

Regular paper

Identification of selected microorganisms from activated sludge capable of benzothiazole and benzotriazole transformation*

Katarzyna Kowalska[™] and Ewa Felis

Environmental Biotechnology Department, Silesian University of Technology, Gliwice, Poland

Benzothiazole (BT) and benzotriazole (BTA) are present in the environment - especially in urban and industrial areas, usually as anthropogenic micropollutants. BT and BTA have been found in the municipal and industrial wastewater, rivers, soil, groundwater, sediments and sludge. The origins of those substances' presence in the environment are various industry branches (food, chemical, metallurgical, electrical), households and surface runoff from industrial areas. Increasingly strict regulations on water quality and the fact that the discussed compounds are poorly biodegradable, make them a serious problem in the environment. Considering this, it is important to look for environmentally friendly and socially acceptable ways to remove BT and BTA. The aim of this study was to identify microorganisms capable of BT and BTA transformation or/and degradation in aguatic environment. Selected microorganisms were isolated from activated sludge. The identification of microorganisms capable of BT and BTA removal was possible using molecular biology techniques (PCR, DNA sequencing). Among isolated microorganisms of activated sludge are bacteria potentially capable of BT and BTA biotransformation and/or removal. The most common bacteria capable of BT and BTA transformation were Rhodococcus sp., Enterobacter sp., Arthrobacter sp. They can grow in a medium with BT and BTA as the only carbon source. Microorganisms previously adapted to the presence of the studied substances at a concentration of 10 mg/l, showed a greater rate of growth of colonies on media than microorganisms unconditioned to the presence of such compounds. Results of the biodegradation test suggest that BT was degraded to a greater extent than BTA, 98-100% and 11-19%, respectively.

Key words: biotransformation; benzothiazole; benzotriazole, DNA sequencing, PCR

Received: 03 August, 2015; revised: 24 September, 2015; accepted: 06 October, 2015; available on-line: 07 December, 2015

INTRODUCTION

Benzothiazole (BT) and benzotriazole (BTA) are present in the environment — especially in urban and industrial areas, usually as anthropogenic micropollutants. BT was present in the municipal $(1.7-2.2 \ \mu g/L)$ and industrial (5.5–687 $\mu g/L$) wastewater and rivers (0.6–12.8 $\mu g/L$) (Céspedes *et al.*, 2006; Fiehn *et al.*, 1994; Kloepfer *et al.*, 2005; Voutsa *et al.*, 2006). BTA was detected in soil (330 $\mu g/L$) and groundwater near an airport (126 mg/L), wastewater of urban area (1.2–1200 $\mu g/L$), rivers (5.0– 6.3 $\mu g/L$) and in the sediments and sludge (up to 198 ng/g) (Breedveld *et al.*, 2003; Cancilla *et al.*, 1998; Giger et al., 2006; Weiss et al., 2006; Zhang et al., 2011). Moreover, BTA was proposed as an indicator of wastewater contamination in the environment (Kahle et al., 2009).

The origins of those substances' presence in the environment are various industry branches (e.g. food, chemical, metallurgical or electrical industry), households and surface runoff from industrial areas.

BTs were used in food industry for improvement of the overall taste, in organic synthesis for cyan dye production, in rubber industry as chemical activators of the vulcanization process, and in galvanic industry and industrial cooling systems as corrosion inhibitors (Zapór, 2005; Catallo & Junk, 2005; De Wever *et al.*, 2001; Chen *et al.*, 2012; Finsgar *et al.*, 2010).

BTAs are present in detergents, corrosion inhibitors, UV absorbers, photography, biocides, dyes (Pillard *et al.*, 2001; Castro *et al.*, 2004; Voutsa *et al.*, 2006; Reemtsma *et al.*, 2010; Harris *et al.*, 2007).

Because BT and BTA are quite well soluble in water, stable and resistant to biodegradation, a significant quantity of these substances reaches to the environment and may stay there for a long time (Wu *et al.*, 1998; Giger *et al.*, 2006; Vousta *et al.*, 2006).

Considering this, it is important to look for environmentally friendly and socially acceptable ways to remove BT and BTA. The aim of this study is to identify microorganisms capable of benzothiazole (BT) and benzotriazole (BTA) transformation and/or degradation in aquatic environment.

MATERIALS AND METHODS

Bacterial culture medium. For the growth of bacterial strains from activated sludge, the Kojim mineral medium (Table 1) was prepared.

To each medium, 10 ppm BT and BTA was added as a carbon and energy source for the bacteria, to study degradation of those substances. In the experiment, two variations of the Kojim mineral medium were used, with (KM 1) and without (KM 2) the yeast extract. The use of KM 2 allowed to exclude the impact of yeast extract as additional carbon source.

e-mail: katarzyna.kowalska@polsl.pl

^{*}The results were presented at the 6th International Weigl Conference on Microbiology, Gdańsk, Poland (8–10 July, 2015).

Abbreviations: BT, benzothiazole; BTA, benzotriazole; BTSO₃, benzothiazole sulfonate; Cac, concentration of BT/BTA in appropriate abiotic control; Cs, concentration of BT/BTA in the sample; diOBT, 2,6-dihydroxybenzothiazole; KM, Kojim medium; MBR, mebrane biological reactor; MBT, 2-mercaptobenzothiazole; OBT, 2-hydroxybenzothiazole; OD600_{nm}, optical density

Composition	Concentration, g/l			
Composition	KM 1	KM 2		
KH ₂ PO ₄	0.50	0.50		
NH₄CI	5.00	5.00		
$MgSO_4 \times 7 H_2O$	0.20	0.20		
Yeast extract	0.01	-		
Agarª	20.00	20.00		

Table 1. Composition of standard (KM 1) and modified (KM 2) Kojim medium

^aAgar was used in the solid medium

Table 2. Characteristics of wastewater dosed to reactors

Composition	MBR 1	MBR 2	MBR 3
Synthetic municipal wastewater	+	+	+
Benzothiazole	-	+	-
Benzotriazole	-	-	+

Table 3. Conditions of PCR reaction

Step	Temperature (°C)	Time (min)	Cycle
Predenaturation	94	5:00	1
Denaturation	95	0:30	29
Annaealing	57	0:45	29
Elongation	72	1:30	29
Final elongation	72	7:00	1

Activated sludge. Activated sludge was obtained from membrane biological reactors (MBRs) treated, synthetic municipal wastewater. MBR 1 was considered as a control sample, while two other (MBR 2 and MBR 3) were sampling reactors, fed with sewage with addition of BT (96%, Sigma-Aldrich) and BTA (97%, Sigma-Aldrich) standards, respectively. Composition of wastewater dosed to MBRs is shown in the Table 2.

Screening and isolation of BT and BTA degrading bacteria. For isolation of bacterial strains capable of BT and BTA degradation, activated sludge from MBR 1, MBR 2 and MBR 3 was diluted in 0.85% NaCl (10⁻¹ to 10⁻¹⁰), placed on the Kojim solid mineral medium, and incubated for 72 hours at 37°C. After 1 week, the fastest growing colonies of bacteria were streaked on nutrient agar plates and incubated for 24 hours at 37°C.

Identification of BT and BTA degrading bacteria. Total bacterial DNA obtained from pure cultures was isolated using Genomic Mini Kit (A&A Biotechnology). PCR amplification with 27F (5' AGAGTTTGATCMTG-GCTCAG 3') and 1492R (5' TACGGYTACCTTGT-TACGACTT 3') primers was performed (Lane, 1991). Reaction mixtures contained $1 \times$ buffer, 2 mM MgCl₂, 5 pM/ μ L of 27F and 1492R primers, 20 pM/ μ L dNTPs and 1.5 U GoTAQ Flexi (Promega) in total reaction volume of 30 μ L. Isolated DNA at a concentration of 0.15–0.2 μ g/ μ L was added to the PCR mixture. Reactions underwent the cycling parameters presented in Table 3.

The presence of amplicons was confirmed by gel electrophoresis on a 1% agarose (w/v) according to standard procedure. Using Clean Up Kit (A&A Biotechnology) PCR products were purified. Then, they were reamplified and sequenced with the BigDye[®] Terminator v3.1 kit (Applied Biosystems). Sequences of DNA were compared with GenBank NCBI (National Center for Biotechnology Information).

Biodegradation of BT and BTA. For biodegradation study, two strains showing the fastest growth on KM 2 with addition of BT and BTA, respectively, were used. Tested strains were placed in 100 ml Erlenmeyer flask containing 50 ml Kojim liquid mineral medium with addition of BT (10 mg/L) and BTA (10 mg/L) standards, incubated for two weeks in an orbital shaker set at 25°C and 150 rpm. Abiotic control consisted of sterile Kojim liquid mineral medium with addition of the tested substances. Composition of the studied samples, analyzed in triplicate, is presented in Table 4.

Growth of bacteria was measured at 600 nm by UV– Vis spectrophotometer (Spectronic[®] GenesysTM5). Concentration of BT and BTA was analyzed with Reverse Phase High Performance Liquid Chromatography (Chromatograph UMate 3000, Dionex) coupled with UV-VIS detector at 210 nm, 220 nm, 262 nm, 278 nm for BTA and 218 nm, 254 nm, 284 nm, 294 nm for BT. As a solid phase, Hypersil GOLD (RP-C18) chromatography column (TermoElectron Corporation) was used. Mobile phase consisted of acetonitrile and water (60:40, v/v). The efficiency of biodegradation was calculated using the formula:

 $\%B = (Cac-Cs)/Cac \times 100\%$

where Cs is concertation of BT or BTA in the sample, Cac is concertation of BT or BTA in the appropriate abiotic control.

RESULTS AND DISCUSSION

Identification of BT and BTA degrading bacteria

In the experiment, two variants of the Kojim mineral medium were used, with (KM 1) and without (KM 2)

Table 4. Composition of	f samples in the B1	and BTA biodegradation test
-------------------------	---------------------	-----------------------------

	Biotic samples				Abiotic control					
	BT_1	BT_2	BT_3	BTA_1	BTA_2	BTA_3	BT/BTA	AC_BT	AC_BTA	AC_BT/BTA
Kojim medium	+	+	+	+	+	+	+	+	+	+
BT	+	+	+	-	-	-	+	+	-	+
BTA	-	-	-	+	+	+	+	-	+	+
Strain 6_02	+	-	+	-	-	-	+	-	-	-
Strain 7_02	-	+	+	-	-	-	+	-	-	-
Strain 9_O3	-	-	-	+	-	+	+	-	-	-
Strain 10_03	-	-		-	+	+	+	-	_	_

Table 5. Total bacterial number isolated from activated	sludge on KM 1 and KM 2
---	-------------------------

Madium	Sample	Origin of activated sludge				
Medium		MBR 1, CFU/mL	MBR 2, CFU/mL	MBR 3, CFU/mL		
	Control	2.4·10 ¹	3.1·10 ¹	2.2·10 ¹		
KM 1	BT addition	2.0·10 ⁴	3.5·10 ⁴	3.3·10 ⁴		
	BTA addition	6.3·10 ³	2.4·10 ³	1.5·10 ⁴		
	Control	-	-	-		
KM 2	BT addition	1.6·10 ²	2.9·10 ⁴	7.0·10 ³		
	BTA addition	6.6·10 ³	1.0·10 ³	1.6·10 ⁴		

yeast extract. For exclusion of the impact of yeast extract as additional carbon source, KM 2 was used. Comparison of bacterial cell number obtained with both media is presented in Table 5.

Results presented in Table 5 confirmed that in the activated sludge, a microorganism potentially capable of BT and BTA transformation was present. Moreover, yeast extract may be used by bacteria as a carbon and energy source (control of KM 1). To exclude the effect of the extract on the estimate of the BT and BTA biodegradation, in another test the KM 2 medium (without yeast extract) was used. Microorganisms previously adapted to the presence of studied substances at a concentration of 10 mg/l showed a greater rate of growth of colonies on media than microorganisms unconditioned to the presence of such compounds. The most resistant to BT and BTA bacteria

Table 6. Morphological characteristic of isolated bacterial strains

were isolated from activated sludge from MBR 2 and MBR 3, which were previously adapted to the presence of those substances. However, in the activated sludge from MBR 1 which was not adapted to BT and BTA, there were bacteria resistant to both compounds. Morphological characteristics of isolated strains are presented in Table 6. Among the isolated bacteria the largest morphological group were *Coccobacilli*.

1.6·10⁴ Results of genetic identification of isolated bacterial strains according to GenBank NCBI (National Center for Biotechnology Information) are presented in Table 7.

Among the identified bacterial strains capable of BT and BTA biotransformation, the most common bacteria were *Rhodococcus* sp., *Enterobacter* sp., and *Arthrobacter* sp. In other studies, *Rhodococcus* strain PA, *Rhodococcus* OBT18, *Rhodococcus erythropolis* strain BTSO₃1, *Rhodococcus rhodochrous* and *Pseudomonas putida* strain HKT 554 were tested for BT biodegradation (Gaja & Knapp, 1997; De Wever *et al.*, 1997, El-Bassi *et al.*, 2010; Chorao *et al.*, 2009). *Rhodococcus* strains PA and OBT18 were capable of BT and 2-hydroxybenzothiazole (OBT) degradation, but they did not remove 2-mercaptobenzothiazole (MBT). Other strain, *Rhodococcus erythropolis* BTSO₃1, degraded benzothiazole sulfonate (BTSO₃) (De Wever *et al.*, 1997). Pathways of BT, OBT and BTSO₃ transformation were supposed

Strain	Origin of activated slugde	Degradable subtance	Gram stain	Microscopic morphology
1_01	MBR 1	ВТ	Gram –	Coccobacilli
2_01	MBR 1	BT	Gram –	Coccobacilli
3_01	MBR 1	BTA	Gram +	Coccobacilli
4_01	MBR 1	BTA	Gram +	Cocci
1_02	MBR 2	BT	Gram +	Соссі
2_02	MBR 2	BT	Gram +	Coccobacilli
3_02	MBR 2	BT	Gram +	Mycobacterium
4_02	MBR 2	BT	Gram +	Coccobacilli
5_02	MBR 2	BT	Gram +	Corynebacterium
6_02	MBR 2	BT	Gram +	Coccobacilli
7_02	MBR 2	BT	Gram +	Coccobacilli
8_02	MBR 2	BT	Gram +	Bacilli
9_02	MBR 2	BTA	Gram +	Coccobacilli
10_02	MBR 2	BTA	Gram +	Coccobacilli
1_03	MBR 3	BTA	Gram –	Coccobacilli
2_03	MBR 3	BTA	Gram +	Bacilli
3_03	MBR 3	BTA	Gram –	Coccobacilli
4_03	MBR 3	BTA	Gram –	Coccobacilli
5_03	MBR 3	BTA	Gram –	Coccobacilli
6_03	MBR 3	BTA	Gram –	Coccobacilli
7_03	MBR 3	BTA	Gram –	Coccobacilli
8_03	MBR 3	BT	Gram +	Coccobacilli
9_03	MBR 3	BT	Gram –	Coccobacilli
10_03	MBR 3	BT	Gram+	Coccobacilli

Strain	Identification	Similarity, %	NCBI accestion number
1_01	Methylobacterium extorquens	99	NC_012988.1
2_01	Enterobacter sp.	97	NC_021500.1
3_01	Arthrobacter sp.	99	NC_008541.1
4_01	Micrococcus luteus	99	NC_012803.1
2_02	Rhodococcus erythropolis	98	NC_022115.1
3_02	Mycobacterium sp.	97	NC_008705.1
4_02	Rhodococcus opacus	99	NC_012522.1
5_02	Corynebacterium variabile	99	NC_015859.1
6_02	Rhodococcus opacus	99	NC_012522.1
7_02	Rhodococcus pyridinivorans	98	NC_023150.1
8_02	Gordonia polyisoprenivorans	98	NC_016906.1
9_02	Cellulomonas flavigena	99	NC_014151.1
10_02	Rhodococcus erythropolis	94	NC_012490.1
1_03	Enterobacter sp.	98	NC_009436.1
2_03	Bacillus sp.	99	NC_021171.1
3_03	Enterobacter cloacae	97	NC_014618.1
4_03	Raoultella ornithinolytica	99	NC_021066.1
5_03	Enterobacter sp.	99	NC_009436.1
6_03	Pseudomonas putida	98	NC_002947.3
7_03	Raoultella ornithinolytica	98	NC_021066.1
8_03	Arthrobacter sp.	99	NC_008541.1
9_03	Enterobacter sp.	99	NC_009436.1
10_03	Arthrobacter aurescens	99	NC_008711.1

to be connected. Results of De Wever *et al.* (1998) suggest that BT and BTSO₃ go through an intermediate product (OBT), which is again hydroxylated to 2,6-dihydroxybenzothiazole (diOBT). Haroune *et al.* (2002) proposed that the formation of diOBT may be catalyze by monooxygenase and then it could be transformed into catechol and dicarboxylic acid by catechol 1,2-dioxygenase.

Results of Liu *et al.* (2011) show BTA transformation using activated sludge under the aerobic and anaerobic conditions yields different intermediate products: 1-methylbenzotriazol, phthalic acid, 4-methoxybenzotriazol, 5-methoxybenzotriazol and 1-methylbenzotriazole, *N*,*N*-dimethylaniline, carbazole, respectively.

Figure 1. Optical density of tested strains cultured in Kojim mineral liquid medium

Biodegradation of BT and BTA

For the biodegradation test, the fastest growing strains were selected, 6_O2 (*Rhodococcus opacus*) and 7_O2 (*Rhodococcus pyridinivorans*) for BT biodegradation and 9_O3 (*Enterobacter* sp.) and 10_O3 (*Arthrobacter aurescens*). Results of optical density of tested strains cultured in the Kojim mineral liquid medium are presented on Fig. 1.

The increase of optical density (OD_{600nm}) suggests that all strains of tested bacteria grow in Kojim liquid mineral medium with addition of BT and BTA standards. The results may suggest that BT and BTA may be a source of carbon and energy. The fastest growth was observed in a sample with consortium of all tested bacterial strains. Results of BT and BTA biodegradation are presented in Fig. 2.

The results of biodegradation test suggest that more degradable of the tested substances was BT. In all samples, the biodegradation rate was higher than 98%. This substance was probably used by bacteria as the source of carbon and energy. BTA was resistant to biodegradation by tested bacteria (biodegradation rate was lower than 14%). The removal of BT and BTA in a sample with consortium of all tested strains was 99% and 19%, respectively. The removal of BTA was ostensibly higher

which may suggest that biodegradation of this substance is possible in consortium of various types of bacteria, but it requires further studies. The lower values of optical density (slower growth) of tested bacteria in a medium where BTA was added, were probably due to the negative impact of BTA on the studied microorganisms.

CONCLUSIONS

In all tested activated sludge, bacteria capable of BT and BTA biodegradation were present. The most bacteria resistant of BT and BTA were isolated from activated sludge from MBR 2 and MBR 3, which were previously

Figure 2. Biodegradation rate of: A) BT and B) BTA

adapted to the presence of those substances. However, in the activated sludge from MBR 1 which was not adapted to BT and BTA, there were bacteria resistant to both compounds. Among the identified bacterial strains capable of BT and BTA biotransformation, the most common bacteria were Rhodococcus sp., Enterobacter sp., Arthrobacter sp. The results of biodegradation test suggest that BT is more degradable than BTA.

Acknowledgement

Katarzyna Kowalska is a scholar of DoktoRIS - Scholarship Program for Innovative Silesia, co-financed by the European Union under the European Social Fund. The project was supported by Grant BKM-559/RIE-8/2013 from the Ministry of Science and Higher Education and Grant UMO-2011/03/ST8/04595 from the National Science Center.

REFERENCES

- Breedveld GD, Roseth R, Sparrevik M, Hartnik T, Hem L (2003) Persistence of the de-icing additive benzotriazole at an aban-doned airport. Water Air Soil Poll 3: 91–101. http://dx.doi. org/10.1023/A:1023961213839.
- Cancilla DA, Martinez J, van Aggelen GC (1998) Detection of aircraft deicing/antiicing fluid additives in a perched water monitoring well at an international airport. *Environ Sci Technol* **32**: 3834–3835. http:// dx.doi.org/10.1021/es980489k.
- Castro S, Davis LC, Erickson LE (2004) Natural, cost-effective, and sustainable alternatives for treatment of aircraft deicing fluid waste. Envinron Prog 24: 26-33. http://dx.doi.org/10.1002/ep.10059.
- Catallo WJ, Junk T (2005) Transformation of benzothiazole in estaurine sediments. J Environ Qual 34: 1746-1754. http://dx.doi. org/10.2134/jeq2004.0182.
- Céspedes R, Lacorte S, Ginebreda A, Barceló D (2006) Chemical monitoring and occurrence of alkylphenols, alkylphenol ethoxylates, alcohol ethoxylates, phthalates and benzothiazoles in sewage treatment plants and receiving waters along the Ter River basin (Catalo-nia, N. E. Spain). *Anal Bioanal Chem* **385**: 992–1000. http://dx.doi. org/10.1007%2Fs00216-006-0448-8.
- Chen Z, Huang L, Zhang G, Qiu Y, Guo XN (2012) Benzotriazole as a volatile corrosion inhibitor during theearly stage of copper corrosion under adsorbed thin electrolyte layers. Corros Sci 65: 214-222. http://dx.doi.org/10.1016/j.corsci.2012.08.019.
- Chorao C, Charmantray F, Besse-Hoggan P, Sancelme M, Cincilei A, Traïkia M, Mailhot G, Delort AM (2009) 2-Aminobenzothiazole degradation by free and Ca-alginate immobilized cells of Rhodococcus rhodochrous. Chemosphere 75: 121-128. http://dx.doi.org/10.1016/j. chemosphere.2008.11.021.
- De Wever H, Besse P, Verachtert H (2001) Microbial transformations of 2-substituted benzothiazoles. Appl Microb Biot 57: 620-625. http://dx.doi.org/ 10.1007/s00253-001-0842-2.
- De Wever H, Van Den Neste S, Verachtert H (1997) Inhibitory effects of 2-mercaptobenzothiazole on microbial growth in a variety of trophic conditions. Environ Toxicol Chem 16: 843-848. http://dx.doi. org/10.1002/etc.5620160502.
- El-Bassi L, Iwasaki H, Oku H, Shinzato N, Matsui T (2010) Biotransformation of benzothiazole derivatives by the Pseudomonas

putida strain HKT554. Chemosphere 81: 109-113. http://dx.doi. org/10.1016/j.chemosphere.2010.07.024.

- Fiehn O, Reemtsma T, Jekel M (1994) Extraction and analysis of various benzothiazoles from industrial wastewater. Analytica Chimica Acta 295: 297-305. http://dx.doi.org/10.1016/0003-2670(94)80235-
- Finšgar M, Milošev I (2010) Inhibition of copper corrosion by 1,2,3-benzotriazole: A review. Corras Sci 52: 2737–2749. http:// dx.doi.org/10.1016/j.corsci.2010.05.002.
- Gaja MA, Knapp JS (1997) The microbial degradation of benzothiazoles. J Appl Microb 83: 327-334. http://dx.doi.org/10.1046/j.1365-2672.1997.00232.x.
- Giger W, Schaffner C, Hans-Peter EK (2006) Benzotriazole and tolyltriazole as aquatic contaminants. I. Inputand occurrence in riv-ers and lakes. *Emiron Sci Tech* **40**: 7186–7192. http://dx.doi. org/10.1021/es061565j.
- org/10.1021/e80615651.
 Harris CA, Routledge EJ, Schaffner C, Brian JV, Giger W, Sumpter JP (2007) Benzotriazole is antiestrogenic in vitro but not *in viva*. Environ Toxicol Chem 26: 2367–2372. http://dx.doi.org/10.1897/06-587R.1.
 Haroune N, Combourieu B, Besse P, Sancelme M, Reemtsma T, Kloepfer A, Diab A, Knapp JS, Baumberg S, Delort AM (2002) Benzothiazole degradation by Rhodococcus pyridinovorans strain PA: evidence of a credited below of a constraint of the cons idence of a catechol 1,2-dioxygenase activity. *Appl Emirron Microb* 68: 6114–6120. http://dx.doi.org/10.1128/AEM.68.12.6114-6120.2002. Kahle M, Buerge IJ, Müller MD, Poiger T (2009) Hydrophilicanthro-
- pogenic markers for quantification of wastewater contamination in ground - and surface waters. Environ Toxicol Chem 28: 2528-2536. http://dx.doi.org/10.1897/08-606.1.
- Kloepfer A, Jekel M, Reemtsma T (2005) Occurrence, sources, and fate of benzothiazoles in municipal wastewater treatment plants. Environ Sci Tech 39: 3792-3798. http://dx.doi.org/10.1021/es048141e.
- Lane DJ (1991) 16S/23S rRNA Sequencing. In Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt E, Goodfellow M eds, John Wiley & Sons: New York, NY, USA.
- Liu Y-S, Ying G-G, Shareef A, Kookana RS (2011) Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions. Water Res 45: 5005-5014. http://dx.doi.org/10.1016/j. watres.2011.07.001.
- Pillard DA, Cornell JS, Dufresne DL, Hernandez MT (2001) Toxicity of benzotriazole and benzotriazolederivatives to three aquatic species. Water Res 35: 557-560. http://dx.doi.org/10.1016/S0043-1354(00)00268-2.
- Reemtsma T, Miehe U, Duennbier U, Jekel M (2010) Polar pollutants in municipal wastewater and the watercycle: Occurrence and removal of benzotriazoles. Water Res 44: 596-604. http://dx.doi. org/10.1016/j.watres.2009.07.016.
- Voutsa D, Hartmann P, Schaffner C, Giger W (2006) Benzotriazoles, alkylphenols and bisphenol A in municipalwastewaters and in the Glatt River, Switzerland. Environ Sci Poll Res 13: 333-341. http:// dx.doi.org/10.1065/espr2006.01.295.
- Weiss S, Jakobs J, Reemtsma T (2006) Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation. Environ Sci Tech 40: 7193-7199. http://dx.doi.org/10.1021/es061434i.
- Wu X, Chou N, Lupher D, Davis LC (1998) Benzotriazoles: toxicity and degradation. Proceedings of the 1998 Conference on Hazardons Waste Research, Manhattan, 374–382, 18–21.05.1998.
- Zapór L (2005) Benzothiazole: Documentation of the limit values of occupational exposure. Podstany i Metody Oceny Środowiska Pracy 45:
- Zhang ZF, Ren NQ, Li YF, Kunisue T, Gao D, Kannan K (2011) Determination of benzotriazole and benzophenone UV filters in sediment and sewage sludge. *Environ Sci Tech* **45**: 3909–3916. http:// dx.doi.org/10.1021/es2004057.