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The general idea of regenerative medicine is to fix or 
replace tissues or organs with live and patient-specific 
implants. Pluripotent stem cells are capable of indefinite 
self-renewal and differentiation into all cell types of the 
body. An easily accessible source of induced pluripotent 
stem cells (iPSCs) may allow obtaining and culturing tis-
sues in vitro. Many approaches in the methods leading 
to obtain iPSCs have been tested in order to limit immu-
nogenicity and tumorigenesis, and to increase efficiency. 
One of the approaches causing pluripotency is usage of 
small molecule compounds. It would be of great impor-
tance to assess their specific properties and reveal their 
new capacity to induce pluripotent stem cells and to 
improve reprogramming efficiency. Identification of the 
epigenetic changes during cellular reprogramming will 
extend our understanding of stem cell biology and many 
therapeutic applications. In this paper we discuss mainly 
the nucleotide derivatives, already proven or for now 
only putative inducers of the cells’ pluripotency, that 
modulate the epigenetic status of the cell.
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INTRODUCTION

Cells produced with a renowned method requir-
ing overexpression of four transcription factors: Oct4, 
Sox2, Klf4, and c-Myc (the so-called Yamanaka fac-
tors) have been named induced pluripotent stem cells 
(iPSCs) (Takahashi & Yamanaka, 2006; Takahashi et al., 
2007). They are very similar to embryonic stem cells 
(ESCs) with respect to morphology, phenotype, tran-
scription and epigenetics (Takahashi & Yamanaka, 2006; 
Takahashi et al., 2007). Both types of these cells share 
a similar potency, differentiability and cell division rate. 
Furthermore, they are able to aggregate into embryoid 
bodies (Takahashi & Yamanaka, 2006).

There are a number of assays verifying pluripotency 
of stem cells. The most popular in vivo teratoma assay 
(Gertow et al., 2007; Wesselschmidt, 2011) is based on 
injecting potentially pluripotent stem cells into various 
sites of an immunocompromised mouse body followed 
by the growth of a tumor. When the injected cells are 
pluripotent, the tumor demonstrates characteristics of a 
teratoma, namely the development of differentiated cells 
originated at all three germ layers (ectoderm, mesoderm, 
and endoderm) (Brivanlou et al., 2003). The weakness of 
this assay is lack of standardization, and the time, cost 
and labor consumption. Moreover, the greatest disadvan-
tage refers to the usage of experimental animals (Hentze 
et al., 2009; Wesselschmidt, 2011). One of alternative 
tests is analysis of expression of the pluripotency-associ-

ated markers (Fong et al., 2008; Mitsui et al., 2003; Pesce 
& Scholer, 2001) and exploitation of epigenetic modifi-
cations responsible for pluripotency. Another method 
is based on in vitro embryoid bodies’ models of spon-
taneous and directed differentiation, e.g. cardiac bodies 
from isolated cardiac cells can be generated that give rise 
to cardiomyocytes, endothelial cells and smooth mus-
cle cells (Höbaus et al., 2013; Taubenschmid & Weitzer, 
2012). To fill the gap between the in vivo and in vitro sys-
tems, the in silico models supported by genome wide data 
sets are used to help identifying characteristic features 
of pluripotent stem cells in functional genomics (Mül-
ler et al., 2008, 2011; Williams et al., 2011). An alterna-
tive in vivo system uses chicken eggs in which stem cells 
are transplanted onto chorioallantoic membrane of the 
chicken embryo and then a tumor similar to teratoma 
may arise (Durupt et al., 2012; Hagedorn et al., 2005). 
Another option to study pluripotency is an in situ anal-
ysis. In this organotypic model, stem cells are injected 
into a tissue, such as skin, and then either their develop-
ment and differentiation or repopulation of cells leaving 
behind an extracellular matrix by stem cells are observed 
(Ott & Taylor, 2006; Elliott et al., 2012).

Miscellaneous and numerous methods have evolved to 
reprogram somatic cells. A lot of improvements in these 
methods have been made in order to solve problems as-
sociated with a derived iPSC line, and thus to limit im-
munogenicity and tumorigenesis, and increase efficiency 
(Zhao et al., 2011; Ma et al., 2013). One of the concerns 
is that the stresses of reprogramming might lead to del-
eterious DNA mutations in the iPSC lines (Bhutani et 
al., 2016). Recent studies have demonstrated that repro-
gramming-based mutations are generally benign and it is 
improbable to introduce mutational variants that would 
make cells inadequate for therapy (Bhutani et al., 2016). 
The acquisition of a stable pluripotent state appears to 
be difficult to control (Pennarossa et al., 2013). iPSCs 
and cancer cells share many similarities, like high prolif-
eration rate, immortal cell growth, similarities in gene ex-
pression signature, in epigenetic status and chromosomal 
instability (Bernhardt et al., 2012).

All methods leading to pluripotency induction can be 
divided into virus-mediated and virus-free (Table 1).

Lentiviruses and retroviruses are vectors that can inte-
grate randomly into the genome of cells and might dis-
rupt active genes or regulatory regions. Such genomic in-
sertions can activate endogenous oncogenes via knock-out 
of some genes, e. g. oncogene repressor, and lead to can-
cerogenesis (Baum et al., 2004; Okita et al., 2008). These 
vectors have been used to create iPSCs from adult human 
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cells – in a retroviral system, the cells were transduced 
with Oct4, Sox2, Klf4 and c-Myc factors (Takahashi et 
al., 2007) and in a lentiviral – with Oct3/4, Sox2, Nanog, 
Lin28 (Yu et al., 2007). To deal with incorporation of vi-
ral vector sequences into the iPSC genome, alternative re-
programming systems using non-integrating adenoviruses 
have been developed, however a significant weakness of 
these systems is very low efficiency (Stadtfeld et al., 2008; 
Zhou & Freed, 2009). A better efficiency of pluripotent 
stem cells induction might be obtained via a system using 
episomal plasmids delivered by non-integrating Sendai vi-
ruses (SeV), where the RNA virus can be easily removed 
with antibodies, though the cost of this method is much 
higher than of the other viral methods (Fusaki et al., 2009; 
Sachamitr et al., 2014).

There are two systems facilitating the removal of 
genes integrated with the mouse genome or human iP-
SCs – the Cre-loxP and PiggyBac transposon systems 
(Zhou & Zeng, 2013). The first consists of a single vi-
ral vector equipped with a cassette of four transcription 
factors which are flanked by the loxP sites. The Cre-re-
combinase is delivered to the cell’s nucleus by using the 
Pseudomonas aeruginosa bacteria and then overexpressed. 
Cre-mediated recombination leads to excision of the 
DNA sequences between the two loxP repeats (Kaji et 
al., 2009; Soldner et al., 2009). Another system is based 
on a transient transposase activity. The reprogramming 
factors are cloned into a PiggyBac transposon. In the 
presence of a transiently expressed transposase, this vec-
tor can be integrated into the host genome and excised 

Table 1. Summary of the iPSCs strategies
Table includes established methods for iPSCs derivation. They involve viral and nonviral approaches with their advantages and disadvan-
tages.

Reprogramming methods Advantages Disadvantages

vi
ra

l

integrating vectors

lentiviruses
- high efficiency,
- infecting of nondividing and prolife-
rating cells

- potential immunogenicity,
- risk of active gene / regulatory 
region disruption,
- risk of endogenous oncogene ac-
tivation

retroviruses
- high efficiency,
- simplicity,
- economy

- potential mutagenicity,
- tumorigenicity,
- low efficiency,
- risk of active gene / regulatory 
region disruption,
- risk of endogenous oncogene ac-
tivation

nonintegrating 
vectors

adenoviruses - no integration into the host genome - very low efficiency

Sendai viruses - easily removable,
- a higher efficiency than retrovirus - high costs

transgene excision

Cre-loxP system - can infect nondividing and prolifera-
ting cells

- risk of insertional mutations,
- harmful genetic alterations

piggyBac trans-
poson system - quite high efficiency (0.02–0.05%)

- harmful genetic alterations,
- no published data that vector co-
uld be cleanly
excised from the iPSCs,
- labor-intensive

no
nv

ira
l

with nucleic acid

DNA plasmids - integration into the genome is not 
required

- repeated transfections,
- low efficiency

episomal vector 
system

- integration into the genome is not 
required

- repeated application,
- low efficiency

minicircles
- longer permanent transgene expres-
sion,
- free of foreign or chemical elements

- low efficiency

liposomal ma-
gnetofection

- simplicity,
- short reprogramming times (8 days 
or less)

- potential toxicity

synthetic RNA - quicker and higher efficiency than 
standard viral techniques - labor-intensive

miRNA - high efficiency
- risk of nonspecific, off-target ef-
fects,
- instability

nucleic acid 
derivatives

- effortless synthesis, administration 
and standardization,
- cost-effective and simple storage 
requirements,
- nonimmunogenic

- potential tumorigenicity,
- no true specificity

without nucleic 
acids

recombined 
proteins - skipping genetic modification

- low efficiency
- effective only in the fibroblast cell 
type

small molecules - high efficiency - potential tumorigenicity
- no true specificity
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from iPSCs after reprogramming (Kaji et al., 2009; Wolt-
jen et al., 2009, Yusa et al., 2009).

In the non-viral methods of reprogramming, DNA 
plasmids do not integrate into a genome but are main-
tained in a cell for a few cell cycles and transiently ex-
press reprogramming factors (Okita et al., 2008; Stadtfeld 
et al., 2008; Yu et al., 2009). An episomal vector system, 
in turn, is based on the Epstein-Barr Nuclear Antigen-1 
that undergoes a permanent extrachromosomal replica-
tion in synchrony with the host genome, i.e. only once 
per cell cycle (Yu et al., 2009; Okita et al., 2011). Anoth-
er system based on an episomal DNA vector, the mini-
circles, contains only cDNA of the expressed Yamana-
ka factors and a eukaryotic promoter (Jia et al., 2010). 
A self-assembly of complexes that consist of cationic 
lipids and plasmids or siRNA, with magnetic nanoparti-
cles of iron, has been termed liposomal magnetofection 
(Mykhaylyk et al., 2010; Park et al., 2012). Such complex-
es require a magnetic field to transfect vectors into the 
cells. A different method of reprogramming uses syn-
thetic mRNA encoding the Yamanaka factors, delivered 
into somatic cells via a cationic lipid vehicle. The mRNA 
is synthesized using in vitro transcription reactions, treat-
ed with modified ribonucleotides and a phosphatase, and 
the medium is supplemented with an interferon inhib-
itor which allows for lower cytotoxicity, acquiring high 
protein expression and improving cell viability (Yu et al., 
2007; Hanna et al., 2009).

miRNA play a significant role in reprogramming 
through epigenetic regulation of chromatin remodeling 
complexes. Some miRNA clusters participate in control 
of genes related to maintenance of pluripotency (Sub-
ramanyam et al., 2011). It has been demonstrated that 
miR93, as well as miRNA from the miR302 family, in 
combination with the Yamanaka factors, can enhance 
the efficiency of reprogramming (Li et al., 2011; Sub-
ramanyam et al., 2011). Furthermore, mir-200, mir-302 
and mir-369 could induce pluripotency in human cells 
(Miyoshi et al., 2011). A cocktail of miR 302-367 very 
quickly and efficiently reprograms the mouse and human 
somatic cells to the pluripotent state without additional 
reprogramming factors (Anokye-Danso et al., 2011; Liao 
et al., 2011). A genetic modification might be omitted by 
using methods that do not employ nucleic acids. Deliv-
ery of a recombined protein encoded by reprogramming 

factors into the cells, instead of these factors themselves, 
is one among those methods (Kim et al., 2009).

Another nonviral method that allows avoiding genom-
ic insertions and immunogenicity relies on utilization of 
small molecule compounds, including RNA-derivatives 
(Fig. 1). They may improve the quality of reprogram-
ming, such as time and efficiency (Efe and Ding, 2011). 
It is worth to note that efficiency of reprogramming via 
such compounds highly depends on the specific cell type 
(Paull et al., 2015). Because of low mass, which is lim-
ited up to 500 Da, they might diffuse freely across the 
cell membranes (Lipinski, 2004; Dougherty et al., 2012). 
Given the easiness to synthesize, administer and stand-
ardize, as well as cost-effectiveness and simple storage 
requirements, small molecules are a promising approach 
to pluripotent cell induction (Hou et al., 2013). However, 
this method displays some weaknesses, like potential tu-
morigenicity, mutagenicity, as well as possible targeting 
of endogenous cell components that are not specific to 
pluripotency.

INDUCERS OF PLURIPOTENCY

The fundamental mechanism of epigenetics is accom-
modation of gene expression in response to interac-
tions between the genes and the environment (Morange, 
2002). This can be highly manipulated in somatic cells 
and the cell identity may be reversed to the initial state 
of development or altered. Most of the small molecules 
are epigenetic modulators and influence methylation of 
DNA and histone modifications in the cells (Jaenisch, 
2012). Methylation patterns of pluripotency gene pro-
moters should be similar to those found in the embry-
onic stem cells (Maherali & Hochedlinger, 2009).

There are groups of compounds that are either proven 
or for now only putative inducers of pluripotency. 5-aza-
cytidine and zebularine are cytidine analogues (Fig. 2) 
and act as DNA methyltransferase inhibitors. 5-azacyti-
dine contains a nitrogen atom at position 5, whereas ze-
bularine lacks the amino group at position 4 of the cor-
responding cytidine. It has been demonstrated that both 
compounds form covalent bonds with DNMT after in-
corporation into DNA (Taylor & Jones, 1982; Zhou et 
al., 2002). 5-azacytidine, named also 5-AZ or AZA, may 

Figure 1. Schematic diagram of pluripotency induction via small molecules.
Small molecules cause cellular reprogramming through epigenetic changes, such as DNA methylation, histone modifications, noncoding 
RNAs and chromatin remodeling. Me, methylation; Ac, acetylation; ncRNAs, noncoding RNAs
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incorporate into both, DNA and RNA. 5-AZ is toxic 
and unstable under physiological conditions. When in-
corporated into nucleic acids via the sulfhydryl side chain 
of the catalytic cysteine residue, these compounds form a 
stable reaction intermediate. These nucleosides then be-
come suicide substrates for the DNMT enzymes (Lyko 
& Brown, 2005). It is assumed that the vast majority of 
azacytidine is incorporated directly into the RNA and 
the rest (10–20%) is activated and converted by a ribo-
nucleotide reductase into the active nucleotide for DNA 
methylation inhibition, 5-aza-2’-deoxycytidine-5’-triphos-
phate (Li et al., 1970; Stresemann & Lyko, 2008). 5-aza-
cytidine can substitute for a cytosine, and azacytosine-
guanine dinucleotides are formed which are recognized 
by the DNA methyltransferases as natural substrates 
(Stresemann & Lyko, 2008). As a result, a covalent bond 
between the carbon-6 of the cytosine and the enzyme is 
established (Santi et al., 1984; Chen et al., 1991). Substitu-
tion of carbon by the nitrogen atom at position 5 in aza-
cytosine precludes the reaction of β-elimination through 
the carbon-5 atom, and thus DNMT remains covalently 
bound to DNA and its catalytic function is blocked. 
Furthermore, such covalent protein-DNA adduct trig-
gers DNA damage signalling and trapped DNMTs are 
degraded, resulting in depletion of the cellular DNMTs 
and lost of methylation marks during DNA replication 
(Stresemann & Lyko, 2008).

5-azacytidine improves reprogramming efficiency by 
3 folds (with an effective concentration of about 2 µM 
in mouse embryonic fibroblasts; MEFs) (Huangfu et al., 
2008a; Mikkelsen et al., 2008). There are cases when 
some cells become trapped in partially reprogrammed 
states and show DNA hypermethylation at pluripotency-
related loci. In such cases, 5-AZ enables to complete the 
iPSCs reprogramming (Huangfu et al., 2008a; Mikkelsen 
et al., 2008). Five µM concentration of 5-AZ boosts and 
may increase efficiency of reprogramming during late 
stages of this process in a doxycycline-inducible Oct4 
expression screening system, in the presence of a cock-
tail that consist of valproic acid, CHIR99021, RepSox 
and tranylcypromine (Polo et al., 2012; Hou et al., 2013).

Besides its effects on reprogramming, 5-azacytidine 
has been also proved to participate in transdifferentia-
tion events from one cell type to another. It participates 
in conversion of murine fibroblasts into adipocytes and 
bone cells, of mesenchymal stromal cells and fibroblasts 
into haematopoietic cells, of adult skin fibroblasts and 
granulose cells into highly permissive state and towards 
different cell lineages and phenotypes, of fibroblasts 
into insulin-secreting cells, of human granulosa cells into 
muscle cells with human recombinant vascular endothe-
lial growth factor, and in transformation of adipose-de-
rived stem cells into myoblasts (Taylor & Jones, 1979; 
Tamada et al., 2006; Pennarossa et al., 2013; Brevini et al., 
2014; Wang et al., 2014).

Zebularine is a stable hydrophilic cytidine analogue 
with the depleted 4-amino group, and acts as a DNMT 
inhibitor and was formerly developed as a cytidine deam-
inase inhibitor (Zhou et al., 2002; Nakamura et al., 2013). 
It forms tight covalent complexes between the DNMT 
enzymes and DNA substituted with zebularine, which 
could lead to a compositional change in the DNMT 
protein, and thus it is conceivable that DNMTs can be 
then degraded via the ubiquitination system (Hurd et al., 
1999; You & Park, 2012). Zebularine has been shown to 
exhibit low toxicity in mice (Cheng et al., 2003; Yoo et 
al., 2004, Cheng et al., 2004). This compound preferen-
tially targets cancer cells (Andersen et al., 2010). It has 
been demonstrated that zebularine decreased the levels 
of DNMT1, DNMT3a, DNMT3b in cholangiocarcino-
ma, hepatocellular carcinoma cells bladder, cervical, and 
breast cancer cells (Cheng et al., 2004; Fandy, 2009; You 
& Park, 2012; Nakamura et al., 2013; Nakamura et al., 
2015).

Zebularine is a proven inducer of pluripotency. It has 
been demonstrated to participate in reprogramming of 
the yak fibroblasts for cloning (Xiong et al., 2013).

Neplanocin A, 3-deazaneplanocin A, 3-deazaadeno-
sine, D9 and EPZ004777 are adenosine analogues or 
derivatives (Fig. 3) and belong to proven and putative 
histone methyltransferase inhibitors.

Histone methyltransferases (HMTs) transfer methyl 
groups from the S-Adenosyl methionine (SAM) specifi-
cally onto either lysine or arginine residues of the H3 
and H4 histones. There are two suggested mechanisms 
of the SAH hydrolase inhibition – either via oxidation 
of NAD+ to NADH (type I – reversible), or via cova-

Figure 2. Chemical structures of cytidine and its analogues.

Figure 3. Chemical structures of adenosine and its analogues 
and derivative.
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lent binding to the active site by an inhibitor with a nu-
cleophilic residue (type II – irreversible) (Wolfe & Bor-
chardt, 1991).

Naturally occurring neplanocin A, an analogue of 
adenosine with the oxygen atom substituted by carbon-5, 
and its derivative DZNep are effective inhibitors of the 
S-adenosylhomocysteine (SAH) hydrolase (Tam et al., 
2015). However, both of these compounds are toxic, 
which is a result of phosphorylation of the C-5’ primary 
hydroxyl group (Wolfe & Borchardt, 1991). Neplanocin 
A has been demonstrated to be metabolized via con-
version into a 5′-triphosphate (Montgomery et al.; 1982, 
Saunders et al., 1985).

A neplanocin A analogue that lacks nitrogen at po-
sition 3, 3-deazaneplocin A (DZNep), acts as a SAH 
hydrolase inhibitor. It can productively deplete cellu-
lar levels of the EZH2 complex, effectively and selec-
tively inhibit trimethylation of lysine 27 of histone H3 
(H3K27me3) and lysine 20 of histone H4 (H4K20me3), 
and induce apoptosis in cancer cells (Chiang, 1998; Gor-
don et al., 2003; Tan et al., 2007). This compound has 
been shown to exhibit a minimal toxicity in vivo (Bray et 
al. 2000).

3-Deazaneplanocin A, as well as others such as: valp-
roic acid, CHIR99021, RepSox, tranylcypromine, forsko-
lin, TTNPB, have been used in order to induce factor-
free reprogramming (Hou et al., 2013). At a concentra-
tion of 0.05–0.1 µM, DZNep, as well as a mixture of 
other small molecules, such as valproic acid, CHIR99021, 
RepSox, tranylcypromine and forskolin, facilitate up to 
65 folds higher efficiency in reprogramming of MEFs 
(Hou et al., 2013). During late stages of this process, 
DZNep, in combination with valproic acid, CHIR99021, 
RepSox and tranylcypromine, boosts reprogramming in a 
DOX-inducible Oct4 expression screening system (Hou 
et al., 2013).

Through structure and activity relationship (SAR) anal-
ysis, as well as correlation of physicochemical properties, 
it has been identified D9, a neplanocin A analogue that 
lacks hydroxymethyl group at position 4’. As an analogue 
of DZNep, it shows a comparable cellular activity with 
DZNep, about 20 fold less toxicity in mice and could 
potentially affect reprogramming (Jiang et al., 2015; Tam 
et al., 2015). D9 has been reported to induce suppression 
of histone methylation marks, such as H3K27me3 and 
H4K20me3, and to a lesser extent on H3K4me3 and 
H3K79me2, and had only little effects on H3K9me2 and 
H3K9me3 (Jiang et al., 2015).

3-Deazaadenosine (DZA) is an adenosine analogue 
lacking the nitrogen atom at position 3 and also acts as 
a SAH hydrolase inhibitor and leads to a rapid loss of 
H3K4 trimethylation in the ESC, followed by ESCs dif-
ferentiation and death (Shyh-Chang et al., 2013). DZA, 
in the presence of valproic acid, CHIR99021, RepSox, 
tranylcypromine and forskolin participates in the repro-
gramming induction (Hou et al., 2013).

Inhibition of the catalytic activity of the H3K79 his-
tone methyltranferase (Dotl, disruptor of telomeric si-
lencing-like) is key to reprogramming. Mono-, di-, and 
trimethylation of H3K79 are all entirely catalyzed by 
Dot1l (Nguyen & Zhang, 2011). EPZ004777 is a 7-de-
zaze with added urea and phenyl fragments. This small 
molecule inhibits Dot1l which is followed by a decrease 
in the H3K79me2 levels, at concentrations ranging from 
1 μM to 10  μM (Onder et al., 2012), and affects the iPSC 
reprogramming (Lin et al., 2009). By using EPZ004777 
in mouse and human fibroblasts, the yields of four tran-
scription factors-mediated induction of pluripotency 
increased by 3–4 folds (Onder et al., 2012). The iPSCs 

generated through the Dot1l inhibition show all the hall-
marks of pluripotency. They have exhibited characteristic 
ESC morphology, have differentiated into all three germ 
layers in vitro, as well as in teratomas. The Dot1l inhibi-
tion substitutes for Klf4 and c-Myc (Onder et al., 2012).

PERSPECTIVES

The potential of nucleic acid derivatives to develop 
medical treatment of degenerative diseases and advance 
the field of regenerative medicine should profoundly in-
crease in the near future. Such compounds may target 
specific signaling pathways and mechanisms and trigger 
pluripotent stem cells induction, thus they are effective 
tools for cell manipulation and development of thera-
peutic approaches for regenerative medicine (Ma et al., 
2013, Chin et al., 2009; Nie et al., 2012; Hou et al., 2013; 
Jung et al., 2014). Usage of small molecules may lead to 
development of cell-based therapies and modelling of 
diseases via the production of patient-specific stem cells 
(Tang et al., 2016). Because reprogramming efficiency in 
vitro depends on the specific donor cell type and culture 
conditions, an appropriate usage of their combinations 
under proper conditions is needed.

Revealing and studying the influence of new nucleic 
acid derivative compounds on reprogramming is riveting 
and might lead to understanding the mechanisms under-
lying their activity.

Recently, there was a big progress in the small mol-
ecules application, however, many limitations that do not 
allow the use of such compounds in clinical settings in a 
large scale still remain. Modifications of particular struc-
tural sites or substitutes in derivatives of nucleic acids 
or other natural compounds influence the modulating 
activities of these small molecules, especially their inhib-
iting activity. Further pharmacological studies will pro-
vide data allowing identifying the optimal pluripotency 
induction conditions. Molecular mechanisms underlying 
the activity of small molecule compounds need to be 
fully elucidated. Insight into the epigenetic changes dur-
ing pluripotent stem cell induction and further chemical 
and pharmacological studies would improve understand-
ing of the stem cell biology and the major mechanisms 
and pathways involved in the cell reprogramming, as 
well as support the development of potential therapeutic 
approaches (Bojarski, 2006; Frye, 2010).
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