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Flower structure in grasses is very unique. There are 
no petals or sepals like in eudicots but instead flowers 
develop bract-like structures – palea and lemma. Re-
productive organs are enclosed by round lodicule that 
not only protects reproductive organs but also plays 
an important role during flower opening. The first 
genetic model for floral organ development was pro-
posed 25 years ago and it was based on the research 
on model eudicots. Since then, studies have been car-
ried out to answer the question whether this model 
could be applicable in the case of monocots. Genes 
from all classes found in eudicots have been also iden-
tified in genomes of such monocots like rice, maize or 
barley. What’s more, it seems that miRNA-mediated 
regulation of floral organ genes that was observed 
in the case of Arabidopsis thaliana also takes place 
in monocots. MiRNA172, miRNA159, miRNA171 and 
miRNA396 regulate expression of floral organ identity 
genes in barley, rice and maize, affecting various fea-
tures of the flower structure, ranging from formation 
of lemma and palea to the development of reproduc-
tive organs. A model of floral development in grasses 
and its genetic regulation is not yet fully character-
ized. Further studies on both, the model eudicots and 
grasses, are needed to unravel this topic. This review 
provides general overview of genetic model of flow-
er organ identity specification in monocots and it’s  
miRNA-mediated regulation.
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FLOWER STRUCTURE IN GRASSES

The spikelet is the basic unit of the grass inflores-
cence. It is formed directly on the main axis of the in-
florescence or on the branches. The pattern of spike-
let formation differs depending on the species. The 
flower in grasses is located inside the spikelet. The 
grass flower is composed of two bract-like structures, 
lemma and palea forming most of the outer whorl. 
The second whorl is occupied by rounded organ-lod-
icule which covers stamen and carpel, not only pro-
tecting these reproductive structures but also ensur-
ing access to them by swelling during flower opening 
(Fig. 1). The number of flowers formed in a spikelet 
is variable depending on the species (Clifford 1987, 
Bommert et al., 2005).

GENETIC REGULATION OF FLOWER DEVELOPMENT- 
THE ABCDE MODEL

The original ABC flower development model was pro-
posed in 1991 based on the analysis of the phenotypes of 
floral homeotic mutants with the significant disturbances 
in floral organ development, whorls in particular. The 
study was carried out in model eudicots, such as Arabi-
dopsis thaliana and Antirrhinum majus (Coen & Meyerow-
itz, 1991). Angiosperm flowers usually have four whorls. 
According to the original model, in the first whorl only 
the A genes (APETALA1, AP1; APETALA2, AP2) are 
expressed in addition to the standard leaf developmen-
tal genes, and this results in sepal development. In the 
second whorl, both the A and B genes (APETALA3, 
AP3; PISTILLATA, PI) are functional, and this results 
in petal production. In the third whorl, the B and C 
genes (AGAMOUS, AG) are expressed which promotes 
stamen production, and in the last whorl only the C 
class genes are active and therefore the development of 
carpels occurs (Coen & Meyerowitz, 1991). Later, the 
D (STK) and E (SEPALLATA1/2/3/4, SEP1/2/3/4, 
SHATTERPROOF1, SHP1, and SHP2) genes were add-
ed to the ABC model. The D-class genes are responsible 
for ovule specification. What is more, based on phylo-
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Figure 1. Flower structure in grasses based on the example of 
rice.
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genetic studies, the D-class genes originated from the  
C-class genes as a result of gene duplications that oc-
curred during evolution before divergence of the eudicot 
and gymnosperms lineages (Kramer et al., 2004). The  
E-class genes determine the identity of all four whorls of 
floral organs, since the proteins that are being produced 
from those genes create functional complexes with the 
A, B, C and D proteins (Colombo et al., 1995; Pelaz et 
al., 2000; Favaro et al., 2003; Pinyopich et al., 2003).

Although this model has not been yet fully character-
ized in grasses, several studies have been conducted. As 
in eudicots, presence of the A, B, C, D, E-class genes 
has been confirmed.

In the case of A genes, there are three AP1-like 
genes present in the rice genome (OsMADS14/RAP1B,  
OsMADS15/RAP1A and OsMADS18) (Litt et al., 2003). 
Phenotype of the osmads15/rap1a mutant shows that 
this gene is an important factor in palea development 
in rice (Wang et al., 2010). However, the triple mutant 
of OsMADS14, 15 and OsMADS18 forms normal palea 
and lemma structures (Kabayashi et al., 2012). It appears 
that development of palea, at least in rice, is also regu-
lated by the REP1 (RETARDED PALEA1) and DPI 
(DEPRESSED PALEA1) genes. Significantly smaller 
paleas with delayed differentiation were observed in 
the case of rep1 mutant and severe deformation in the 
central region of paleas in the case of dpi mutant (Yuan 
et al., 2009, Jin et al., 2011). In the paper from 2012,  
SUPERNUMERARY BRACT (SNB) and Os INDE-
TERMINATE SPIKELET1 (OsIDS1) – two AP2-like 
genes were identified in rice to be necessary for lodicule 
development (Nair et al., 2010; Lee et al., 2012,).

In grasses, the B class of floral identity genes is func-
tionally most similar to those present in eudicots, and 
therefore it is the best characterized group. In rice, there 
are two genes that are eudicot PI orthologues- MADS2 
and MADS4. Suppression of OsMADS2 results in devel-
opmental differences in lodicules does not cause chang-
es in stamen but (Prasad et al., 2003). No alteration in 
lodicule or stamen is induced in a OsMADS4 gene mu-
tant, but double mutant of OsMADS2 and OsMADS4 
displays occurrence of palea-like organs instead of lodi-
cule, and carpel-like structures in place of stamens (Yao 
et al., 2008). Mutants of MADS16/ SUPERWOMAN1 
(SPW1) in rice, and SI1 in maize (homologs of AP3), 
result in transformation of the second whorl lodicules 
into paleas and lemmas, and conversion of stamens into 
carpels (Kang et al., 1998). This phenotype is essentially 
identical to the eudicots’ B-class genes’ mutant (Ambrose 
et al., 2000, Nagasawa et al., 2003 Whipple et al., 2004).

In grasses, the C class genes (similar to AG genes in 
eudicots) are responsible for development of both types 
of reproductive organs. Based on the phylogenetic ap-
proach, there are four AG-like genes present in the rice 
genome and six in maize (OsMADS58, OsMADS21, 
OsMADS13, OsMADS3 and ZmZAG1, ZmZMM2/ 
ZmZMM23, ZmZAG2/ZmZMM1, ZmZMM25) (Ciaffi et 
al., 2011). Loss of OsMADS3 function results in con-
version of stamen into lodicule, with no effect on the 
carpels’ development, although OsMADS58 knock-down 
shows disturbance in the carpel structures. That sug-
gests that there is no single gene responsible for stamen 
and carpel specification, in contrast to the so far stud-
ied eudicots (Yamagushi et al., 2006). Phenotype similar 
to the mads58 mutant was shown in the case of maize 
zmzag1 mutant (Mena et al., 1996). Moreover, in rice 
the DL (DROOPING LEAF) gene has been identified 
as a C-class gene taking part in the carpel development. 
Mutation in this gene results in conversion of carpels 

into stamens (Yamagushi et al., 2004). OsMADS13 and 
OsMADS21, and their maize homologs (ZmZAG2/
ZmZMM1 and ZmZMM25), have been categorized as 
the D-class genes originated from C-class genes in the 
course of major gene duplications. OsMADS13 is pre-
dominantly expressed in the ovule where its expression 
overlaps with OsMADS21 (expression pattern is simi-
lar to STK gene in Arabidopsis) (Kramer et al., 2004). 
Knock-out mutant of OsMADS13 displayed a complete 
female sterility (Dreni et al. 2007).

The E class genes also have been characterized in 
grasses. Ten genes belonging to that category have been 
identified in maize and seven in rice, and these are ho-
mologs of SEP and AGL6 genes in eudicots. Their ex-
pression pattern suggests that they all play an important 
role in the flower meristem determinacy (Theissen et 
al., 2000). A mutant of one of the SEP-like genes (Os-
MADS1) in rice, produces flowers with palea and lem-
ma-like lodicule and abbreviated number of stamen 
and carpels; a similar phenotype is produced in a mads6 
mutant (Jeon et al., 2000). The complexity of flower de-
velopment model in grasses can be a result of its much 
more complexed genome than is present in Arabidopsis 
(Fig. 2).

MiRNA-MEDIATED REGULATION OF THE FLOWER 
ORGAN DEVELOPMENT IN GRASSES

MiRNAs are small ribonucleic acid molecules (typi-
cally 21 nt in length) which, when incorporated into 
multi-protein complex RISC (RNA-induced silencing 
complex), are part of an important regulatory mecha-
nism of gene expression at the transcriptional and post-
transcriptional level (Lee et al., 1993; Voinnet et al., 2009; 
Bartel, 2009; Bielewicz et al., 2012; Bielewicz et al., 2013; 
Szweykowska-Kulińska et al., 2013). MiRNAs are also 
a vital element of plant adaptation to changing environ-
mental conditions which was studied in plants respond-
ing to the stresses of heat, salinity or excess and defi-
ciency of Cu and Cd (Kruszka et al., 2012; Kruszka et al., 
2014; Barciszewska-Pacak et al., 2015). Moreover, the im-
pact of miRNA-mediated regulation on plant growth and 
development was shown in the case of miRNA393 and 
an auxin-signaling pathway in Arabidopsis thaliana (Wind-
els et al., 2014). Studies conducted so far suggest that the 
miRNAs’ activity is essential in all phases of plant life.

Figure 2. Flower diagram based on the example of rice, with 
genes corresponding to the development of the flower organs.
Due to difficulties with the placement of the classification of in-
dividual genes into classes from the ABCDE model in the figure, 
we provide this classification here: Class A genes – SNB, IDS1,  
OsMADS15, REP1, DP1, Class B genes – OsMADS2, OsMADS4, SPW1, 
SI1, Class C genes – OsMADS58, ZmZAG1, DL, OsMADS3, Class E 
genes – OsMADS3, OsMADS6.
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miRNA172

MiRNA172 is conserved among higher plants and 
it acts at the transcriptional and translational level as 
a regulator of the plant-specific transcription factor 
and floral organ identity gene APETALA2 (AP2), as 
well as AP2-like genes, including TARGET OF EAT1 
(TOE1), TOE2, TOE3, SCHLAFMUTZE (SMZ), and 
SCHNARCHZAPFEN (SNZ) in Arabidopsis (Park 
et al., 2002; Aukerman et al., 2003; Schmid et al., 2003; 
Chen, 2004). Also, overexpression of miR172 causes 
conversion of sepals and petals into carpels and reduc-
tion in the stamen number (Chen, 2004).

There have been several studies establishing the role 
of miRNA172 in maize, rice and barley (Chuck, 2007; 
Zhu et al., 2009; Nair et al., 2010).

In barley, suppression of AP2-like mRNA cleavage 
mediated by miRNA172 results in occurrence of cleis-
togamus flowering, which means that palea and lemma 
are closed together during the period of pollen release 
(Lord, 1981; Nair et al., 2010). That situation is caused 
by the atrophy of lodicule. Under natural conditions, the 
lodicule swells upon flower opening, pulling the palea 
and lemma away and ensuring access to carpel and sta-
mens (Bommert et al., 2005). Cleistogamy in barley is un-
der control of a single locus-cleistogamy 1 (cly1) (Turuspe-
kov 2004). Cly1 encodes a transcription factor belonging 
to the euAP2 family with two AP2 domains. miRNA172 
targeted sequence is embedded in the 10th exon of this 
gene which is common for a number of AP2 genes 
(Aukerman, 2003; Chen, 2004).

The role of miRNA172 was also established in maize.
Maize is a monoecious plant having tassels and ears 

which contain male and female reproductive organs. 
Flowers start as bisexual but then undergo stamen ar-
rest in the ear, and the abortion of pistils in the tassel 
(Cheng, 1983). The tasselseed4 (ts4) mutant in maize dis-
played feminization of the tassel caused by a lack of pis-
til abortion (Phipps, 1928) (Fig. 3).

TS4 also plays a part in SPM and spikelet meristem 
determinacy. Inflorescence is initiated from the mer-
istem that under normal conditions produces a regu-
lar structure of spikelet pair meristems (SPMs). In case 
of the ts4 mutants, the SPMs produced spikelet mer-
istems that display a very irregular pattern. Moreover, 
it has been established that the TS4 gene encodes the 
miRNA172e. Transgenic plants with an insertion within 
the pri-microRNA transcription unit were produced and 
the phenotype of these plants was similar to the ts4 mu-

tant (Chuck et al., 2007). MiRNA172e is present in tas-
sel and ears in wild-type plants but undetectable in these 
structures in the ts4 mutants (Chuck et al., 2007). The 
zma-miR172e target is the AP2-like gene INDETERMI-
NATE SPIKELET1 (IDS1) that is required for spikelet 
meristem determinacy. An ids1/ ts4 double mutant had 
almost completely blocked the defects observed in the 
ts4 tassels, supporting the hypothesis that IDS1 mRNA 
is a target for miRNA172 (Chuck et al., 2007).

A year later, it has been established that also anoth-
er gene is regulated by miR172e in maize - SISTER OF 
INDETERMINATE SPIKELET1 (SID1). No mutant 
phenotype has been observed in single sid1 mutants, but 
ids1/sid1 double mutants produced fewer tassel branch-
es and generated defects in flower development, proving 
that miRNA172e targets both AP2-like gene mRNAs: 
IDS1 and SID1 (Chuck et al., 2008).

The role of miRNA172 has been also studied in the 
case of rice.

The rice miR172 family contains four members 
(miR172 a-d) which are predicted to target five AP2-like 
genes: Os03g60430, Os04g55560, Os05g03040, Os06g43220 
and Os07g13170 (Zhu et al., 2009, Lee 2007). One of 
them – Os07g13170 (SNB – SUPERNUMERARY 
BRACT) has been shown to be required for determina-
tion of floral organ identity. The snb mutant displays de-
fects in the floral organ development (Lee, 2007). SNB, 
Os03g60430, Os05g03040 and Os06g43220 are the puta-
tive rice orthologues of maize SID1, IDS1, ZmRap2.7 
and GL15, respectively (Chuck et al., 2008). Cleavage 
of the Os04g55560 mRNA by the miR172 was detect-
ed in a shoot and grain, as well as in the booting pani-
cles, while cleavage of the Os06g43220 mRNA was only 
detected in the mixed sample of shoot and grain with 
a low frequency, and cleavage of the SNB mRNA was 
only detected in the booting panicles. Overexpression of 
the MIR172b in rice causes abnormalities in the flow-
er organ development, including multiple layers of lem-
ma and palea, twisted lemma and palea, degeneration of 
either lemma or palea or leaf-like structures replacing 
them, while in some cases no obvious floral organs were 
produced (Zhu et al., 2009).

These phenotypes are in agreement with results ac-
quired by the snb mutants, suggesting that SNB and at 
least one of the other four targets of miR172 were re-
pressed in plants over-expressing miR172b (Zhu et al., 
2009).

miRNA159

Overexpression of AtmiR159 in Arabidopsis resulted 
in various phenotypic changes including anther defects 
or male sterility, therefore it is believed that miR159 
and its target genes are involved in important develop-
mental processes (Achard et al., 2004). In Arabidopsis,  
miRNA159 targets GAMYB-like genes (Palatnik et al., 
2003, Achard et al., 2004, Millar et al., 2005, Schwab 
et al., 2005). AtMYB33 and AtMYB65 belong to the 
GAMYB-like genes (Stracke et al., 2001) and their dou-
ble mutant displays male sterility and anther defects (Mil-
lar et al., 2005).

MiRNA159 target sequence was also reported in rice 
OsGAMYB transcription factors (OsGAMYBL1 and 
OsGAMYBL2). Also, OsGAMYBL1 was specifically ex-
pressed in flowers and co-expressed with miR159 (Hi-
royuki et al., 2006). Overexpression of miR159 in rice 
caused development of deformed flowers. In a mild 
phenotype, the flowers were sterile and developed ei-
ther shrunken and whitened anthers, or slightly reduced 

Figure 3. Schematic representation of the wild – type tassel in 
maize (right) and feminized tassel in the ts4 mutant (left).
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lemma and palea. In a severe phenotype, the palea and 
lemma production was distorted and flowers were much 
smaller than in the wild-type plants. They also did not 
develop stamen and pistil primordia (Tsuji et al., 2006).
The knockout mutant of OsGAMYBL1, gamyb-1, showed 
similar defects (Kaneko et al., 2004).

miRNA171

MiR171 is a member of a well-known family of  
miRNAs that target the transcription factor SCL 
(SCARECROW-LIKE), belonging to a protein family 
named GRAS (Bolle, 2004). Those proteins are import-
ant in the flowering control and apical meristem devel-
opment (Lee et al. 2008). In Arabidopsis, three MIR171 
genes can be distinguished (a, b and c) and miRNAs 
produced from them target the SCL6 genes (Schulze et 
al., 2010; Engstrom et al., 2011). Phenotypes of trans-
genic plants over-expressing miR171c and the scl6 mu-
tant display similarities, including altered flower struc-
ture, which suggests that miR171 can reduce the level of 
SCL6 and takes part in these developmental processes 
(Wang et al., 2010).

In barley, two mature miR171 sequences (hvu-
miR171a/b) have been identified (Schreiber et al., 2011). 
There are also nine rice, fourteen maize and four Brachy-
podium miR171 family members. MiRNA171 is mostly 
expressed in the reproductive tissues. miR171 directs 
specific cleavage of the SCL target mRNAs in rice and 
barley. Moreover, overexpression of miR171 in rice re-
sulted in a phenotype with altered shoot structure, de-
layed flowering and spikes’ sterility (Curaba et al., 2013).

miRNA396

MiRNA396 is a well-conserved miRNA. Recent-
ly, involvement of miRNA396 in the control of carpel 
number and pistil development in Arabidopsis via target-
ing nine GROWTH REGULATORY FACTORS (GRF) 
has been established (Liang et al., 2014). There are also 
nine GRF genes targeted by miRNA396 in rice, with 
GRF6 being the predominant one. Transgenic rice plants 
overexpressing miR396 displayed malformed flower 
structures and this effect was correlated with a signifi-
cant down-regulation of GRF6 and other members of 
this family. What’s more, this phenotype could be res-
cued by the expression of GRF6 carrying changes in the  
miRNA396 targeted sequence (Liu et al., 2014).

SUMMARY

The ABC model of floral organ specification, which 
was established based on the study of model eudicots, in 
most part can be applied in the case of grasses as well. 
Genes in the A class are responsible for the palea de-
velopment (homologs of eudicot sepals) which was for 
example shown in the case of the MADS15 gene in rice 
(Wang et al., 2010). The class B genes are required for 
the specification of organs in the second whorl which 
was confirmed in mutants of MADS16/ SUPERWOM-
AN1 (SPW1) in rice and SI1 in maize (homologs of 
AP3) (Kang et al., 1998; Whipple et al., 2004; Ambrose 
et al., 2000; Nagasawa et al., 2003). Also, the role of 
the C-class genes in grasses is similar to those in eud-
icots. Their involvement in development of reproduc-
tive organs was depicted in the loss of function mutant 
of MADS3, and knock-down mutants in the MADS58 
genes in rice (Yamagushi et al., 2006).

MiRNAs can regulate flower organ development and 
flowering time in grasses. In barley, miRNA172 targets 
a sequence embedded in the AP2-like gene responsi-
ble for occurrence of the flower cleistogamy (Nair et 
al., 2010). In maize, feminization of the tassel caused 
by a lack of pistil abortion occurs due to the lack of  
miRNA172 expression (Chuck, 2007). In rice,  
miRNA 172 targets the floral organ identity gene (SNB –  
SUPERNUMERARY BRACT), and it’s overexpression 
also results in many problems in the organ development, 
such as: twisted lemma and palea, degeneration of either 
lemma or palea, replacement by leaf-like structures or in 
some cases lack of floral organ production (Phipps et al., 
1928; Chuck et al., 2007; Zhu et al., 2009). Also, another 
miRNA, miR159 regulates the flower organ development 
in grasses. miR159 targets the GAMYB-like gene and 
overexpression of miR159 in rice causes development of 
malformed flowers within the leaf sheaths, shrunken and 
whitened anthers, reduced lemma and male sterility (Hi-
royuki et al., 2006). Another miRNA that affects flowers 
in grasses is miRNA171. miRNA171 is found to target 
the SCL gene involved in control of flowering. There 
are several members of this family found in rice, Brachy-
podium and maize. Overexpression of miR171 in rice re-
sulted in a pleiotropic phenotype with delayed flowering 
and partially sterile spikes (Curaba et al., 2013). Also, 
miRNA396 regulates the flower development in grasses 
by targeting the GRF6 gene which was documented in 
the case of rice (Liu et al., 2014).

A model of floral development in grasses and its ge-
netic regulation is not yet fully characterized. Further 
studies on both, the model eudicots and grasses, are re-
quired to elucidate this mechanism.
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