilities for Post Hoc Tests)

apoptosis in Jurkat cells (see Table 1 (Figure 1; Table 1). The
viability of Jurkat cells significantly decreased when they were
incubated under oxidative stress conditions (see Table 1;
Figure 2). This decline is likely linked to the activation of
several cell death mechanisms, including mitochondrial
dysfunction, DNA damage, and apoptosis, which is mediated
by the Bcl-2 and Caspase-8 pathways (Chiaramonte et al., 2001).
Furthermore, the upregulation of interferon-gamma (IFN-y)
release seems to promote the expression of RNA-dependent
protein kinase (PKR) (Pyo et al., 2008).

According to our study results, nebivolol, carvedilol,
metoprolol, and propranolol improved the viability of Jurkat
cells under oxidative stress, with nebivolol showing the most
pronounced effect. This finding aligns with previous reports

suggesting that certain -blockers have antioxidant properties,
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help modulate redox balance, and influence mitochondrial
stability (Rashida Gnanaprakasam et al, 2018; Celik et al,
2016; Ricci et al,, 2023). These results indicate that specific p-
blockers may have therapeutic potential by enhancing cellular
resilience against oxidative damage. Furthermore, the varying
effects of these p-blockers on Jurkat T-cell survival highlight the
need for careful interpretation and consideration in future
therapeutic strategies.

Nebivolol exhibits a strong cytoprotective effect, which aligns
with unique Unlike
traditional B;-selective or non-selective P-blockers, nebivolol
has vasodilatory and antioxidative properties. These effects are
partly mediated by the activation of (;-adrenergic receptors,
which leads to the phosphorylation of endothelial nitric oxide
synthase (eNOS) in endothelial cells (Chlopicki et al., 2002; de

its pharmacological characteristics.
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FIGURE 4

Impact of B-blockers on the Mean values, Standard Errors and Standard Deviations of IL-17 expression levels in Jurkat cells (intact (without

H,O,) - blue line, and incubated under oxidative stress conditions (with H,O, in concentration 50 uM) — red line). (Analysis of Variance (Factorial
ANOVA)). Py, - statistical significance of the difference in IL-17 expression levels between the intact Jurkat cells and those treated with different p-
blocker; Py;3 - statistical significance of the difference in IL-17 expression levels between intact Jurkat cells and those subjected to oxidative

stress (with H,O,); Py,4 - statistical significance of the difference in IL-17 expression levels between intact Jurkat cells and those under oxidative stress
with different p-blockers treatment (Propranolol — 36 pg/mL, Carvedilol — 10 pg/mL, Nebivolol — 4 pg/mL, Metoprolol - 20 pg/mL) (Tukey HSD test;
IL-17 expression levels. Approximate Probabilities for Post Hoc Tests).

TABLE 2 Mean values and statistical significance of the difference between the means of the IL-6 expression levels in Jurkat cells under different p-
blocker and H,O, exposure conditions (N-without H,O, and/or p-blockers; Y-=with H,O, and/or p-blockers). (Tukey HSD test; IL-6 expression
levels. Approximate Probabilities for Post Hoc Tests).

B-blockers
Propranolol Metoprolol Nebivolol Carvedilol
B-blockers Mean P Mean Mean p Mean P
N N 2300 2.300 2.300 2.300
N Y 1.840 0.053 2.120 0.649 1.340 0.0002 3.400 0.0002
Y N 7.180 0.0001 7.180 0.0001 7.180 0.0001 7.180 0.0002
Y Y 3.440 0.0002 3.900 0.0001 2420 0.715 3.080 0.0010
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TABLE 3 Mean values and statistical significance of the difference between the means of the TNF-a expression levels in Jurkat cells under different p-
blocker and H,O, exposure conditions (N—without H,O, and/or p-blockers; Y—with H,O, and/or g-blockers). (Tukey HSD test; TNF-a expression
levels. Approximate Probabilities for Post Hoc Tests).

B-blockers
Propranolol Metoprolol Nebivolol Carvedilol
B-blockers Mean P Mean Mean P Mean P
N N 2320 2320 2320 2320
N Y 1.940 0304 2.300 0.999 2.080 0.580 1.960 0395
Y N 13.160 0.0001 13.160 0.0001 13.160 0.0001 13.160 0.0001
Y Y 7.220 0.0001 8.920 0.0001 6.060 0.0001 7.440 0.0001

TABLE 4 Mean values and statistical significance of the difference between the means of the IL-17 expression levels in Jurkat cells under different p-
blocker and H,O, exposure conditions (N—without H,O, and/or p-blockers; Y—with H,O, and/or p-blockers). (Tukey HSD test; IL-17 expression
levels. Approximate Probabilities for Post Hoc Tests).

B-blockers
Propranolol Metoprolol Nebivolol Carvedilol
H202 B-blockers Mean P Mean Mean P Mean P
N N 0.188 0.188 0.188 0.188
N Y 0.080 0.696 0.060 0.505 1.340 0.593 0.087 0.543
Y N 3222 0.0001 3222 0.0001 3.222 0.0001 3222 0.0001
Y Y 3.020 0.0002 3.900 0.0001 2.420 0.0001 3418 0.0001

Boer et al.,, 2007). In studies of vascular and myocardial models,
nebivolol has been shown to inhibit NADPH oxidase activity,
reduce the generation of superoxide, and maintain the
availability of nitric oxide (NO). This helps mitigate oxidative
stress and protects mitochondrial function (Celik et al., 2016;
Qelze et al., 2006). However, these mechanisms have not been
tested directly in Jurkat cells, which do not have B;-adrenergic
receptor-mediated eNOS signalling like endothelial cells do.
Instead, Jurkat cells can produce NO through inducible nitric
oxide synthase (iNOS), which plays a role in mitochondrial
regulation and Fas-mediated apoptosis (Forstermann and
Sessa, 2012). This suggests that nebivolol may indirectly
influence NO-dependent pathways in lymphocytes under
oxidative stress, although this hypothesis requires further
validation through direct measurements of intracellular NO.
Another plausible explanation for the protective effect of
nebivolol relates to its impact on ROS homeostasis. Research has
shown that nebivolol can suppress oxidative bursts in
inflammatory cells, which is consistent with the inhibition of
NADPH oxidase-dependent ROS production (Celik et al., 2016).
Furthermore, studies conducted in non-immune systems have
demonstrated that nebivolol stabilises membrane potential and
limits oxidative injury to mitochondria, thereby enhancing cell
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survival (Chlopicki et al., 2002). Taken together, these data
suggest that nebivolol may exert multifactorial protective
effects including both ROS
suppression and NO-related signalling pathways, although

against oxidative stress,

confirmation of this in Jurkat cells is still necessary.
Carvedilol, a non-selective B-blocker with a-adrenergic

demonstrated

antagonistic properties,

cytoprotective effects. This aligns with its well-documented

significant

antioxidative properties, which include direct scavenging of
ROS, inhibition of lipid peroxidation, and suppression of NF-
kB activity. These effects have been observed in both
cardiovascular and immune-related contexts (Chen-Scarabelli
et al.,, 2012).

In contrast, metoprolol and propranolol demonstrated more
limited protective effects in Jurkat cells. This is likely due to their
weaker intrinsic antioxidant capacity and a less significant impact
on mitochondrial stability (Bourgonje et al., 2018).

Our findings suggest that -blockers vary in their ability to
protect Jurkat T-cells from oxidative stress, with nebivolol and
carvedilol demonstrating the most significant effects. The
protective mechanisms likely involve redox-sensitive pathways,
which may include the suppression of reactive oxygen species
(ROS) and stabilisation of mitochondria. Additionally, it is
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plausible that these mechanisms are linked to nitric oxide (NO)
signalling. However, these proposed mechanisms in T-cells
remain speculative, and further investigations will be needed
to confirm their role in protecting immune cells. Differences in
protective efficacy highlight the pharmacological diversity among
B-blockers, indicating that carvedilol and nebivolol may offer
specific advantages in scenarios where oxidative stress
contributes to immune dysfunction.

Jurkat cells, which serve as an immature T-cell model,
typically  exhibit limited cytokine
unstimulated. Under normal conditions, they release only low
to moderate levels of IL-6 and TNF-a. These cytokines are

essential

production  when

mediators of immune responses, acute-phase
reactions, and the regulation of inflammation. Effective
cytokine production requires specific stimuli, such as oxidative
stress, mitogens like phorbol 12-myristate 13-acetate (PMA) and
ionomycin, or TCR activation using anti-CD3 and anti-CD28
antibodies (Khalaf et al., 2010; Radom-Aizik S, et al., 2007;
Smeets et al., 2012).

The induction of cytokine production is controlled by well-
characterised signalling pathways, including the NF-«B pathway,
mitogen-activated protein kinase (MAPK) pathways, c-Jun
N-terminal kinase (JNK) pathway, and extracellular signal-
regulated kinase (ERK) pathway. These canonical cascades are
crucial for converting external signals into appropriate cellular
responses, forming part of the complex network that regulates
immune activity. These pathways activate transcription factors
such as AP-1, CCAAT/enhancer-binding protein beta (C/EBPp),
and signal transducer and activator of transcription 3 (STAT3),
which in turn promote the expression of pro-inflammatory genes
(Napetschnig and Wu, 2013; Liu et al., 2017; Karin, 2006).

Oxidative stress enhances the activation of NF-kB and
MAPKs, which in turn activate the IL-6 promoter (Karin,
2006; Kishimoto, 2010; Dinarello, 2000). After IL-6 is
secreted, it binds to its receptor (IL-6R), initiating the Janus
kinase/Signal Transducer and Activator of Transcription 3 (JAK/
STATS3) signalling pathway. This process establishes a positive
autocrine feedback loop that sustains IL-6 expression and the
inflammatory response (Alghamdi and Alissa, 2025).

Similarly, under oxidative stress, the production of TNF-a is
increased via NF-kB. Once secreted, TNF-a activates its receptors
(TNFR1/2), triggering the NF-xB, MAPK, and JAK/STAT
cascades, which help maintain its own expression (Nakamura
et al.,, 2011).

In contrast, IL-17 is primarily secreted by Th17 cells, while
Jurkat cells have a limited ability to differentiate into Th17-like
cells. As a result, IL-17 production in these cells remains modest,
even under oxidative stress.

Nevertheless, oxidative stress can activate NF-kB, STATS3,
RORyt, and MAPKSs, all of which collectively contribute to IL-17
induction (Park et al., 2014; Zhao et al., 2023). NF-xB facilitates
the nuclear translocation and promoter binding of p65, while
RORyt drives Th17 lineage-specific transcription. The cooperation
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between RORyt, NF-kB, and STAT3 amplifies IL-17 production,
which is further supported by IL-6-mediated STAT3 activation
(Mangan et al., 2006; Huangfu et al., 2023).

Beta-blockers can modulate immune responses, including
the production of cytokines, and suppress the activation of
inflammatory pathways in various immune cell types (Bhol
et al, 2024; Landegren et al, 1985). However, the specific
effects of P-blockers on cytokine expression in Jurkat T
lymphocytes have not been thoroughly investigated compared
to their well-documented effects in primary immune cells. Our
study aimed to investigate the effects of propranolol, metoprolol,
nebivolol, and carvedilol on the secretion of IL-6, IL-17, and
TNF-a by Jurkat cells under oxidative stress conditions.

Our findings show that exposing Jurkat cells to oxidative
stress significantly increases the expression of IL-6, TNF-a, and
IL-17, as summarised in Tables 2-4 and Figures 2-4.
Interestingly, propranolol, metoprolol, nebivolol, and
carvedilol did not significantly alter cytokine production in
non-stimulated (intact) Jurkat cells. However, all four f-
blockers exhibited a strong inhibitory effect on the release of
IL-6 and TNF-a in the presence of oxidative stress. In contrast,
the secretion of IL-17 was not significantly affected by B-blocker
treatment in our study, even under oxidative stress conditions
(Figure 4; Table 4).

The significant reducing effect of non-selective (1/p2-
adrenergic receptor antagonists, such as propranolol, on L-6
and TNF-a secretion in stressed Jurkat cells is primarily due to
the inhibition of ,-adrenergic receptor signalling, which plays a
crucial role in modulating inflammatory responses (Chhatar and
Lal, 2021). Notably, previous studies have shown that
propranolol decreases the levels of IL-2, IL-10, and IFN-y in
phytohemagglutinin (PHA)-stimulated Jurkat cells, while having
no such effect in unstimulated cells. This observation suggests
that inhibitory effects of propranolol are related to target
modulation of signalling pathways rather than to cytotoxicity
(Lomsadze et al, 2013; Hajighasemi and Mirshafiey, 2016;
Sharashenidze et al, 2021). Furthermore, propranolol has
been shown to suppress NF-kB and interfere with p38 MAPK
signalling. These mechanisms likely explain its selective
inhibition of IL-6 and TNF-a in contrast to the production of
IL-17, which appears to be regulated via the STAT3-RORyt axis
rather than NF-kB-dependent pathways (Pantziarka et al., 2016;
Qiao et al,, 2018; Hiller et al., 2020; Sprague et al.,, 2021; Agag
et al., 2018) (Figure 5).

Metoprolol, a f1-selective adrenergic antagonist, has shown a
weaker ability to modulate cytokine activity compared to non-
selective B-blockers. This difference can be attributed to the
limited role of Pl-adrenergic receptors in regulating T-cell
cytokines (Lorton and Bellinger, 2015). The literature rarely
reports on metoprolol’s direct inhibition of p38 MAPK; its
modest effects on IL-6 and TNF-a are likely due to indirect
modulation of NF-kB and translational control processes that do
not affect mRNA expression (Calo et al., 2005; Ulleryd et al.,
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Modulation of cytokine production in Jurkat T cells under oxidative stress conditions.

2014; Ricci et al., 2023; Yang et al.,, 2023). This helps explain why
metoprolol is less effective compared to propranolol and
nebivolol (Drygala et al., 2024) (Figure 5).

Nebivolol, compared to propranolol and metoprolol, shows a
unique anti-inflammatory profile and the broadest cytokine-
blocking activity. This is attributed to its dual mechanism of
action: f1-selective antagonism and NO-mediated modulation of
NEF-xB. While the specific effects of nebivolol on NO release and
its signalling pathways in T-cells are not fully understood, it is
known that T-lymphocytes respond to NO donors. These donors
affect TCR-mediated cytokine secretion through both ¢cGMP-
dependent and cGMP-independent pathways (Niedbala et al.,
2006). This observation suggests that nebivolol reduces the
(iNO),
improves its bioavailability, and can inhibit NF-kB through

oxidative modification of induced nitric oxide
nitric oxide-dependent mechanisms observed in other cell
types. Nebivolol achieves this inhibition by preventing the
degradation of IxBa, which leads to a subsequent reduction in
the transcription of NF-kB-dependent cytokines, such as IL-6
and TNF-a (Reynaert et al., 2004; Marshall et al., 2004).

This mechanism may explain the observed downregulation
of IL-6 and TNF-a by nebivolol in our model, while its effects on
IL-17 remain minimal. The expression of IL-17 is more closely
associated with the activity of STAT3/RORyt rather than NO-
dependent signalling. However, due to the lack of direct evidence,
this hypothesis remains speculative, underscoring the need for
experimental validation in Jurkat or primary T-cell models.

Carvedilol stands out among P-blockers because of its
significant antioxidant and anti-inflammatory properties.
that inhibits

translocation of NF-kB in T cells and macrophages, leading to

Research indicates carvedilol the nuclear
a reduction in the secretion of pro-inflammatory cytokines such

as IL-6 and TNF-a. Notably, carvedilol has a minimal effect on
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IL-17, which is primarily regulated by T-cell differentiation
pathways, including the STAT3/RORyt signalling cascade.
Unlike NF-kB, these pathways are less significantly affected by
oxidative stress, emphasising the unique therapeutic potential of
carvedilol in modulating inflammatory responses (Yang et al.,
2003; Calo et al., 2005).

Under physiological conditions, catecholamines released
during sympathetic activation bind to B-adrenergic receptors
on lymphocytes, macrophages, and other immune cells. This
interaction enhances the release of pro-inflammatory cytokines
through the NF-kB and MAPK pathways. In vivo, B-blockers
disrupt catecholamine-driven signaling and indirectly reduce
cytokine production by dampening the adrenergic activation
of immune cells initiated by the sympathetic nervous system
(Yang et al,, 2023; Ulleryd et al., 2014; Hajiaghayi et al., 2024).
However, our Jurkat cell model, which does not have its own
catecholamine influx, does not fully capture the complexity of
adrenergic regulation found in primary immune cells or in vivo
systems. This model represents a simplified system where
oxidative stress triggers cytokine production. Consequently,
the consistent suppression of IL-6 and TNF-a production in
our Jurkat culture system under oxidative stress, by propranolol,
metoprolol, nebivolol, and carvedilol, is likely related to their
direct redox-modulatory properties (such as antioxidant activity
and NO-mediated signalling) and their capacity to inhibit
intracellular inflammatory pathways (NF-«kB and p38 MAPK),
rather than through modulation of adrenergic activation as
observed in vivo. In contrast, the IL-17, whose induction is
more dependent on STAT3 and RORyt, is relatively
insensitive to B-blocker treatment.

Our results highlight that B-blockers vary significantly in
their ability to modulate the immune response. Nebivolol and
carvedilol provide the most substantial protection due to their
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combined actions as antioxidants, mitochondrial stabilisers, and
suppressors of NF-kB. Propranolol and metoprolol have weaker,
yet still notable effects. This pharmacological diversity suggests
that certain B-blockers could effectively influence redox-sensitive
cytokine responses, although further confirmation using primary
T-cell models is necessary.

Conclusion

This study examined the effects of B-blockers—specifically
propranolol, metoprolol, nebivolol, and carvedilol—on cytokine
production in Jurkat T lymphocytes under conditions of
oxidative stress. The results showed that oxidative stress
triggered the expression of cytokines IL-6, TNF-a, and IL-17
in the Jurkat culture system, indicating their sensitivity to redox
imbalance. This reflects the intrinsic ability of cells to modulate
inflammatory signalling. The effects of B-blockers appear to
originate from direct mechanisms within the cells, such as
antioxidant activity, nitric oxide-related signalling, and the
suppression of intracellular inflammatory pathways like NF-
kB and p38 MAPK. However, it should be noted that these
in vitro findings do not fully capture the complex adrenergic
regulation observed in primary immune cells in vivo.

The findings of this study highlight the differing impacts of -
blockers cytokine These
medications exhibit varying levels of cytotoxic potential and
their
receptor selectivity and intrinsic antioxidant properties. This

on redox-sensitive pathways.

anti-inflammatory effectiveness, which depend on
variability underscores their therapeutic immunomodulatory
potential, particularly in situations involving oxidative stress.
All four B-blockers tested were found to inhibit the release of IL-6
and TNF-a under oxidative stress conditions; however, none had
a significant effect on IL-17 production. This outcome aligns with
the understanding that IL-17 is primarily regulated by the
STAT3/RORyt than by the NF-«xB/
MAPK pathways.

Among the {-blockers tested, nebivolol and carvedilol

pathway rather

showed the strongest cytoprotective and anti-inflammatory
effects. These medications improved the viability of Jurkat
cells and suppressed the expression of pro-inflammatory
cytokines. This
inflammation-related ~ dysfunction,

alleviate
their
combined roles as antioxidants, mitochondrial stabilizers, and

suggests that they may help

likely due to

anti-inflammatory agents. This action is mediated through the
NF-xB and MAPK signaling pathways. In the case of nebivolol,
its effects are also related to nitric oxide signaling.

In contrast, metoprolol and propranolol exhibited more
limited protective effects, which corresponded to their weaker
intrinsic antioxidant capacities and reduced impact on the NF-
kB/MAPK pathways.

Our findings provide strong evidence that certain -blockers,
particularly third-generation agents like nebivolol and carvedilol,
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offer dual benefits in managing hypertension. These medications
appear to help maintain the viability of immune cells while
simultaneously reducing the production of
inflammatory cytokines.

To gain a better understanding of the immunoregulatory
mechanisms of B-blockers and to enhance their clinical use in
inflammation-related cardiovascular diseases, further research

using primary immune cells and in vivo models is essential.

Limitation

several limitations that should be

This study has
acknowledged:

- Jurkat T lymphocytes are commonly used to study T-cell
signalling and cytokine responses; however, they do not
fully replicate the functional and phenotypic complexity of
primary human T lymphocytes. Due to their transformed
nature, variations in receptor expression, redox sensitivity,
and cytokine regulation may influence their response to
beta-blockers and oxidative stimuli.

- Although the Jurkat model was selected for its biological
relevance to T-cell-mediated immune responses and its
suitability for initial mechanistic screening, it lacks the
complex tissue microenvironment and  cell-cell

interactions present in vivo. Therefore, the observed

effects of beta-blockers should be interpreted as direct,

(e.g.

suppression of NF-kB/MAPK) rather than as indirect

modulation of adrenergic activation that occurs under

cell-intrinsic  actions antioxidant activity and

physiological conditions.

- We did not directly assess the activation of NF-kB or
p38 MAPK, nor did we quantify intracellular nitric
oxide levels. Therefore, our interpretations concerning
the signaling pathways influenced by B-blockers remain
speculative and require confirmation through targeted
molecular assays.

Our analysis focused on three cytokines: IL-6, TNF-a, and
IL-17. We did not examine other cytokines that are relevant to p-
adrenergic and T-cell signalling.

The concentrations of p-blockers used in this study
(measured in pg/mL) are significantly higher than the plasma
levels typically found in patients taking therapeutic oral doses
(measured in ng/mL). It is important to emphasise that the
in vitro exposures should be considered supra-physiological. The
selected pharmacological ranges were deliberately chosen to elicit
measurable mechanistic responses in cultured cells, rather than
to precisely replicate clinical plasma concentrations.

In summary, while our results provide valuable insights into
the different immunomodulatory effects of B-blockers under
oxidative stress, future studies should employ physiologically
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relevant concentrations, use primary immune cells, conduct
pathway-specific analyses, and incorporate in vivo models to
validate and extend these observations.
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